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Tremendous advances, multifaceted challenges
and feasible future prospects of biodegradable

medical polymer materials
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In recent years, biodegradable medical polymer materials (BMPMs) have stood out among many biomedical
materials due to their unique advantages, such as high mechanical strength, good biocompatibility, strong
corrosion resistance and excellent processability. In this review, we first provide a brief introduction of
biodegradable medical materials from both natural and synthetic perspectives, and then systematically

categorize BMPMs based on their applications in clinical medicine and highlight the great progress they

have made in recent years. Additionally, we also point out several overlooked areas in the research of
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BMPMs, offering guidance for comprehensive future exploration of these materials. Finally, in view of the

complex challenges faced by BMPMs today, their future directions are scientifically proposed. This work
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1. Introduction

Medical polymer materials can be used for clinical diagnosis,
disease treatment, surgical repair, and even human tissue and
organ replacement."” Based on whether the materials them-
selves are biodegradable, they tend to be broadly divided into
two categories. Materials that can be hydrolyzed or enzymati-
cally degraded into low molecular weight compounds or
monomers within the biological system are defined as biode-
gradable medical polymer materials (BMPMs).® Conversely, if
materials cannot be hydrolyzed or enzymatically degraded, they
are referred to as non-BMPMs. Clearly, BMPMs are a type of
semi-automated functional material, as BMPMs can degrade
automatically after service without the need for additional
manual intervention.” More importantly, extensive research has
shown that the molecular structure, chemical composition, and
physical properties of BMPMs are extremely similar to those of
biological tissues. When human tissues need to be transplanted
due to disease or trauma, it is difficult to satisfy the demand for
autologous organs, except for a small amount of skin. Alterna-
tive measures such as allografts or xenografts often result in
strong rejection reactions,*® which in severe cases directly
induces surgical failure.*®" In this situation, it is common to
consider using BMPMs to repair or replace damaged parts of the
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contributes to the ongoing efforts of BMPMs in the biomedical field and provides a steppingstone for
developing more effective BMPM-based products for clinical applications.

organism.'” Consequently, BMPMs occupy an irreplaceable
position in clinical applications.

Unlike general medical materials, BMPMs come into direct
contact with human tissues or organs, thereby dominating the
lives of patients. Once the performance of BMPMs is inaccurate
to the actual needs of the human body, it can pose a serious
threat to patient safety. Therefore, some stringent requirements
for BMPMs are clearly listed in Table 1. Only BMPMs with the
following properties can be considered as the ideal materials.

So far, the techniques used to prepare BMPM-based products
in biomedical field have been widely reported, mainly including
solvent casting/particle leaching (SCPL), thermally induced
phase separation (TIPS), electrospinning, and three-
dimensional (3D) printing. Among them, the first three are
traditional preparation methods (Fig. 1). Although these
methods are still used in biomedicine due to their mature
technology, stable process, and the ability to maintain the
original chemical properties of the materials, they also have
some shortcomings, such as long production cycles, high
energy consumption, low mechanical strength, and the inability
to achieve complex personalization. In recent years, with
continuous advancements in technology, 3D printing tech-
nology has shown promising applications in biomedicine and
has gained widespread attention from researchers.

3D printing technology, also known as additive
manufacturing (AM) or rapid prototyping (RP),>*° is one of the
most common techniques for processing materials into
products.®** It utilizes energy sources such as light, electricity,
and heat to melt, sinter, or jet materials, stacking them layer by
layer to form predetermined 3D scaffold structures. What
makes 3D printing technology unique compared to traditional
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Table 1 The basic performance requirements of BMPMs in clinical application

Performance requirements Objectives Ref.

Good biocompatibility To avoid the rejection reaction 13 and 14
Steady mechanical properties To ensure that the material will serve for a long time 15-17
Credible biosecurity To make sure to be harmless to human health 18 and 19
Appropriate degradation rate To match perfectly with the rate of tissue regeneration 20 and 21
Excellent processability To process into complex structures as required 22 and 23
Outstanding bioactivity To induce specific biochemical reactions between the material and the surrounding host tissue 24

techniques is that it allows for the rapid manufacture of solid
parts based on computer-drawn file graphics without the need
for molds**~*” thus greatly reducing production costs and cycle
times.***° The greatest advantage of 3D printing is its ability to
create personalized designs based on the patient's medical
images, including hollow structures and complex geometries.
Additionally, customized pore sizes and excellent mechanical
properties are notable features of 3D printed bone scaffolds.
Currently, the primary 3D printing processes used to fabricate
bone tissue scaffolds include selective laser sintering (SLS),
stereolithography (SLA), fused deposition modeling (FDM) and
3D printing (3DP), with corresponding schematic diagrams
shown in Fig. 2.

More surprisingly, a large number of studies have shown
that the combination of BMPMs and 3D printing technology
can not only enable personalized design, but also give the
product its own outstanding performance advantages without
any reservations.*’** Fig. 3 shows some of the biomedical
products obtained by 3D printing technology, which have

Polymer so-l:tim

shown excellent performance after continuous testing by
designers.

The objective demands in the medical field have driven the
development of BMPMs. In recent years, with the increasing
clinical emphasis on the requirements of minimal invasion and
high precision, BMPMs have been gradually pushed to the
forefront, and their unique advantages have been increasingly
recognized, explored and utilized. This review systematically
categorizes BMPMs according to their biomedical applications
and pays great attention to the significant advances made in the
medical field over the past few years. Finally, considering the
numerous challenges currently faced, the future directions of
BMPMs are rationally proposed.

2. BMPMs

There are two main sources of BMPMs.*>*! One is in the form of
natural products from the biological community, which are
biocompatible and non-toxic,** including chitosan (CS), chitin
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Fig. 1 Schematic representation of some conventional techniques for the preparation of BMPM-based products. (a) SCPL. (b) TIPS. (c)

Electrospinning.
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sition modeling (FDM). (d) 3D printing (3DP).

and starch. The other type is obtained through synthesis and
mainly involves polylactic acid (PLA), polycarbonate (PC), poly-
phosphoric ester (PPE), polycaprolactone (PCL), polyglycolic
acid (PGA), and polyethylene terephthalate (PET). Fig. 4
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Fig. 2 Schematic diagram of 3D printing technology. (a) Stereo lithography apparatus (SLA). (b) Selective laser sintering (SLS). (c) Fused depo-

illustrates the chemical structures of these materials. As the
former need to be isolated, refined and purified before use,
resulting in low purity.”® Unfortunately, they usually exhibit
short-term  degradation and inadequate mechanical

Fig. 3 A few products by 3D printing technology. (a) PCL splint. Reproduced from ref. 44 with permission from Elsevier, copyright 2021. (b)
Coronary artery stent. Reproduced from ref. 45 with permission from Elsevier, copyright 2021. (c) Polyvinyl alcohol and cellulose nanofibril
hydrogel. Reproduced from ref. 46 with permission from Elsevier, copyright 2021. (d) Vascular stent. Reproduced from ref. 47 with permission
from Elsevier, copyright 2020. (e) Bone scaffold. Reproduced from ref. 48 with permission from Elsevier, copyright 2021. (f) Auricular scaffold.

Reproduced from ref. 49 with permission from Elsevier, copyright 2021.
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Fig. 4 Chemical structures of all the aforementioned BMPMs.

properties.>® Therefore, they are highly limited in practical
applications. In contrast, the latter offer more options.*® The
most notable advantage of synthetic materials is their control-
lability in terms of mechanical strength, hydrophilicity-hydro-
phobicity and degradation rate. Additionally, synthetic
materials are characterized by high mechanical properties,
good thermal stability, and resistance to biological aging,
making them widely applicable in artificial organs (such as
kidneys, hearts, and lungs), artificial tubes (blood vessels,
esophagus, intestines, and urethra), as well as vascular scaf-
folds.*>® Therefore, in this paper, synthetic BMPMs were chosen
as the focus of discussion.

To date, a number of BMPMs with excellent performance in
the medical field have been reported. However, authorities in
relevant academic fields have not yet developed a set of well-
recognized and unified classification criteria. In this review,
BMPMs are systematically categorized by medical applications,
and the results are shown in Fig. 5. It is worth emphasizing that
this classification method is not exclusive, as some materials
are widely used in different applications due to their
outstanding properties.
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2.1. Biodegradable hard tissue compatible polymer
materials

A class of synthetic degradable polymers capable of undertaking
the task of protecting vital organs, shaping, supporting body
weight and achieving intra-biological movement are defined as
degradable hard histocompatible polymers,**® such as poly-
lactic acid, PC, PCL, PGA and PC. These materials are widely
used as artificial bone substitute materials because of their light
specific gravity, good biocompatibility, high mechanical prop-
erties, and low corrosiveness. When the human body has
serious bone defects or pathological changes caused by viral
infection, tumor traumatic injury, congenital
dysplasia, etc., artificial bone can be used to fill and repair the
bone and eventually restore its original function.>

Among the aforementioned materials, PLA is a typical
representative of biodegradable hard tissue compatible poly-
meric materials.® It is a non-toxic polymer compound formed
from the polymerization of lactic acid, free of reactive func-
tional groups and hydrophilic groups, with good biocompati-
bility, adjustable degradability and excellent physical
properties.®’-*” The greatest advantage of PLA is that it can be
completely degraded in vivo and eventually generate CO, and
H,0.%® Apart from this, no other degradation products are
generated.®® Therefore, PLA is unanimously recognized as the
most desirable and promising artificial bone replacement
material’®” and is highly valued.

The most concerning issues regarding PLA after implanta-
tion are its mechanical properties, biocompatibility, cytotox-
icity, and degradability. Good mechanical properties are
fundamental for the successful implantation of artificial bones,
ensuring that the scaffold can provide long-term support.
Excellent biocompatibility is the key for the successful inte-
gration of the artificial bone with the biological system, pre-
venting inflammation or rejection reactions. The cytotoxicity of

removal,
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PLA in the body determines its suitability for biological use. The
degradation process is crucial for bone replacement and
regeneration, with the ideal scenario being that the degradation
rate of the material aligns with the rate of new bone regenera-
tion. If the former occurs earlier than the latter, it will
undoubtedly lead to surgical failure. Conversely, an undegraded
bone scaffold can prevent the formation of new bone, resulting
in deformities.

Gremare et al.”* fabricated three PLA scaffolds with pore sizes
of 150, 200 and 250 um by the FDM technique. The survival
rates of human bone marrow stromal cells (HBMSC, live/dead
status indicated by green/red fluorescence) cultured on the
three PLA scaffolds for 7 days showed that HBMSC were
uniformly distributed throughout the grid, demonstrating high
viability regardless of pore size. These results provide strong
evidence that PLA printed scaffolds possess good cell compati-
bility and non-toxicity. Additionally, the authors found that
PLA-printed scaffolds exhibited lower pore size and larger
diameter than expected. More interestingly, they also discov-
ered that the 3D printing process reduced the molecular weight
and degradation temperature of PLA, but these unexpected
findings do not negate the fact that PLA printed scaffolds
provide personalized treatment for patients with bone defects
(Fig. 6).

However, numerous experimental results have shown that
pure PLA as a bone repair material typically exhibits varying
degrees of deficiencies in mechanical properties. Therefore,
PLA is usually designed to be blended with reinforcement
materials to become a satisfactory product.”>”” Considering
that pure PLA cannot provide effective support in orthopedic
fixation devices due to its poor mechanical strength, Wan et al.”®
proposed the preparation of PLA/bones/polybutylene succinate
(PLA/PBSA) biocomposites using pork bone powder and PBSA as
toughening agents. The mechanical strength of PLA/bones/
PBSA biocomposites increased with the increase of the
content of PBSA and pork bone, reaching maximum values
when both PBSA and pig bone contents are 10 wt%, with tensile
strength of 48.5 & 0.2 MPa, flexural strength of 79.1 & 0.1 MPa,
and notched impact strength of 15.8 + 0.3 k] m™>. In addition,
the authors also observed through in vivo bone repair experi-
ments that the bone repair at the damaged site of rabbits was
nearly completed within four months after filling with 80 wt%
PLA/10 wt% bones/10 wt% PBSA.

Wang et al.” fabricated PLA/nanohydroxyapatite (n-HA,
50 nm to 80 nm in diameter) composite scaffolds (Pn scaf-
folds) by the FDM technique. When the specific gravity of n-HA
reached 40%, the scaffold could not maintain its intact shape
after the compression test. A reasonable explanation can be
derived from SEM images: the flatness of the scaffold surface
was gradually transformed from smooth to rough as the amount
of n-HA increased, which led to a significant decrease in
compressive strength. However, the osteogenic effect of the Pn
composite scaffold was optimistic. The Pn30 scaffolds in rabbit
femur fitted closely to the bone defect site, with regenerated
bone tissue attaching to the scaffold surface and growing along
the pores within three months. The number of new bone layers
gradually increased, ultimately closing the bone defect. In

© 2024 The Author(s). Published by the Royal Society of Chemistry
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contrast, in the PnO group, the new bone was sporadically
distributed. The Pn composite scaffold provides an excellent
strategy for the repair of large bone defects.

In addition, several researchers have selectively mixed
several biodegradable metals or their alloys with PLA to obtain
bone substitute materials with high mechanical strength. For
example, the biodegradable Mg/PLA composite bone plates
designed by Rizvi et al.,** Mehboob et al.,** Ali et al.,** as well as
the PLA/316L composite scaffold proposed by Jiang et al.** also
exhibited impressive mechanical properties, biodegradability,
and cell safety. They successfully revealed the potential appli-
cations of PLA in hard tissues. However, a detailed discussion of
these studies is not provided here.

Similarly, in addition to PLA, other biodegradable hard
tissue compatible polymer materials have also demonstrated
excellent clinical applications. For example, in the study by
Chen et al.,** the authors used 3D printing technology to
fabricate a porous biodegradable HA/CMCS/PDA scaffold using
hydroxyapatite (HA), carboxymethyl chitosan (CMCS), and pol-
ydopamine (PDA). They found that the degradation of HA/
CMCS/PDA scaffolds may lead to a significant decrease in
compressive strength and compressive modulus. After
implanting the scaffold into defective rabbit femurs, cortical
bone formed within 12 weeks, while the scaffold was almost
completely degraded. In contrast, the blank control group still
had significant bone defects.

Throughout the above examples, biodegradable hard tissue
polymer materials combined with 3D printing technology can
produce a variety of bone substitutes. However, these products
have not yet been fully recognized. There are two main scientific
explanations for this viewpoint. To begin with, the shortage of
experimental subjects is a significant barrier to the clinical
application of biodegradable hard tissue compatible polymer
materials. Currently, most of the subjects involved in experi-
ments are lower animals such as rabbits, rats, pigs and dogs,
rather than humans. There are huge differences between lower
animals and humans in terms of self-protection awareness and
behavioral activities after surgery. Secondly, the impact of 3D
printing technology on materials cannot be ignored. Obviously,
ref. 84 serves as a representative example.

2.2. Biodegradable soft tissue compatible polymer materials

Biodegradable soft tissue compatible polymer materials, whose
products mainly include artificial blood vessels, artificial skin,
artificial muscles, artificial ligaments, etc., are mainly used for
soft tissue replacement and repair. Among them, the artificial
skin developed in vitro is favored by people at home and abroad
because it can be applied to treat diabetic foot skin ulcers,
epidermolysis bullosa, smooth purpura, burns and skin defects
after trauma surgery. The design of the artificial skin must
highly mimic the unique structure of natural skin, including the
bilayer cellular structure and extracellular matrix, which can
create a microenvironment for skin regeneration and selectively
direct cell attachment, migration and proliferation to the
injured site. The degradation and biocompatibility of materials

RSC Adv, 2024, 14, 32267-32283 | 32271
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Fig. 6 (a) Scaffolds with O, 150, 200, 250 um pore size by binocular microscopy and scanning electron microscopy. (b) Size exclusion chro-

matographic assay of printed PLA scaffolds. (c) Thermogravimetric analysis of printed PLA scaffolds. (d) Differential scanning calorimetric assay of
printed PLA scaffolds. (e) HBMSC colonization of sterilized PLA scaffolds was evaluated after 3 and 7 days of culture using fluorescent microscopy
after live/dead staining (green/red) (n = 3). Reproduced from ref. 74 with permission from Wiley, copyright 2018.

during the repair process have attracted a great deal of attention
from researchers.

Rodriguez-zapater et al® concluded that the optimal
measure for benign tracheobronchial stenosis is stent implan-
tation, so they designed an expanded biodegradable poly-
dioxanone (EP BPS) stent by using a single 3.5 EP BPS braided
filament. 22 rabbits were divided into 3 groups with different
survival times (30, 60, and 90 days after implantation). In the
D30 group (n = 7), the radiolabel placed on the tracheal stent
was detected in all receptors. In contrast, in the D90 group (n =
8), the radiolabel disappeared and all tracheas remained patent,
indicating that degradation of the BPS occurred between 30 and
90 days. Furthermore, no granuloma or scaffold
epithelialization were observed when BPS was not completely
degraded. Only imprints of the membrane in the epithelium or
inward folding of the epithelium over the incompletely covered

re-

32272 | RSC Adv, 2024, 14, 32267-32283

membrane were noted. Despite the promising results of BPS,
some issues warrant further investigation. Firstly, this study was
performed in rabbits rather than humans. The trachea of
rabbits does have similarities to the human trachea, but the
effect of BPS in human tracheas remains unclear. Secondly, the
authors assessed the response of healthy rabbit tracheas rather
than diseased ones, which severely weakens the credibility of
the experimental findings.

Zhang et al.®® blended the biodegradable elastomer poly(-
glycerol sebacate) (PGS) with silk fibroin (SF) to fabricate
a series of novel PGS/SF artificial blood vessels by electro-
spinning. The authors found that sebacic acid produced from
PGS degradation lowered the pH of the PBS degradation solu-
tion, while the amino acids from SF degradation had little effect
on the pH of the PBS solution but mitigated the acidity increase
during PGS degradation. Thus, the incorporation of SF greatly

© 2024 The Author(s). Published by the Royal Society of Chemistry
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ameliorated the problem of excessive PGS degradation, con-
firming that the PGS/SF electrospun material has the properties
of both components. On day 7 after in vitro inoculation of
human umbilical vein endothelial cells (HUVECs), all groups
except for the pure SF material showed extensive cell adhesion
on the surface and began to demonstrate endothelialization,
suggesting that PGS/SF electrospun artificial blood vessels can
promote cell adhesion, growth, and proliferation.

Zhou et al.*” developed a multifunctional conductive scaffold
(PGFP scaffold) with thermosensitive, injectable, self-healing,
controllable conductivity and skin adhesion behavior for
multimodal tumor/infection damaged skin treatment by cross-
linking  branched polyglycerol-amino  acids, poly-
pyrrole@polydopamine  (PPy@PDA) nanoparticles and
aldehyde-based F127. Here, the conductivity and photothermal
responsive drug release of the scaffold will not be described in
detail. Cytotoxicity tests in L929 cells showed an increasing
number of viable cells over 1-5 days, indicating that the PGFP
scaffold has good cytocompatibility and proliferation, which is
beneficial for wound healing. Moreover, within 14 days post-
implantation, the PGFP group demonstrated the best wound
healing effect, with a closure rate of 97.7% and nearly complete
coverage by new skin. In contrast, the wounds in the control
group remained scarred and covered with scars. These results
strongly suggest that the PGFP scaffold has a higher healing
rate, making it an effective tool for treating damaged skin.

In addition, Lo et al.*® fabricated a novel polyurethane skin
template (NovoSorb® biodegradable template, BTM) to address
the issue of insufficient autologous donor skin for early
debridement and grafting in a single stage for large-area burns.
BTM is a sealing membrane that is bonded together through
a polyurethane adhesive layer and biodegradable polyurethane
open-cell foam (with a porosity of 90% and pore sizes ranging
from 100 to 500 micrometers). Fig. 7 illustrates the process of
a burn patient from BTM implantation to wound closure. After
BTM incorporation into the wound, the sealing membrane is
removed after approximately 28 days, leaving a layered skin
graft that can be applied to the new vascularized dermal
structures, allowing the wound to close within 12 months. It was
clinically demonstrated that no pathological changes or clinical
infections were detected during the 12 months follow-up. These
results provide sufficient clinical evidence for BTM as an
effective skin substitute for treating patients with deep burns.
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It is no exaggeration to say that the degradation behavior of
degradable soft tissue compatible polymer materials directly
determines the success of artificial soft tissue in repairing and
regenerating injured areas. Based on the above cases, it is not
difficult to find that in the experimental exploration of
degradable soft tissue compatible polymer materials, there are
few studies on the effects of material degradation processes on
soft tissue reconstruction and the dynamic changes in material
mechanical behavior. The uppermost reason for this phenom-
enon is that it is difficult to establish a dual dynamic testing
platform, which ultimately leads to the relationship between
material degradation and dynamic changes in mechanical
behavior becoming unadopted patches. In order to fully grasp
the properties of materials and accurately address clinical
needs, it is only right that we devote ourselves to it.*

2.3. Biodegradable blood compatible polymer materials

Biobased biodegradable polymeric materials that are applied in
environments involving blood circulation can be defined as
biodegradable blood compatible polymeric materials, such as
PLA, PCL, PGA, and polyvinyl alcohol (PVA). Due to the speci-
ficity of the working conditions and the importance of the
contact objects, biodegradable blood compatible polymer
materials should not only meet the performance requirements
specified for ordinary biomaterials, but also satisfy additional
criteria, such as not causing plasma protein denaturation, not
affecting the activity of various enzymes, not altering the
concentration of electrolytes in the blood, and not provoking
harmful immune responses.® Biodegradable vascular scaffolds
are one of the most commonly used products in clinical prac-
tice,”* and they have become the most effective surgical proce-
dure for the treatment of cardiovascular diseases.”>°

Lee et al.”” obtained 3D printed PLA biodegradable polymer
scaffolds with high anticoagulation according to the steps
shown in Fig. 8. The hemolysis results of PLA, PLADP and
PLADPH scaffolds indicated that the presence of heparin
significantly reduced the hemolysis rate, with the hemolysis
rate of heparinized PLADPH stents being only 1.99 £ 0.81%,
making it very suitable for use in the arterial setting. During a 12
weeks degradation period in PBS solution at 37 °C and pH 7.4,
the surfaces of both PLA and PLADP stents were accompanied
by cracks, pores and even debris, while the PLADPH group
exhibited almost no physical changes, which may account for

Fig. 7 Healing process of a 42 year-old male with 25% flame burn injury

treated with BTM. (a) Patchy pink and bright red appearance following

delamination of vascularized BTM applied to right forearm at day 28. (b) Meshed split skin grafting. (c) Appearance after using BTM for 12 months.

Reproduced from ref. 88 with permission from Elsevier, copyright 2022.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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of the PLA, PLADP, and PLADPH throughout the specific time points degraded in PBS solution under pH 7.4 at 37 °C. Reproduced from ref. 97

with permission from Elsevier, copyright 2019.

the minimal change in initial weight of the PLADPH stent. This
experiment provides a viable option for vascular stents to avoid
thrombosis.

Lin et al.*” twisted and coated biodegradable PVA yarns with
a mixture of PCL/PEG. Then, the coated yarns were braided in
the weft direction. After heat treatment, composite scaffolds
with a core-shell structure were prepared (Fig. 9). Overall, the
mechanical strength of the composite scaffolds first increased
and then decreased with the addition of PEG, reaching
a maximum of 6.15 N at 30 wt%. Notably, when the PEG content
reached this level, the composite scaffolds began to exhibit
awavy surface, which facilitated cell adhesion and proliferation,
leading to a cell viability rate of up to 97.32%. However, scaf-
folds with overly rough surfaces showed a lower cell prolifera-
tion rate due to the crowded environment created by a rough
matrix and the adverse effects of low nutrients on cell growth.
This investigation suggests that the composite structure of

; K ‘e—» PCL/PEG:
I | H SHELL :

N

Compressive Strength (N)

bioresorbable vascular scaffolds provides a strong impetus for
the development of novel scaffolds.

Subsequently, Lin et al®® further proposed a two-layer
degradable vascular scaffold model made from PVA yarns
with a twist factor of 4. CS coating and genistein (GP) chemical
cross-linking were used to secure the interlacing points and
enhance the mechanical properties of the braided PVA vascular
scaffold, respectively. After testing, the authors found that the
stability of the PVA vascular scaffold was greatly improved, with
less than 3% weight loss after soaking in PBS solution for 30
days. In addition, CS is positively charged in an acidic envi-
ronment and can attract negatively charged bacteria such as
Staphylococcus aureus and E. coli (S. aureus and E. coli), thus
affecting the osmotic pressure inside and outside the bacteria.
Therefore, the PVA-CS-GP scaffold exerted antibacterial prop-
erties. In conclusion, the chemically modified woven PVA
vascular scaffold demonstrates satisfactory biological
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(a) Scheme of composite stent. (b) Compressive strength of composite stents. (c) Cell viability of composite stents (*p < 0.05, **p < 0.01).

(d—i) Microstructures of composite stents relative to the PEG content of 0, 10, 20, 30, 40, and 50 wt%. Reproduced from ref. 47 with permission

from Elsevier, copyright 2020.
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characteristics, making it an ideal structural model for vascular
scaffolds in the field of tissue engineering.

The mechanical properties of biodegradable scaffolds play
a fatal role in the treatment of cardiovascular diseases. At the
same time, it is considered to be the most difficult paradoxical
complex. It is well known that biobased polymer materials have
significant gaps in mechanical strength compared to metallic
materials. In order to ensure the long-term efficacy of biode-
gradable vascular scaffolds in vivo, it is necessary to increase
their thickness accordingly.” However, the increase in thick-
ness extensively increases the probability of late revasculariza-
tion.' Therefore, the conflict between the acquisition of
mechanical properties of biodegradable vascular scaffolds and
the subsequent occurrence of restenosis has become an urgent
medical problem. To overcome this problem and achieve the
safety and efficiency of biodegradable vascular scaffolds, the
only solution is to find appropriate strategies to resolve or
eliminate this conflict as soon as possible.

2.4. Macromolecular drugs and drug controlled release
polymer materials

A class of medical functional polymer materials with pharma-
cological effects that react with human physiological tissues
and lose their medicinal properties after degradation to small
molecules is known as macromolecular drugs. Common
synthetic polymer drugs include polystyrene trimethylbenzyl
ammonium (antibacterial drugs), maleic anhydride copolymers
(antiviral drugs) and polyamino acid polymers (anticancer
drugs). In order to improve the drug efficiency, reduce toxicity
and side effects, alleviate patient suffering, and shorten
administration time, biodegradable drug controlled release
polymer materials have been developed extensively. The so-
called controlled release of drugs simply involves utilizing the
dissolution, diffusion, permeation, and ion exchange charac-
teristics of drugs, employing appropriate excipients or carrier
tools (such as polymer matrices, capsule shells, diluents,
lubricants, and binders). Tumor cells exist in a unique micro-
environment that typically has a relatively high temperature,
a specific enzyme system and a relatively low pH.'** Drug
controlled release systems can precisely take advantage of the
differences in microenvironment between tumor tissue and
normal tissue to intelligently release drugs to tumor cell
targets.'*

Huang et al.'*® modified mesoporous silica (MS) with 3-
fluoro-4-carboxyphenylboronic acid (FCPBA) to obtain meso-
porous silica modified with phenylboronic acid (MS-FCPBA). N-
Acryloylglucosamine (AGA) was copolymerized with N-iso-
propylacrylamide (NIPAM) and acrylic acid (AAc), respectively,
to synthesize two polymers with diol groups. They are noted as
P(NIPAM-co-AGA) and P(AAc-co-AGA) in turn. Due to the
formation of borate ester bonds between the phenylboronic
acid group and the diol group, P(NIPAM-co-AGA) and P(AAc-co-
AGA) were coated on the surface of MS-FCPBA containing
insulin, resulting in the insulin release system. Fig. 10 illus-
trates the preparation schemes for MS-FCPBA/P (NIPAM-co-
AGA) and MS-FCPBA/Ins/P (NIPAM-co-AGA), while the schemes
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for MS-FCPBA/P(AAc-co-AGA) and MS-FCPBA/Ins/P(AAc-co-AGA)
are nearly identical. The MS-FCPBA/P (NIPAM-co-AGA) samples
showed more pronounced glucose responsiveness at three
glucose concentrations (0, 1, and 4 g L") compared to the MS-
FCPBA/P (AAc-co-AGA) samples, aimed at investigating the
cumulative release of glucose-responsive insulin, where insulin
release was significantly higher in the presence of glucose than
without (though some insulin was released even without
glucose). The reason for the difference in glucose-
responsiveness is that P(AAc-co-AGA) is a relatively hydrophilic
polymer that is easily shed in an aqueous environment, ulti-
mately leading to drug release. In contrast, P(NIPAM-co-AGA) is
a polymer containing hydrophobic groups, and there may be
a combination of hydrophobic waters between different
P(NIPAM-co-AGA) molecules, which makes P(NIPAM-co-AGA)
tend to adhere tightly to the surface of MS-FCPBA. As a result,
desorption is more difficult to occur and some drugs can be well
preserved in a glucose-free environment.

Ebrahimifar et al.**” used a mixed matrix of PCL, PLA and
polyvinyl cyclohexane carbonate (PVCHC) as carriers for the
hydrophilic drugs acetaminophen and clindamycin to explore
their effect on drug release rate. The authors observed that in all
drug-polymer matrices, acetaminophen and clindamycin were
released in large amounts from the first hour, which may be due
to the physical adsorption of drug molecules on the surface of
polymer microparticles. Furthermore, the higher drug concen-
tration released from clindamycin-loaded matrices compared to
acetaminophen-loaded matrices was due to the physical
adsorption of clindamycin particles onto the surface of the
matrices via van der Waals forces. However, the acetaminophen
polymeric matrix showed higher release efficiency compared to
the acetaminophen polymeric matrix. A plausible explanation is
the weak interaction between the amine and hydroxyl groups of
acetaminophen and the ester and carbonyl groups in the poly-
mer. Furthermore, it was found that PVCHC with shorter chain
length than PCL and PLA could affect the interception of acet-
aminophen and clindamycin molecules and increase the
barrier of drug molecules between the polymer layers, resulting
in similar drug release efficiency of acetaminophen and clin-
damycin on PLA-PVCHC.

Su et al.'*® grafted PH-sensitive amphiphilic poly(2-(dieth-
ylamino)ethyl methacrylate (PDEAEMA)) on the surface of
mesoporous silica molecular sieve SBA-15 (SBA-15-g-PDEAEMA)
and then loaded the anticancer drug quercetin (Qu) on it (SBA-
15-g-PDEAEMA-Qu) to study the controlled Qu release. The
weakly basic tertiary amine groups contained in the side chains
of PDEAEMA can be protonated in an acidic environment, thus
allowing the molecular chains of PDEAEMA to be elongated in
acidic aqueous solutions due to the mutual repulsion of
charges. However, in a neutral or alkaline environment, the
protonation is weakened or even disappears, producing
a phenomenon in which the attraction between molecular
chains is greater than the repulsion between charges, which
causes the polymer chains to curl and contract. Thus, SBA-15-g-
PDEAEMA is well dispersed in acidic conditions, slightly
dispersed in neutral conditions, and aggregated in alkaline
conditions, indicating a good pH sensitivity of the material.
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Fig. 10

(a) Schematic illustration of the preparation of MS-FCPBA/P(NIPAM-co-AGA) and MS-FCPBA/Ins/P(NIPAM-co-AGA). (b) Cumulative

release of insulin from MS-FCPBA/P(NIPAM-co-AGA) in different glucose concentrations at 37 °C. (c) Cumulative release of insulin from MS-
FCPBA/P(AAc-co-AGA) in different glucose concentrations at 37 °C. Reproduced from ref. 106 with permission from Elsevier, copyright 2021.

Because of this, Qu is released slowly under normal pH condi-
tions of human tissues (pH = 7.4), with a maximum release rate
of only 38%, while under pH conditions of tumor cells (pH =
5.5), the release rate is much faster, reaching a maximum of
77% at 96 h. Therefore, SBA-15-g-PDEAEMA has potential
applications in clinical drug release control.

During drug delivery, researchers always pay attention to the
drug loading capacity, drug release rate and targeting, however,
these performance parameters are entirely achieved by the
drug-controlled release polymer material itself.'® Numerous
experiments have demonstrated that many drug-controlled

32276 | RSC Adv, 2024, 14, 32267-32283

release polymer materials have made great progress in these
aspects through modification techniques, but in fact, there are
not many ideal drug-controlled release polymer materials that
can integrate these properties at the same time. More impor-
tantly, there are still problems in non-core aspects that deserve
our in-depth study. For example, the effect of bulk polymer
degradation on drug release is often overlooked and reports on
it are rarely heard. For better and faster development of drug-
controlled release polymeric materials, we should focus on
the core issues and their opposites and keep them in sync.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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3. Challenges

In recent years, there are many researchers working to break
through the limitations of BMPMs in clinical practice, and great
progress has been made. However, there are still some studies
that claim most BMPMs have some drawbacks, such as poor
biocompatibility, uncontrollable degradation rate, few varieties.
In other words, BMPMs are facing many serious challenges, this
greatly hinders the day when they can effectively serve
humanity.

3.1. The material itself

3.1.1. Poor biocompatibility. For the organism itself, the
implanted BMPMs are always foreign substances. Due to
instinctive self-protection, the organism reacts with rejection,
and the severity of the reaction characterizes the biocompati-
bility of BMPMs. Depending on the different uses of BMPMs in
living organisms, biocompatibility can be divided into two
types: histocompatibility and hemocompatibility. For the
former, some polymer materials themselves (polyurethane,
polyvinyl chloride, etc.) have no adverse effects on diseased
tissues, but during the actual processing and synthesis, small
amounts of impurities, or some additives, residual monomers
and oligomers, are inevitably mixed in. When stents made of
these materials are implanted in the diseased body, these
impurities slowly migrate from the interior to the surface, thus
reacting with the surrounding tissue and causing inflammation
or tissue deformation, or even systemic reactions. In view of the
latter, the antithrombotic problem has been a pressing clinical
issue for BMPMs. Although many articles have proposed and
demonstrated that grafting compounds with anticoagulant
properties (heparin, polyoxyethylene, etc.) onto the material
surface by coupling or plasma methods can effectively inhibit
the formation of thrombus around the material, this problem
has not been completely solved, as the results of subsequent
studies have shown that small areas of thrombus are still
present on the surface of the modified material.

3.1.2. Uncontrollable rate of material degradation. How to
accurately control the degradation rate of BMPMs is also
a challenge in clinical applications. Theoretically, the degra-
dation rate of BMPMs should be equal to the rate of tissue
regeneration, which can be considered as an optimal match. Of
course, it allows for a slight gap. And once this slight red line is
breached, it can lead to the failure of BMPMs implantation. If
the degradation rate of BMPMs is much higher than the rate of
tissue regeneration, it is not conducive to the adhesion of new
tissues on the surface of the material, and the osseointegration
cannot be well formed in the area of BMPMs implantation,
making it difficult to induce osteogenesis, which will eventually
lead to local collapse or even reconstruction failure. On the
contrary, the stress shielding caused by delayed degradation
will affect the growth of new tissues. Therefore, we know that it
is urgent to solve the matching problem in order to make
BMPMs accepted from theory to reality as soon as possible.

3.1.3. Single-species materials. Statistically, very few
BMPMs have been certified to exert significant medical effects
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so far. At present, the materials utilized by researchers in clin-
ical trials are mostly PLA-based, PC-based, PGA-based and PCL-
based, and rarely involve the development of new materials,
which leads to the lack of varieties of BMPMs. Meanwhile, the
existing varieties are relatively homogeneous, which is not
conducive to the horizontal development of BMPMs. The lack of
new materials is the main factor that makes it difficult for
BMPMs to take root in the clinic, so we must increase the efforts
to explore new materials and improve the speed in time.

3.2. Lack of accurate and effective techniques

Technological methods also play a crucial role in the develop-
ment of BMPMs. Only with the help of technological platforms
can raw materials show their excellent properties while
achieving complex shape designs. 3D printing technology is one
of the most commonly used auxiliary methods for preparing
medical products and is well established in domestic industrial
manufacturing, which allows products using 3D printing tech-
nology to have a high degree of precision. However, this preci-
sion has not been fully accepted by medicine. The specific
reason is that the current 3D printing technology can only
process simple tissues in medicine, and it is difficult to print
organs or tissues with complex structures and physiological
functions. More importantly, organs with complex structures
also lengthen the printing time significantly. Therefore, we can
conclude that the lack of high-precision and high-efficiency
technology also limits the development of BMPMs to a certain
extent.

4. Solutions and prospects

In view of the many factors that seriously hinder the develop-
ment of BMPMs mentioned above, we propose some reasonable
solutions and scientifically look forward to their future devel-
opment, which will promote the better and faster development
of BMPMs.

4.1. Solutions

4.1.1. Clarify the current problems. To break the pattern of
disconnection between BMPM theory and practical application,
the first step is to develop the material itself, including two
aspects. On the one hand, on the premise of ensuring that the
original advantages do not decline, the existing materials
should be enhanced and modified to achieve optimization for
their shortcomings. For example, improvements can be made
by immobilizing heparin on the surface of materials with poor
antithrombotic properties. Another is to vigorously search for
new materials that address clinical needs, and then work to
enrich the range of materials. Second, the improvement of
technical methods can accelerate the development of BMPMs.
What we should do is to actively guide 3D printing technology to
improve in the direction of high precision and efficiency in
order to achieve better integration with BMPMs in the medical
field as early as possible.

4.1.2. Tapping the existing blind spots. Although the
research process of BMPMs has many participants and lasts for
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a long time, there are still some blind spots that have not been
discovered and paid attention to. Exploration of the blind spots
can enable researchers to fully grasp the performance changes
of BMPM and thus fill the gaps in development, which also
provides some guiding suggestions for researchers.

4.1.2.1. Dynamic mechanical behavior during material degra-
dation. Researchers have always paid great attention to the
static mechanical strength of BMPMs before implantation, and
they are still working on this issue. However, it is worth
emphasizing that the dynamic changes of mechanical proper-
ties during material degradation are of higher importance,
which cannot be ignored because we can observe the relation-
ship between the mechanical strength of the material and its
degradation time or degradation rate. On this basis, we can
purposefully synthesize a new material whose mechanical
properties do not weaken significantly during the degradation
phase, providing a longer and stronger support for the disease
body. Only by combining static and dynamic mechanical
behaviors can we more accurately promote the development of
BMPMs.

4.1.2.2. Safety of by-products. Since the preparation of
BMPMs is difficult to achieve high purity, small amounts of
impurity substances such as monomers and oligomers as well
as degradation products present in BMPMs are bound to be
released after a period of implantation into the patient. What
kind of effect these substances have on the organism and
whether the degree of effect is serious (e.g. whether they are
toxic or not, whether they can induce cancer, etc.), there is no
accurate conclusion in medical science and further confirma-
tion is needed.

4.2. Future directions

4.2.1. Materials with self-growth properties. At present,
most experimental subjects of bone repair and regeneration
research are mainly middle-aged and elderly patients, while
there are few reports on adolescents. Adolescents also need the
help of artificial bone due to massive bone defects caused by
accidents or major diseases. The biggest difference is that for
middle-aged and elderly patients whose bones are largely set,
adolescents have a faster bone growth rate during the devel-
opmental phase, which makes it necessary for the material to
meet the existing requirements with a certain degree of self-
growth. Unfortunately, BMPMs do not contain the growth
factors required for human growth. We can replace them by
stretching or migration of molecular chains in the polymer to
achieve artificial bone growth. The triggering methods can be
designed as light irradiation, magnetic attraction and thermal
radiation. The development of self-growing materials is of great
value and significance for the treatment of adolescent patients.

4.2.2. Smart materials. Smart will definitely evolve into the
mainstream trend of BMPMs in the future. Imagine an envi-
ronment where one can intelligently manipulate the degrada-
tion rate of BMPMs with the aid of light, temperature and UV
light. The higher the intensity, the faster the degradation rate of
BMPMs. How convenient it is to deal with the matching
problem between material degradation and tissue formation.
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Likewise, the problem of drug delivery carriers for effective
targeted therapies can be easily solved. As a result, smart
BMPMs are bound to provide diverse therapeutic avenues for
patients in the clinic through innovative construction, material
enhancement and customized drug delivery.'*®

5. Conclusion

In summary, BMPMs play a considerable role in the medical
field with their unique advantages, and in recent years, they
have made great progress with advanced manufacturing tech-
nology, which has greatly promoted the development of
BMPMs.

Although BMPMs show great potential in biomedicine, they
have some inherent disadvantages. For natural BMPMs, they
are difficult to access since they are found in plants and
animals. Secondly, the mechanical properties of these materials
are low, and their products usually fail to withstand large loads
during service. For synthetic BMPMs, they are available, but the
surface activity of such materials is poor and they often do not
actively in the incorporation with native tissues. In addition,
some synthetic BMPMs, especially PLA and PCL, tend to exhibit
strong hydrophobicity (with contact angles much greater than
90°), which is not conducive to cellular adherence and multi-
plication. Therefore, in order for BMPMs to flourish in clinical
practice, the only thing we have to do now is to do our best to
overcome the complex challenges we are facing.
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