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Because traditional lithium-ion batteries have been unable to meet the energy density requirements of
various emerging fields, lithium-metal batteries (LMBs), known for their high energy density, are
considered promising next-generation energy storage batteries. However, a series of problems, including
low coulombic efficiency and low safety caused by dendrites, limit the application of lithium metal
batteries. Herein, fluoro-oxygen codoped graphene (FGO) was used to modify the copper current
collector (FGO@Cu). FGO-coated current collector provides more even nucleation sites to reduce the
local effective current density. FGO is partly reduced during cycling and helps form stable LiF-rich SEI.
Moreover, graphene’s oxygen and fluorine functional groups reconstruct the current density distribution,
promoting uniform lithium plating. The FGO@Cu current collector demonstrates superior properties
than commercial Cu foil. The FGO@Cu delivers a 97% high CE for over 250 cycles at 1 mA cm™2. The
FGO@Cu symmetrical battery cycled at 1 mA cm™2 for over 650 h. LiFePO, fuel cell with a lithium-
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1. Introduction

As the usage of electronic devices and electric vehicles has
exponentially increased in modern life, the safety and energy
density requirement for secondary batteries keeps increasing.
Lithium metal battery (LMB) is promising as a power supplier
for these electrical appliances thanks to lithium metal anode's
unmatched theoretical capacity and redox potential.»> However,
unwanted Li dendrite growth ascribed to a high diffusion
barrier of Li, inhomogeneous electrical field, and uneven Li-ion
flux would break SEI and pierce the membrane, causing cell
failure and even thermal runaway, leading to serious safety
hazards.*>*

Various strategies, such as building artificial SEI layers with
high mechanical modulus, good electrical insulation, and rapid
Li-ion diffusion rate;>® optimizing electrolytes, including
introducing electrolyte additives and using high-concentration
lithium salt electrolytes;”® constructing 3D hosts with unique
surface chemistry and interconnecting structures;>'® regulating
surface lithiophilicity by introducing lithiophilic nucleation
sites, have been employed to alleviate the growth of lithium
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dendrites.'>* Among these, regulating surface lithiophilicity
can control Li" flux during plating, triggering uniform Li
deposition and thus alleviating lithium dendrite growth.'
Moreover, regulating surface lithiophilicity can be carried out
with other modification strategies,' synergistically solving the
problem of Li anodes. Recently, the ‘anode-free’ anode for LMB
attracted much attention as it used only Cu current collector as
the ‘anode’ to assemble an LMB, and the real Li anode will form
during cycling.'>'® With this structure, the volume of the battery
can be largely reduced. However, the Li nucleation barrier on
the Cu surface is relatively high, hindering the uniform Li
deposition.””*® Thus, the surface lithiophilicity of the Cu
current collector for the anode-free LMB also needs to be
regulated.

A commonly used method to regulate surface lithiophilicity
is introducing evenly distributed lithiophilic sites.* Lithiophilic
materials such as alloys, ion-conducting frameworks, polymers,
and carbon materials have been employed.**** Graphene-based
materials are commonly utilized carbon materials for lith-
iophilicity optimization. Previous investigations showed that
graphene oxide (GO) is lithiophilic, which can guide the
uniform deposition of Li during cycling.>»** GO can be easily
anchored on the Cu current collector surface by a redox reaction
between GO and Cu, simplifying the fabrication process.**
Moreover, studies show that fluorinated graphene can also
improve the electrochemical performance of the anode.**** On
the one hand, the fluorine-doped graphene provided high
lithiophilicity, which regulated the Li flux and averaged the
local current density. On the other hand, the reaction between
the fluorine functional group and the electrolyte in situ
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generated a stable LiF-rich SEI, which has an excellent Li-ion
diffusion rate and can suppress lithium dendrite. However,
graphene-based materials are mostly fabricated via the modi-
fied Hummers' method or CVD, which uses high-risk proce-
dures or has a high demand for the instrument, thus hindering
the large-scale application of graphene-based materials.””*®

Here, we propose a straightforward and eco-friendly process
for producing fluorine-doped graphene oxide (FGO) and utilize
the redox reaction between FGO and Cu to fabricate a lith-
iophilic layer on the current collector for Li metal battery. The
resulting FGO@Cu anode exhibited excellent cycle performance
and coulombic efficiency. The optimized electrode can operate
for over 250 cycles at 1 mA cm ™~ > and 1 mA h cm 2. The full cells
with commercial LiFePO, (LFP) electrodes further show signif-
icantly enhanced cycling stability. The mechanism for perfor-
mance enhancement is also investigated. Our work provides
a simple and environmentally benign way for surface lith-
iophilicity regulation.

2. Experimental section
2.1 Synthesis of fluorinated graphene

The synthesis of fluorinated graphene was carried out in
a homemade two-electrode electrolyzer with a DC power supply.
Graphite sheets (4 x 8 cm JingLong TeTan Beijing) were used as
the cathode and anode. NaF (0.2 M) and H,SO, (0.1 M) were
used as the electrochemical exfoliation electrolytes. A 7 V
potential bias was added for 10 h to conduct the exfoliation.
After the exfoliation, the expended graphite was washed with 2 L
deionized water (DI water), re-dispersed in 600 mL DI water, and
ultrasonicated for 2 h. Then, the sample was centrifuged at
3000 rpm to separate fluorinated graphene and graphite parti-
cles. The upper solution was extracted and centrifuged at
9000 rpm to collect fluorinated graphene.

2.2 Current collector modification

The Cu foil was cut into small discs (1.539 cm?®) and then
washed with DI water, 0.5 M NaOH solution, DI water, 0.5 M
HCI solution, and DI water in a sequence. After cleaning, the
copper discs were sliced and soaked in the graphene dispersion
(for 1, 3, 6, and 12 h), rinsed, and dried at 50 °C. The FGO@Cu
current collector was then obtained.

2.3 Material characterizations

Scanning electron microscopy (SEM, JEOL-7500) and high-
resolution transmission electron microscopy (HRTEM, JEM-
F200, JEOL) were used to reveal the morphology of the
samples. The characteristic functional groups were analyzed
using Fourier transform infrared spectroscopy (FT-IR, Frontier
NIR, and PE). The elemental compositions were analyzed by X-
ray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo
Scientific). The chemical structures of GO and FGO were
revealed by Raman spectroscopy (DXR2, Thermo Scientific).
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2.4 Electrochemical measurements

All electrochemical tests used coin-type cells (CR2025) with
Celgard 2400 as the separator. Note that 1.0 M LiTFSI-DOL/DME
with 2 wt% LiNO; was used as the electrolyte. The CE of the half
cell was tested using Cu as the cathode and Li as the anode. For
symmetric cells, 3 mA h em ™2 Li was deposited at 0.5 mA cm >
on all testing samples in advance. For LFP full cells, the
commercial LFP powder, acetylene black, and PVDF were mixed
with a mass ratio of 8:1:1, then cast on an Al foil and dried
overnight at 110 °C to obtain the LFP cathode. The mass loading
of LFP was 1.2 mg cm ™, Li-plated current collectors were used
as the anode, and 1.0 M LiPFg in 1: 1 EC : DMC was used as the
electrolyte. The cycle tests of the full cells were carried out at
0.5C (1C = 180 mA g~ ') at 2.0-4.2 V.

2.5 Theoretical simulations

All calculations were based on DFT as implemented in the VASP
with the exchange-correlation function of GGA of the PBE
method. A grid of 2 x 3 x 1 Monkhorst-Pack k-points was used.
A vacuum layer of 15 A was adopted to avoid interactions
between the periodic slabs. The energy cutoff was set to be
520 eV. The convergence criterion for the energy and maximum
force for the optimization were set to 10> eV and 0.05 eV A™?,
respectively. The adsorption ability and stability of the mole-
cules on the surface were evaluated by comparing the adsorp-
tion energy, and the adsorption energy, defined as:

Eads = Eadsorb/surf - Esurf - Eadsorb

where E.gsorb/surty Esurt, and E.gsorp are the calculated total
energies of the substrate with adsorbate(s), the clean substrate,
and the isolated adsorbate, respectively.

3. Results and discussion

We used the simple graphite electrochemical exfoliation in NaF
and H,SO, mixture electrolytes to realize the one-step fabrica-
tion of fluorine-doped graphene oxide (Fig. 1a). NaF was used as
the fluorine source, and SO,>” is a typical exfoliating agent for
graphene preparation. The typical SEM images of FGO nano-
sheets are shown in Fig. S1; the wrinkled sheet structure of
graphene can be observed. Moreover, most of the FGO obtained
have few layers. HAADF-STEM results and corresponding
elemental mappings of the FGO nanosheet are shown in Fig. 1b.
C, O, and F are uniformly distributed in the sample, suggesting
the homogeneous distribution of the introduced fluorine
(Fig. 1b). For comparison, a GO sample was also produced via
electrochemical exfoliation using only H,SO, as the electrolyte.
The typical SEM images of GO are shown in Fig. S2.1 A structure
similar to FGO can be observed for the GO sample, suggesting
that F-doping has little effect on the structure of GO. In the
Raman spectra (Fig. 1c), D, G, and 2D bands at about 1328,
1583, and 2640 cm ' can be observed for both samples,
respectively. The few-layer structure of GO can thus be
confirmed.?® The Ip/I; ratio of FGO is higher than that of GO, as
the F-doping increased the disorder of GO.** Fig. 1d shows the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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FTIR spectra of FGO and GO. The synthesized FGO film
comprises various oxygen functional groups attributed to the
C-H stretching vibrations at 1160 cm™ ', C=C at 1573 cm ™",
C=0at 1705 cm ', and C-O at 1052 cm ™ ". The 1210 cm ™ peak
ascribed to the vibration of the C-F bond was observed only in
the spectrum of FGO.**** Fig. le shows the characteristic
deconvoluted C1s spectra of GO, in that the peaks for the C-C
bond, C-O bond, and C-OH bond can be observed.**** For F-
GO (Fig. 1f), in addition to the peaks observed in GO, a new peak
at 288.8 eV corresponding to the C-F bond can be observed.
These results mutually prove the successful doping of F into GO
via the simple one-step electrochemical exfoliation method.
The preparation procedure of the FGO@Cu electrode is
shown in Fig. 2a. FGO is anchored on the Cu surface via the
room-temperature redox reaction between FGO and Cu. The
digital photos of FGO/Cu and Cu are shown in the inset figures
of Fig. 2b and c, where the color of FGO@Cu is darker than that
of Cu. The SEM image of Cu (Fig. 2b) displays a rough surface
with many protrusions. In contrast, the FGO/Cu (Fig. 2c)
exhibits a smooth and flat surface, suggesting that FGO
coverage can smoothen the Cu surface concavity. The SEM of
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FGO@Cu and pure Cu after Li plating (1 mA h cm™?) are shown
in Fig. 2d and e. Li-Cu exhibits an uneven surface with
randomly distributed pores and protrusions, leading to the
formation of Li dendrites after cycling. However, Li-FGO@Cu
demonstrated an even and flat surface morphology, facili-
tating dendrite-free electrode cycling. High magnification
details are shown in Fig. S3.}

A schematic of the Li plating behavior on Cu foil and
FGO@Cu is provided in Fig. 3. Due to the uneven surface of Cu
foil, Li metal will preferentially deposit on the protrusion,
leading to dendrite growth (Fig. 3a). Sharp dendrites will pierce
the membrane and cause short-circuit and thermal runaway.
Moreover, the dendrite is preferentially dissolved at the root
and forms “dead Li”, which greatly reduces the coulombic
efficiency of the battery.***” However, with the help of uniformly
distributed lithiophilic FGO, the local current density can be
even, and the Li nucleation barrier will be reduced, leading to
even Li deposition (Fig. 3b). Moreover, the partially reduced
graphene oxide can increase the conductivity of the collector.
These results suggest FGO@Cu's potential for practical
applications.'>?%%%
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Fig.1 (a) Schematic of the electrochemical preparation of FGO. (b) The TEM dark field image of FGO and C, O, F element distribution. Raman

spectra (c) and FTIR spectra (d) of FGO and GO. The XPS spectra of (e) GO and (f) FGO.
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Fig. 2

(a) Illustration of the fabrication process of FGO@Cu composite anode. SEM and digital images of (b) bare Cu anode and (c) FGO anode.

SEM images of deposited Li (3 mA h cm™2) on (d) bare Cu and (e) FGO@Cu.
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Fig. 3 Schematic of Li deposition behaviors on (a) bare Cu and (b)
FGO@Cu.

The corresponding DFT calculations are conducted to reveal
the influence of fluoro-oxygen codoping on the lithiophilicity of
graphene. Here, we calculated the Li binding energies of four
types of graphenes: pure graphene, oxygen-doped graphene,

fluorine-doped graphene, and fluoro-oxygen codoped graphene,
and the corresponding binding energies are 0.23, —0.09, —1.07,
and —2.72 eV, respectively (Fig. 4a-d). Among them, fluoro-
oxygen codoped graphene demonstrated the highest adsorp-
tion energy, which indicates that the codoping of fluorine and
oxygen has a synergistic effect on the adsorption of lithium
ions. We also calculated another configuration of fluoro-oxygen
codoping graphene, and the results show that the adsorption
energy is still greater than that of graphenes with only oxygen or
fluorine dopings (Fig. S41). To understand the role of the fluoro-
oxygen codoping in the lithium plating/stripping process, we
calculated the charge distribution of fluoro-oxygen codoped
graphene. The obtained differential charge density diagrams
are shown in Fig. 4e and f, where the yellow region is the charge
gain region, and the blue region is the charge lost region.
Compared with pure graphene, the charge gain region on the
surface of the doped graphene is conducive to the adsorption of
lithium ions, and the dynamic diffusion of the charge gain
region after adsorption can guide lithium ions to uniform
deposits in the direction horizontal to the electrode surface, and
ease the growth of dendrites.***

Fig. 4 DFT simulations demonstrate the lithiophilicity of (a) pure graphene, (b) graphene oxide, (c) F-doped graphene, and (d) FGO. Differential

charge of (e) FGO (f) pure graphene after lithium adsorption.
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Fig. 5 (a) Nucleation overpotential and (b) coulombic efficiency of bare Cu and Cu soaked in FGO for 3,6, and 12 h. EIS profiles of symmetrical

cells after 1, 30, 50, and 80 cycles of (c) bare Li and (d) FGO@Cu modified Cu. (e) Cycling performance of the Li|Li symmetrical cells with bare Cu,
GO@Cu, and FGO@Cu at 1 mA cm~2 and 1 mA h cm™2. (f) Rate performance of bare Cu, GO@Cu, and FGO@Cu.

The electrochemical performances of half cells with Cu foil,
GO@Cu, and FGO@Cu are displayed in Fig. 5. Compared to the
bare Cu current collector (with a nucleation overpotential of 87
mV), the FGO-coated Cu electrodes exhibited lower nucleation
overpotential (Fig. 5a), demonstrating that the FGO layer can
effectively reduce the energy barrier of Li nucleation. Moreover,
as the immersion duration increased from 3 to 12 h, the
nucleation overpotential further decreased to 20 mV from
42 mV. However, extending the immersion duration to 16 h
increases the nucleation overpotential to 58 mV (Fig. S5af),
ascribed to the overoxidation of Cu. The overpotential of
GO®@Cu and FGO@Cu half batteries with an immersion dura-
tion of 12 h are then compared. Evidently, FGO with stronger
lipophilicity has a more significant effect on reducing the
nucleation overpotential of lithium (Fig. S5bt).

Moreover, the CE of the modified electrodes increases with
the extension of immersion duration. Bare Cu exhibited a CE of
95% for the initial 45 cycles and then fluctuated (Fig. 4b).
GO@Cu maintained a CE of 98% for 90 cycles, which is more
stable than that of bare Cu (Fig. S61). The FGO@Cu shows the

best performance for maintaining a CE of 98% for over 250
cycles. Moreover, EIS tests were performed to investigate the
electrochemical reaction kinetics. FGO@Cu cell's interface
resistance (Ry) is smaller than that of bare Cu at the initial cycle
and stable after the 30th cycle. The R for bare Cu significantly
increased after 30 cycles (Fig. 5¢c and d). The results suggest that
the lithiophilic FGO coating can reduce the Li nucleation
barrier and facilitate electron transport on the current collector.

The cycle stability of FGO@Cu, GO@Cu, and bare Cu were
investigated by the galvanostatic test. All symmetrical cells
comprised two identical electrodes, on which 2 mA h em ™ Li
was deposited at 0.5 mA cm > Fig. 4e shows the curves ob-
tained at 1 mA cm ™ * and 1 mA h em 2. FGO@Cu symmetrical
cell exhibited a lower voltage hysteresis than GO@Cu and bare
Cu. The operation duration of the FGO@Cu symmetrical cell
was considerably longer, reaching 690 h, proving the superior
cycle stability of the FGO@Cu electrode. Results of the
symmetrical cells tested at higher current densities are shown
in Fig. S7,T demonstrating that the FGO@Cu symmetrical cell
still offers better cyclic stability at 2 mA cm > and 1 mA h cm 2

Fig. 6

© 2024 The Author(s). Published by the Royal Society of Chemistry

(a) SEM image of bare Cu symmetrical cell plating after 50 cycles. (b) FGO symmetrical cell plating after 100 cycles.
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Fig. 7 C 1s and F 1s high-resolution spectra after 50 and 100 cycles of (a) (c) FGO@Cu and (b) (d) GO@Cu.

The symmetrical cells were tested at 0.2 mA cm ™2 from 1 to 10
cycles, 0.5 mA cm ™2 from 10 to 20 cycles, 1 mA cm ™ from 21 to
30 cycles, 2 mA cm ™ from 31 to 40 cycles, and 0.2 mA cm™>
from 41 to 50 cycles to reveal their rate performances. The
voltage hysteresis of F-GO@Cu then increases from 11 to 25 mV
as the current density increases from 0.2 to 5 mA cm™ 2, and
then reduces to 12 mV and remains stable when the current
density returns to 0.2 mA cm™ 2. The GO@Cu symmetric cell
shows a prominent disorder when the current density increases
from 0.2 to 0.5 mA cm 2. However, the bare Cu succumbed to
severe voltage fluctuation as the current density increased to 1
mA cm >, We compared different Cu modification methods
made for lithium metal batteries. As shown in Fig. S8, this
strategy is quite effective in improving the stability of the battery
cycle. >
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The morphology evolution of the deposited Li after further
cycling illustrates the effect of FGO coating on Li plating/
stripping behavior. After cycling at 1 mA cm > and
1 mA h em™? for 50 cycles, lithium whiskers and dendrites can
be observed on the electrode surface of the Cu symmetrical cell
(Fig. 6a). However, after 100 cycles at 1 mA cm > and
1 mA h em™?, the Li deposited on the surface of the F-GO@Cu
electrode is still compact and uniform without obvious Li
dendrites (Fig. 6b). This distinction can be attributed to the
abundant lithiophilic sites on the fluorine-rich FGO current
collector that can guide the uniform deposition of Li. Moreover,
the fluorine-rich electrode facilitated the formation of LiF-rich
SEI with higher mechanical strength that can suppress the Li
dendrite growth.

XPS tests were performed to investigate the SEI composi-
tions. The obtained C 1s and F 1s spectra for FGO@Cu and
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Fig. 8 The discharge/charge voltage profiles at different cycle numbers of (a) FGO@Cu (b) bare Cu rate performance, and (c) long-term cycling

(d) at 0.5C of FGO@Cu and bare Cu.
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GO@Cu electrodes after 50 and 100 cycles in half cells are
shown in Fig. 7a-d. In C 1s spectra, fitting results show that
peaks for C-C bond, C-O bond, C=0 bond, and C-F bond can
all be observed.*”*® For FGO@Cu, the proportions of each bond
remain constant. In contrast, the component proportions of the
SEI of GO@Cu change after cycling, suggesting the poor
stability of SEI. The poor SEI stability is responsible for the poor
cycle stability of GO@Cu and the CE of GO@Cu half cell was
sharply decent at about the 90th cycle (Fig. S6%). Fig. 7c and
d show the F 1s spectra of FGO@Cu and GO@Cu. Peaks for LiF
were constantly observed. Moreover, the proportion increased
from 5.3% to 12.22% during cycling, suggesting that FGO@Cu
can continuously supply F for LiF formation, reinforcing the SEI
as the operation proceeded and benefiting the long-term cyclic
stability of the cell. As for GO@Cu, the LiF signal vanished and
the signal for SFs appeared after cycling, suggesting the SEI's
poor stability.*>*°

To further explore the practical application of the FGO@Cu
current collector, the FGO@Cu and bare Cu were plated with
3 mA h cm ™2 of Li and used as anodes to assemble Li-LFP full
cells. The fabricated full cells were denoted as Li-FGO@Cu||LFP
and Li-bare Cu||LFP, respectively. The results (Fig. 8a and b)
show that the bare Li-bare Cul||LFP showed capacity decay after
the 5th cycle. While for Li-FGO@Cu||LFP, its capacity remained
stable during the test. In addition, the Li-FGO@Cu||LFP full cell
exhibits a superior rate performance and delivers a reversible
capacity of 172.3, 158.5, 140.7, and 120.3 mA h g ' at 0.2, 0.5, 1,
and 2C, respectively (Fig. 8c). Fig. 8d shows the long-term
stability of Li-FGO@Cu||[LFP and Li-bare Cul|LFP full cells. At
the rate of 0.5C, the batteries with unmodified Cu collectors
delivered an initial capacity of 150.9 mA h g~' and were
degraded to 21.8 mA h g~ " after 100 cycles. On the contrary, the
FGO-modified full cell shows a much better capacity retention
of 88.4%.

4. Conclusions

We fabricated FGO@Cu anodes via a simple in situ redox reac-
tion for LMB. Ascribing to the synergistic effect of the high
lithiophilicity provided by F-O-codoping sites and the high
electron conductivity offered by graphene, the FGO@Cu
expressed an improved CE of 98% after 250 cycles and stable
cycling for 680 h at 1 mA cm ™2 in the half cell with a low-voltage
hysteresis of 20 mV. DFT simulation revealed that the syner-
gistic effect of F and O codoping can facilitate Li-ion adsorption
and guide even Li deposition. This study demonstrates
a feasible approach to modify the Cu foil with FGO, which is
conducive to developing lithium metal batteries with high
commercial potential.
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