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Introduction

Design, synthesis, and inhibitory activity of
hydroquinone ester derivatives against mushroom
tyrosinaset

Dong Xie,{® Kargia Han,1® Qian Jiang, ©? Sida Xie,? Jielong Zhou,?
Yingjun Zhang, ©° Junming Xu, @ € Yuanping He,® Ping Zhao*®
and Xiaogin Yang @ *2

Tyrosinase is a widely distributed copper-containing enzyme found in various organisms, playing a crucial
role in the process of melanin production. Inhibiting its activity can reduce skin pigmentation.
Hydroquinone is an efficient inhibitor of tyrosinase, but its safety has been a subject of debate. In this
research, a scaffold hybridization strategy was employed to synthesize a series of hydroquinone—benzoyl
ester analogs (3a—3g). The synthesized compounds were evaluated for their inhibitory activity against
mushroom tyrosinase (mTyr). The results revealed that these hydroquinone—benzoyl ester analogs
exhibited inhibitory activity against mTyr, with compounds 3a-3e displaying higher activity, with
compound 3b demonstrating the highest potency (ICsg = 0.18 £+ 0.06 puM). Kinetic studies demonstrated
that the inhibition of mTyr by compounds 3a—3e was reversible, although their inhibition mechanisms
varied. Compounds 3a and 3c exhibited non-competitive inhibition, while 3b displayed mixed inhibition,
and 3d and 3e showed competitive inhibition. UV spectroscopy analysis indicated that none of these
compounds chelated with copper ions in the active center of the enzyme. Molecular docking
simulations and molecular dynamics studies revealed that compounds 3a—3e could access the active
pocket of mTyr and interact with amino acid residues in the active site. These interactions influenced the
conformational flexibility of the receptor protein, subsequently affecting substrate—enzyme binding and
reducing enzyme catalytic activity, in line with experimental findings. Furthermore, in vitro melanoma
cytotoxicity assay of compound 3b demonstrated its higher toxicity to A375 cells, while displaying low
toxicity to HaCaT cells, with a dose-dependent effect. These results provide a theoretical foundation and
practical basis for the development of novel tyrosinase inhibitors.

a complex structure with an active site containing a binuclear
copper center situated within the active region. In the presence

Tyrosinase (EC 1.14.18.1) is a crucial and rate-limiting enzyme
responsible for catalyzing melanin synthesis. It is widely
distributed in living organisms and intricately linked to
numerous pivotal physiological processes. Tyrosinase possesses
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of oxygen, it efficiently catalyzes the oxidation of phenolic
compounds.' In mammals, tyrosinase is predominantly located
in melanocytes, playing a pivotal role throughout the melanin
formation process. Disorders in tyrosinase metabolism within

+ Electronic supplementary information (ESI) available: Fig. S1. "H NMR and
3C NMR for compound 3a-3g. Fig. S2. HRMS for compound 3a-3g. Fig. S3.
The inhibitory activity of compound 3a-3g on mTyr. Fig. S4. Inhibition
reversibility (A) and inhibition type (B) of compound 3a, 3c-3e on mTyr.
Fig. S5. UV Spectra of compound 3a, 3c-3e before and after interaction with
mTyr. Fig. S6. The crystal structure of mTyr (PDB ID: 2Y9X). Fig. S7. Docking
model for compound 3a, 3c-3e with mTyr (A) and molecular dynamics results
of compound 3a, 3c-3e and (3a, 3c-3e)-mTyr complex with: (B) RMSD, (C)
RMSF, (D) Rg, (E) SASA, and (F) H-bonds. Table S1. Linear fitting equation,
Michaelis constant (Ky,), maximum reaction rate (Vy,), and inhibition type for
mTyr at varying concentrations of compounds 3a-3e. Table S2. Docking
energy and bonding condition of compounds 3a-3e with mTyr. See DOIL:
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the human body can result in pigmentation-related skin
conditions such as melasma, freckles, and age spots. Moreover,
these metabolic irregularities are directly associated to the
onset and treatment of various human diseases, including
Parkinson's disease, melanoma, and albinism.? Research has
indicated that inhibiting tyrosinase activity to impede melanin
production is an effective approach for treating pigmentation-
related skin disorders.® Hydroquinone, a potent tyrosinase
inhibitor, was first proposed by Oettel* in 1936 for its skin-
whitening effects. By the 1960s, it commenced utilization in
cosmetics as a depigmenting agent and in topical formulations
for treating pigmentation disorders in dermatology. Neverthe-
less, it was discovered that hydroquinone could be skin-
irritating, and prolonged use could lead to a severe condition
known as exogenous ochronosis.> Consequently, the inclusion
of hydroquinone in skincare products has been prohibited in
China and Europe, though it remains permitted for pharma-
ceutical use.

In 1996, Maeda® discovered that arbutin, a glycosylated
derivative of hydroquinone (Fig. 1), exhibited skin-whitening
and depigmenting effects, effectively treating conditions like
melasma and melanoma.” Shiseido in Japan was among the
pioneering companies to incorporate it as a natural additive in
cosmetics, asserting it to be a non-toxic, side-effect-free
substance.

The Personal Care Products Council in the United States
included “arbutin extract” in the U.S. Cosmetic Ingredient
Dictionary, and China also listed arbutin in the Catalog of
Cosmetic Raw Materials (2015 Edition).® However, recent years
have seen safety concerns and adverse effects related to arbutin
emerging within the cosmetic industry, prompting many
companies to seek safer and more effective alternatives. Struc-
tural modifications and hybrid scaffold strategies represent
vital approaches for expanding the biological activities of scaf-
folds and discovering highly active molecules. Hydroquinone
esters commonly serve as synthetic intermediates for drugs.®
Due to their unique chemical structure, they can be modified to
fine-tune the activity and bioavailability of drugs. Benzoyl
compounds comprise a range of organic compounds with the
benzoyl (C¢HsCO-) functional group, exhibiting diverse bio-
logical activities such as antimicrobial, anti-inflammatory,
antioxidant, anticancer, analgesic, and insecticidal effects.>"*
Specific benzoyl compounds, such as cinnamic acid derivatives,
also demonstrate a degree of inhibition on tyrosinase, affecting
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Fig.1 Chemical structure of arbutin derivates.
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the skin pigmentation process.”” Hence, the synthesis of
hydroquinone with benzoyl compounds, using a scaffold
hybridization strategy, offers promise for novel, highly efficient,
and low-toxicity tyrosinase inhibitors.

Among various tyrosinase, mushroom tyrosinase (mTyr) is
routinely used in experiments due to its well-established labo-
ratory preparation methods.”® Therefore, in this research,
hydroquinone and benzoyl derivatives were hybridized to
synthesize a series of hydroquinone-benzoyl ester analogs.
These synthesized compounds were evaluated for their inhibi-
tory activity against mTyr, and their inhibitory activity against
melanoma. The goal is to discover potent and safe tyrosinase
inhibitors, holding significance in various fields, including food
and pharmaceuticals.

Results and discussion
Synthesis of hydroquinone ester derivatives

The hydroquinone ester derivatives were prepared using the
acylation between the hydroquinone (1) and different
substituted benzoyl chloride compounds 2a-2e.** Compounds
3a-3g were obtained in satisfactory yields (40-75%) after puri-
fication by silica gel column chromatography (Scheme 1). The
reaction formed a mixture of mono-substituted and di-
substituted compounds from which the purification of 3¢ by
silica gel column chromatography was possible.

The synthesis route of hydroquinone ester derivatives is
depicted in Scheme 1. The reaction of hydroquinone with
substituted benzoyl chloride yielded the target compounds 3a-
3g (Scheme 1), among which 3a is novel compound, while 3b-3g
are novel compounds. All the compounds were characterized
using NMR ("H and **C) and HRMS, and spectroscopic data can
be found in the ESI (Fig. S1 and S27).

Compound 3a, 4-hydroxyphenyl (2E)-3-(4-hydroxyphenyl)
prop-2-enoate, pale yellow solid, obtained in 45% yield, m.p.
217-220 °C, purified by silica gel column chromatography
eluted with petroleum ether/ethyl acetate (2:1, v/v), TLC: Ry =
0.25. UV-Vis (200-450 nm, CH;OH) A: 314 nm. '"H NMR (500
MHz, CD;0D) ¢ 7.76 (d, 1H, J = 15.9 Hz), 7.53-7.51 (m, 2H),
6.95-6.93 (m, 2H), 6.84-6.77 (m, 5H), 6.61 (s, 1H), 6.50 (d, 1H, J
= 16.0 Hz). *C NMR (126 MHz, CD;0D) 6: 168.41, 161.78,
156.44, 148.15, 145.07, 131.63, 127.22, 123.62, 117.07, 116.78,
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Scheme 1 Synthesis of hydroquinone ester derivatives 3a—3g.
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114.64. HRMS (ESI, 70 eV) caled for Cy5H;,0, [M + H]', m/z
256.0736; found, m/z 257.0808.

Compound 3b, 4-hydroxyphenyl cinnamate, white solid,
obtained in 75% yield, m.p. 171-173 °C, purified by silica gel
column chromatography eluted with petroleum ether/ethyl
acetate (2:1, v/v), TLC: Ry = 0.25. UV-Vis (200-450 nm,
CH;OH) A: 283 nm. "H NMR (500 MHz, CD,0D) 6 7.84 (d, 1H, J
= 16.0 Hz), 7.68-7.64 (m, 2H), 7.46-7.40 (m, 3H), 7.00-6.93 (m,
2H), 6.82-6.78 (m, 2H), 6.71 (d, J = 16.0 Hz, 1H). "*C NMR (126
MHz, CD;0D) 6 166.19, 154.98, 146.27, 143.42, 134.24, 130.42,
128.70, 128.05, 121.99, 116.93, 115.25. HRMS (ESI, 70 eV) caled
for C,5H;,05 [M + H]', m/z 241.0786; found, m/z 241.0859.

Compound 3¢, 4-hydroxyphenyl 3-phenylpropanoate, white
solid, obtained in 40% yield, m.p. 149-151 °C, purified by silica
gel column chromatography eluted with petroleum ether/ethyl
acetate (7:1, v/v), TLC: Ry = 0.25. UV-Vis (200-450 nm,
CH;OH) A: 273 nm. "H NMR (500 MHz, CDCl;) § 7.37-7.21 (m,
5H), 6.87-6.81 (m, 2H), 6.78-6.71 (m, 2H), 5.16 (d, 1H, J = 15.4
Hz), 3.12-2.81 (m, 4H). "*C NMR (126 MHz, CDCl;) é 172.18,
153.34, 144.03, 140.08, 128.60, 128.40, 126.46, 122.39, 115.98,
35.95, 30.96. HRMS (ESI, 70 eV) calcd for C;5sH,,05 [M + H]', m/z
243.0943; found, m/z 243.1016.

Compound 3d, 4-hydroxyphenyl benzoate, white solid, ob-
tained in 65% yield, m.p. 150-152 °C, purified by silica gel
column chromatography eluted with petroleum ether/ethyl
acetate (7:1, v/v), TLC: Ry = 0.25. UV-Vis (200-450 nm,
CH;O0H) A: 272 nm, 314 nm. 'H NMR (500 MHz, CD;0D) ¢ 8.15
(dt, 2H, J = 8.5, 1.5 Hz), 7.67 (tdd, 1H, J = 7.1, 2.3, 1.2 Hz), 7.58-
7.50 (m, 2H), 7.05-6.99 (m, 2H), 6.86-6.79 (m, 2H). *C NMR
(126 MHz, CD;0D) 6: 167.17, 156.50, 144.91, 134.76, 130.98,
130.96, 129.77, 123.46, 116.73. HRMS (ESI, 70 eV) calcd for
C13H100; [M + H]', m/z 215.0630; found, m/z 215.0703.

Compound 3e, 4-hydroxyphenyl 4-fluorobenzoate, white
solid, obtained in 55% yield, m.p. 142-144 °C, purified by silica
gel column chromatography eluted with petroleum ether/ethyl
acetate (7:1, v/v), TLC: Ry = 0.25. UV-Vis (200-450 nm,
CH;OH) A: 272 nm. "H NMR (500 MHz, CDCl;) 6 8.21 (dd, 2H, J
= 8.7, 5.5 Hz), 7.18 (t, 2H, ] = 8.6 Hz), 7.04-7.00 (m, 2H), 6.82—
6.78 (m, 2H), 5.56 (s, 1H). *C NMR (126 MHz, CDCl;) 6 167.23,
165.20, 165.12, 153.64, 144.09, 132.87, 132.79, 125.69, 125.67,
122.49, 116.21, 115.92, 115.74. HRMS (ESI, 70 eV) caled for
C13HoFO; [M + HJ', m/z 233.0536; found, m/z 233.0608.

Compound 3f, 1,4-phenylene bis(4-fluorobenzoate), white
solid, obtained in 40% yield, m.p. 196-198 °C, purified by silica
gel column chromatography eluted with petroleum ether/ethyl
acetate (15:1, v/v), TLC: Ry = 0.25. UV-Vis (200-450 nm,
CH,;0H) X: 241 nm. 'H NMR (500 MHz, CDCl;) 6 8.27-8.20 (m,
4H), 7.28 (s, 4H), 7.20 (t, ] = 8.6 Hz, 4H). "*C NMR (126 MHz,
CDCl;) 6 167.26, 165.23, 164.11, 148.34, 132.89, 132.82, 125.59,
125.57, 122.67, 115.96, 115.78, 77.27, 77.02, 76.76. HRMS (ESI,
70 eV) caled for C,oHy,F,04 [M + H]', m/z 355.0704; found, m/z
355.0777.

Compound 3g, 1,4-phenylene bis(3-phenylpropanoate),
white solid, obtained in 57% yield, m.p. 128-130 °C, purified
by silica gel column chromatography eluted with petroleum
ether/ethyl acetate (15:1, v/v), TLC: Ry = 0.25. UV-Vis (200-
450 nm, CH;OH) A: 228 nm, 260 nm. "H NMR (500 MHz,
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chloroform-d) ¢ 7.35-7.28 (m, 4H), 7.28-7.20 (m, 6H), 6.99 (s,
4H), 3.06 (t, 4H, J = 7.7 Hz), 2.88 (dd, 4H, J = 8.1, 7.2 Hz). *C
NMR (126 MHz, CDCl;) 6 171.26, 148.00, 140.03, 128.61, 128.40,
126.48, 122.36, 35.93, 30.92. HRMS (ESI, 70 eV) caled for
C,4H,,04 [M + H]', m/z 375.1518; found, m/z 375.1592.

Inhibitory activity of compounds 3a-3g on mTyr

Compounds 3a to 3g were subjected to evaluation for their
inhibitory activity against mTyr using L-tyrosine as the
substrate. The data presented in Table 1 and Fig. S37 reveal that
all these compounds demonstrated significant inhibitory
effects on mTyr, with maximum inhibition rates exceeding 50%.
Notably, compound 3b displayed the highest inhibition rate,
reaching (80.56 + 2.48)%. Subsequently, the ICs, values of the
compounds were determined. In comparison, the parent
compounds hydroquinone and 4-hydroxycinnamic acid
exhibited strong inhibitory activities, with ICs, values of (22.78
+0.16) and (16.45 £ 5.42) uM, respectively, while cinnamic acid
displayed a more moderate mTyr inhibition with an ICs, greater
than 200 puM. Interestingly, the esterified products 3a to 3e
demonstrated even higher inhibitory activities, exhibiting ICs,
values ranging from (0.18 + 0.06) to (24.70 £ 3.04) pM. This
indicated a significant enhancement in inhibition compared to
the parent compounds and the positive control kojic acid [ICs,
= (28.50 + 1.10) uM].** The results suggest that the hybridiza-
tion of hydroquinone and substituted benzoyl led to improved
bioactivity of the scaffold, resulting in better binding with mTyr
and yielding compounds with higher mTyr inhibitory activity.
These findings hold valuable implications for the design and
development of related mTyr inhibitors.

Moreover, according to the results of their inhibitory mTyr
activity, five compounds 3a-3e with ICs, value lower than kojic
acid [ICs, = (28.50 + 1.10) puM] were selected for further
mechanism study.

Inhibition reversibility and type of compounds 3a-3e on mTyr

To investigate the reversibility of compounds inhibition on
mTyr, a dynamic system was employed. The concentration of
substrate i-tyrosine remained constant while varying the
concentration of mTyr. Different concentrations of compounds
were tested to evaluate their impact on the initial catalytic rate
of enzyme under inhibitory conditions. By analyzing the rela-
tionship between the initial reaction rate of the enzyme-
catalyzed reaction and the enzyme concentration for different
compound concentrations, the reversibility of the inhibition
process could be determined. The outcomes revealed distinct
linear relationships originating from the origin for each
compound (3a-3e) upon interaction with mTyr (Fig. 2A for 3b
and S4Af for 3a, 3c-3e).

Notably, as the concentration of the compounds increased,
the slope of these lines gradually decreased. This trend indi-
cates that the inhibition exerted by these compounds on mTyr
activity is reversible. Furthermore, the rise in compound
concentration led to a corresponding decline in enzyme activity.
This observation suggests that these compounds engage in
a reversible binding process with mTyr, forming dissociable

RSC Adv, 2024, 14, 6085-6095 | 6087
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Table 1 1Csg values of compounds 3a—3g for inhibiting mTyr activity

Compounds ICso (LM) Maximum inhibition rate/concentration (%/uM)
3a 1.75 £ 0.02 74.66 * 2.44/10
3b 0.18 £ 0.06 80.56 £ 2.48/2.5
3c 7.46 £+ 0.90 75.41 £ 1.41/50
3d 20.49 £ 1.79 68.74 £ 1.97/75
3e 24.70 £ 3.04 68.27 £ 2.83/100
3f 54.16 £ 8.65 69.50 £ 0.70/100
3g 294.00 + 1.84 50.00 £ 1.41/250
Hydroquinone 22.78 + 0.16 78.50 £ 3.54/75
Cinnamic acid 201.40 + 5.30 (ref. 15) —
4-Hydroxycinnamic acid 16.45 £ 5.42 71.82 £ 7.76/50

Kojic acid 28.50 + 1.10 (ref. 15)
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Fig. 2 Inhibition reversibility (A) and inhibition type (B) of compound
3b on mTyr. The embed (B) in the left represent the secondary slope of
the straight lines versus concentration of compound 3b.

complexes that impede the catalytic activity of enzyme. This
reversible binding does not seem to induce permanent changes
in the molecular conformation of enzyme that would lead to
inactivation. Further probing the inhibition types of

6088 | RSC Adv, 2024, 14, 6085-6095

compounds on mTyr, a constant enzyme concentration was
maintained while altering the substrate concentration of -
tyrosine. The impact of various compound concentrations on
the enzyme-catalyzed reaction rate was determined within this
experimental system. Utilizing the Lineweaver-Burk equation,
double reciprocal plots were constructed, and the intersection
points of the lines were employed to discern the inhibition types
induced by the compounds (Fig. 2B for 3b and S4B+ for 3a, 3c-
3e). Notably, each compound (3a-3e) yielded a set of well-fitted
linear relationships.*®

However, distinct compounds exhibited intersecting lines in
different quadrants, signifying diverse inhibition types. From
Fig. S4Bf for compound 3a and 3c, it is evident that upon
introducing varying concentrations of 3a and 3c, the derived
lines intersected the negative X-axis. Calculating the slope and
intercept of these lines provided the Michaelis constant (K,)
and maximum reaction rate (Vy,) of mTyr, respectively.'* Table
S1t revealed that while K,,, remained constant with altering 3a
and 3c concentrations, V,, decreased with escalating compound
concentrations. This indicated that compounds 3a and 3c
function as non-competitive inhibitors of mTyr.”” This obser-
vation suggests that these compounds engage with essential
groups (such as catalytic moieties) other than the substrate
binding site in the active centre of enzyme. Consequently, the
inhibitors do not diminish the affinity of enzyme for the
substrate, but rather impede its catalytic function, thus
reducing Vy,. Additionally, within this inhibition type,
compounds 3a and 3c can form a ternary enzyme-compound-
substrate complex.” Although this binding mode does not
influence the enzyme-substrate interaction, it obstructs further
product formation and consequently leads to diminished
enzyme activity.'®

For compound 3b (Fig. 2B), the lines intersect the third
quadrant. Upon introducing different concentrations of 3b, the
determined K,,, and V;, values were observed to change, with K,,,
decreasing and V;, increasing with higher 3b concentrations
(Table S17). This denotes a mixed-type inhibition for compound
3b, indicating its interaction with both free mTyr and the mTyr-
substrate complex. As shown in Fig. 2B, creating secondary
plots of 1/V,, and K, for various 3b concentrations facilitated
the calculation of the free enzyme inhibition constant (K;) and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the mTyr-substrate complex inhibition constant (Kis), which
were found to be 1.8831 uM and 0.3395 uM, respectively.
Notably, Kjs was lower than Kj, suggesting that compound 3b
has a propensity to associate with the enzyme-substrate
complex.*

For compounds 3d and 3e (Fig. S4Bt), the lines intersected
the Y-axis. The consistent V,,, values, despite changing 3d and 3e
concentrations, indicated that these compounds solely influ-
ence K. The increase in K, with rising 3d and 3e concentra-
tions indicates their role as competitive inhibitors of mTyr
(Table S1t). The interaction of 3d and 3e with free mTyr
impedes the substrate r-tyrosine from binding to the active site
of enzyme. As a result, 3d and 3e competitively bind to free
mTyr, hindering the binding of the substrate r-tyrosine. This
mutual exclusion between the substrate and inhibitors reduces
enzyme activity.

In conclusion, this study uncovers the distinct inhibition
types exhibited by compounds 3a-3e based on their interaction
with mTyr, copper ions, and substrates. These findings provide
crucial insights into the molecular mechanisms underlying the
inhibitory effects of these compounds.

Ability of compounds to chelate copper(u) ions

mTyr is a metalloenzyme, and the bimetallic copper(u) ions
within its active site play a crucial role. To investigate whether
compounds 3a-3e can chelate with the copper(u) ions within
the active site of mTyr, we employed UV-Visible spectroscopy.*
Experimental results, as depicted in the Fig. 3 and S5,} reveal
that when a certain concentration of copper(u) ions is intro-
duced into the solution of compounds 3a-3e, there is no shift
observed in the UV absorption peaks of compounds 3a-3e. This
phenomenon indicates that when copper(u) ions are added to
the solution of compounds 3a-3e, no chelation occurs between
them. This suggests that the inhibitory activity exhibited by
these compounds on mTyr may be due to the formation of new
complexes with amino acid residues within the active site of

mTyr.
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o o °
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o
o
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Fig. 3 UV spectra of compound 3b before and after interaction with
copper(i) ions.
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Molecular stimulation of compounds 3a-3e with mTyr

Molecular docking. To gain deeper insights into the inter-
action mechanisms between compounds 3a-3e and mTyr, we
conducted molecular docking studies of each of these five
compounds with mTyr. The crystal structure of mTyr (PDB ID:
2Y9X)** comprises four structurally similar domains (Fig. S67),
each hosting an active site containing two copper ions and
specific amino acids. Therefore, any of these domains can be
chosen for molecular docking analysis. For this study, we
selected domain A for molecular docking analysis and selected
the binding conformation with the lowest energy binding from
20 docking runs as the optimal binding mode of compounds
3a-3e with mTyr, as illustrated in the Fig. 4A and S7A, and
summarized in the Table S2.7

From the figures, it is clear that although each compound
adopts a distinct binding conformation with mTyr, compounds
3a-3e can access the active pocket of mTyr effectively. They
approach the active centre copper ions and interact with both
hydrophilic and hydrophobic amino acid residues surrounding
the active centre through various forces, including van der
Waals forces, hydrogen bonds (conventional hydrogen bonds
and carbon hydrogen bonds), and hydrophobic interactions
(pi-pi stacked/T-shaped, pi-sigma, and pi-alkyl interactions).
These findings suggest that compounds 3a-3e do not directly
interact with the copper ions in the active centre of mTyr, which
aligns with the results of the UV-Visible spectroscopy analysis as
mentioned earlier. As shown in Table S2,1 the docking energies
for compounds 3a-3e are —-7.6, —7.2, —6.7, —7.0, and
—6.7 kcal mol™", respectively. Typically, the presence of
hydrogen bonds enhances the strength of non-covalent inter-
actions between small molecules and proteins. In the case of
compounds 3a-3e, the phenolic hydroxyl group provided by the
hydroquinone moiety in the compound structure can form
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1 Pi-Pi Stacked

His, Pi-Sulfur
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Fig. 4 Docking model for compound 3b with mTyr (A) and molecular
dynamics results of compound 3b and 3b—-mTyr complex with: (B)
RMSD, (C) RMSF, (D) Ry, (E) SASA, and (F) H-bonds.
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hydrogen bonds with some amino acid residues. Specifically, in
compound 3a, the phenolic hydroxyl group forms a conven-
tional hydrogen bond with Arg268 with a bond length of 6.66 A.
In compound 3b, the phenolic hydroxyl group forms a conven-
tional hydrogen bond with Met280 with a bond length of 5.01 A.
In compound 3d, the phenolic hydroxyl group forms conven-
tional hydrogen bonds with Met280 and His263 with bond
lengths of 4.88 A and 4.06 A, respectively. On the other hand, the
phenolic hydroxyl groups in compounds 3c and 3e do not form
hydrogen bonds with amino acid residues. Instead, the non-
hydroquinone moiety ends of compound 3¢ engage in addi-
tional interaction forces with amino acids surrounding the
active centre. The benzene ring in the non-hydroquinone
moiety part of compound 3c engages in pi-sigma hydro-
phobic stacking interactions with Val283, pi-pi stacked/T-
shaped interactions with His85 and His263. In the field of
drug design, fluorine is usually introduced into small molecule
compounds to inhibit sites prone to oxidation metabolism. This
enhances the metabolic stability of the compounds and extends
their duration of action within the body.*” In compound 3e, the
fluorine atom also engages in halogen interactions with His263,
which bears structural significance similar to weak hydrogen
bonding. Additionally, the benzene ring connected to the fluo-
rine in 3e forms pi-alkyl conjugation with Ala286 and Val283,
pi-pi stacked/T-shaped hydrophobic interactions with His 85
and His263. It is worth noting that in compounds 3a, 3b, and 3c,
the benzene rings within the hydroquinone moiety interact with
Met257 through pi-sulfur interactions. In summary,
compounds 3a, 3b, and 3d all exhibit docking energies below
—7 keal mol ™", indicating a strong binding affinity with mTyr,
whereas compounds 3¢ and 3e exhibit docking energies within
the range of —4 to —7 keal mol ", signifying moderate binding
strengths. These results highlight the importance of hydrogen
bonds and pi-sulfur interactions in the process of compound
binding to mTyr. These non-covalent interactions induce
modifications in the conformation of the mTyr active centre
and, to varying degrees, impact the microenvironment of amino
acid residues, consequently influencing substrate-enzyme
binding. Taking into consideration the ICs, values of
compounds against mTyr and the structural analysis, it
becomes clear that the incorporation of double bonds conju-
gated with benzene rings enhances the formation of robust
hydrogen bond interactions between the compounds and mTyr.
Additionally, the introduction of fluorine atoms elevates the
hydrophobicity characteristics of the molecules, thereby
enhancing their activity. These findings offer valuable insights
for the design and synthesis of highly potent mTyr inhibitors.*

Molecular dynamics. Molecular docking provides insights
into the binding sites and modes of interaction between small
molecule ligands and mTyr enzyme receptors. However, it
cannot describe the dynamic evolution of their interactions or
the stability of the complex system. Therefore, the use of
molecular dynamics simulations to study the compound-mTyr
complex system can enhance our understanding of their inter-
action dynamics.”

The Root Mean Square Deviation (RMSD) of main chain
carbon atoms is often employed to evaluate the stability and

6090 | RSC Adv, 2024, 14, 6085-6095

View Article Online

Paper

accuracy of docking results.>* The molecular dynamics trajec-
tory results, as shown in the Fig. 4B and S7B,} indicate that the
RMSD values of the empty mTyr protein receptor undergo
significant fluctuations within the initial 10 000 ps but reach
equilibrium after 30 000 ps, stabilizing at around 0.17 nm. This
suggests that the structure of the mTyr protein remains stable
during the molecular dynamics process. For the compound (3a-
3e)-mTyr complex systems, the RMSD values tend to stabilize in
the range of 35000-45000 ps, indicating reliable dynamic
equilibrium in the compound (3a-3e)-mTyr complex systems.
This provides strong evidence for the stable existence of the
compound (3a-3e)-mTyr complexes. Notably, the RMSD values
for the 3a-mTyr and 3b-mTyr complex systems are lower than
those for the empty mTyr protein receptor, indicating lower
mobility and better stability of the complex systems. This trend
aligns with the inhibitory capacity of the five compounds on
mTyr, with experimental results showing that compounds 3a
and 3b exhibit better activity.

The Root Mean Square Fluctuation (RMSF) values of amino
acid residues provide insights into the flexibility and local
motion characteristics of the system. As shown in the Fig. 4C
and S7C,T amino acid residues in the compound (3a-3e)-mTyr
complex systems exhibit pronounced fluctuations in two
regions, namely, 50-100 and 240-300. This indicates that small
molecule compounds interact with nearby amino acid residues
within the active pocket and that these amino acid residues
actively participate in and stabilize the binding process by
adjusting their conformations and angles.>

The radius of gyration (R,) can characterize the structural
compactness and flexibility of protein molecules. A larger R,
value indicates greater structural relaxation. The Fig. 4D and
S7D7 illustrates that the empty mTyr protein receptor stabilizes
at an R, value of around 2.07 nm after 20 000 ps. Similarly, the
compound (3a-3e)-mTyr complex systems also stabilize after
20 000 ps, with R, values slightly higher than those of the empty
mTyr protein receptor. Amino acid residues repel each other
due to interactions, leading to protein structural relaxation and
expansion. This suggests that as small molecule compounds
penetrate deeper into the active pocket and interact with
surrounding amino acid residues, these residues undergo
conformational changes, causing the protein structure to relax
and the R, to increase.*

The Solvent Accessible Surface Area (SASA) reflects the area
of the surface of protein receptor surface in contact with solvent
molecules and can characterize its hydrophobicity. As shown in
Fig. 4E and S7E,} the SASA of the empty mTyr protein receptor
remains stable at approximately 178 nm throughout the simu-
lation process. In contrast, the compound-mTyr complex
systems exhibit more noticeable variations, ultimately resulting
in slightly higher SASA values than the empty mTyr protein
receptor. This indicates that during the simulation process, as
the protein becomes more relaxed, the surface area accessible to
solvent molecules increases. This result is consistent with the R,
analysis.”

Hydrogen bonds play a significant role in substrate recog-
nition and maintaining the stability of small molecule ligand-
protein receptor complexes.”® During molecular dynamics
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simulations, the relative positions of compounds and mTyr are
in constant flux, resulting in dynamic changes in the number of
hydrogen bonds formed between them. As seen in Fig. 4F and
S7F,t the number of hydrogen bonds for compounds 3a-3e
fluctuates between 0 and 3, with occasional bond ruptures.
Specifically, compounds 3a, 3b, and 3¢ maintain 1 hydrogen
bond with mTyr for most of the simulation time, while
compounds 3d and 3e stabilize at 1-2 hydrogen bonds. This
trend closely aligns with the results from molecular docking.
In conclusion, molecular dynamics simulations provide
a comprehensive understanding of the dynamic behaviour and
stability of compound-mTyr complex systems. Evaluation
parameters such as RMSD, RMSF, R,, SASA, and hydrogen bond
analysis shed light on the interactions between small molecule
compounds and the mTyr enzyme. These insights contribute to
the design and synthesis of highly effective mTyr inhibitors.

Cytotoxicity assay of compound 3b

Cytotoxicity analysis on human epidermal melanoma A375
cells. The abnormal metabolism of mTyr in the human body is
closely associated with the development and treatment of
melanoma, a form of skin cancer. Therefore, the discovery of
compounds with strong mTyr inhibitory activity from those
possessing such activity is highly promising for combating
melanoma.? Cell proliferation and cytotoxicity assays serve as
fundamental data for evaluating the efficacy of compounds and
determining safe concentrations for further applications. Based
on a thorough analysis of the activity and inhibition mecha-
nisms of compounds 3a-3e, compound 3b, which exhibited the
highest mTyr inhibitory activity, was selected. Using human
epidermal melanoma A375 cells as an in vitro cellular model,
the preliminary assessment of its cytotoxicity was conducted by
monitoring cell numbers and observing cell growth patterns, as
depicted in the Fig. 5A.

The results indicate that compound 3b has ICs, values of
40.77 uM and 168.60 pM against A375 and HaCaT cells,
respectively. This suggests that compound 3b exhibits signifi-
cant toxicity towards A375 cells while displaying minimal
toxicity towards HaCaT cells. As illustrated in the Fig. 5B, within
the concentration range of 3.125-25 pM, compound 3b exerts
negligible toxicity on HaCaT cells, with an inhibition rate below
5%, and there are no significant morphological changes
observed. In contrast, compound 3b demonstrates substantial
toxicity against A375 cells, with an inhibition rate of 32.12%.
This is characterized by reduced cell-cell contacts, chromatin
condensation, and a crescent-shaped nuclear membrane. When
the concentration is increased to 50 uM, compound 3b exhibits
an inhibition rate of 9.09% on HaCaT cells, resulting in only
minor alterations in cell morphology. However, at the same
concentration, it exerts significantly greater toxicity on A375
cells, with an inhibition rate of 60.89%. This leads to
pronounced changes in cell morphology, including loss of cell-
cell contacts, membrane vesicle formation, and the presence of
individual apoptotic bodies.*

These findings indicate that within the concentration range
of 0-25 pM, compound 3b does not exhibit significant toxicity
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towards HaCaT cells but displays substantial toxicity towards
A375 cells. Consequently, compound 3b shows potential as an
anti-melanoma agent. However, further research is required to
explore strategies for maintaining its toxicity against A375 cells
while reducing its impact on HaCaT cells.

Experimental section
Materials, cell lines, and insects

Commercially available 4-hydroxycinnamic acid, thionyl chlo-
ride (SOCl,), hydroquinone, cinnamoyl chloride, phenyl-
propionyl chloride, benzoyl chloride, 4-benzoyl chloride, r-
tyrosine, 1-3,4-dihydroxyphenylalanine (.-DOPA), and kojic acid
were products of Adamas-Beta purchased from Shanghai Titan
Scientific Co., Ltd (Shanghai, China) and used directly without
further purification. 4-Hydroxycinnamoyl chloride was synthe-
sized according to ref. 13. Tyr from mushroom were products of
Macklin purchased from Shanghai Macklin Biochemical Co.,
Ltd (25KU, Shanghai, China). Taxol was obtained from
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Molecular Probes (Eugene, USA). Thin-layer chromatography
(TLC) silica plates (GF254) and silica gel (300-400 mesh) were
purchased from Qingdao Marine Chemical, Co., Ltd (Qingdao,
China), and the spots were detected under UV light. Other
reagents and organic solvents were purchased from Shanghai
Titan Scientific Co., Ltd (Shanghai, China), unless otherwise
stated. All reagents used were of analytical grade or higher and
were used directly without further purification.

A375 Human melanoma (A375) tumor cells and human
immortalized keratinocyte (HaCaT) non-tumor cells were ob-
tained from the Nanjing Pusheng Biomedical Technology Co.,
Ltd (Jiangsu, China). Dulbecco's modified Eagle’s medium
(DMEM) and fetal bovine serum (FBS) were obtained from
GIBCO (New York, USA). Both A375 tumor cells and HaCaT non-
tumor cells were cultured in DMEM supplemented with 10% (v/
v) FBS (New York, USA) at 37 °C with 5% CO, in a humidified
incubator. Cell counting kit-8 (CCK-8) solution was obtained
from Dojindo Laboratories (Tokyo, Japan).

Synthesis

A quantity of 1.00 g (9.10 mmol) of hydroquinone was intro-
duced into a 100 mL round-bottom flask containing 25.0 mL of
dichloromethane (CH,Cl,, DCM) under ice-bath conditions.
After stirring for 5 minutes, 1.10 g (10.92 mmol) of triethyl-
amine (TEA) was added to the mixture, followed by the slow
addition of substituted cinnamoyl chloride 2a-2e (10.01 mmol)
dissolved in 15 mL of mL DCM. The reaction mixture was
shielded with argon gas and monitored by TLC using ethyl
acetate/petroleum ether as the mobile phase. Once the reaction
was completed, the mixture was quenched with 25.0 mL of
saturated sodium bicarbonate (NaHCO;), and then extracted
with ethyl acetate (20.0 mL x 2), followed by washing with
20.0 mL of distilled water and 20.0 mL of saturated saline
solution. After drying with anhydrous sodium sulfate, the
organic extracts were evaporated under reduced pressure to
remove the solvent, and the resulting mixture was further
purified by silica gel column chromatography eluting with
which yielded compounds 3a-3g.

Structural characterization

"H NMR (500 MHz) and >C NMR (126 MHz) were measured on
a Bruker Avance II 500 MHz spectrometer using chloroform
(CDCl;) and methanol (CD;OD) as solvents. HREIMS was
carried out using Thermo Scientific Q Exactive (Waltham, USA).
UV-visible spectra were obtained using UV-2600 spectropho-
tometer (Shimadzu, Japan) scanning from 240 to 450 nm.
Melting points were determined using a X-4 digital display
melting point apparatus (Shanghai, China) and are
uncorrected.

Inhibitory activity assay

The synthesized hydroquinone ester derivatives were dissolved
in 3% dimethyl sulfoxide (DMSO) solution and then diluted
with phosphate-buffered solution (PBS, pH 6.86, 100 mM) to
obtain different concentrations. In a 96-well plate, 40 uL of the
test compound solution, 100 pL of PBS, and 40 pL of mTyr
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solution were added and mixed sequentially. The plate was
incubated at 37 °C for 30 minutes, after which 20 pL of r-tyro-
sine solution (1 mM) was added and mixed. The absorbance at
a wavelength of 475 nm was measured using a SpectraMax 190
microplate reader (MolecularDevices, USA) continuously for 30
minutes. PBS was used as a blank control, and kojic acid was
used as a positive control. The mTyr activity inhibition rate was
calculated using eqn (1), and the inhibitory effect of cinnamic
acid ester derivatives on mTyr was expressed as the concentra-
tion that inhibited 50% of the mTyr activity inhibition rate
(IC50).™

mTyr activity inhibition rate (%) = [(4 — B) — (C — D))/
(4 — B) x 100% (1)

where A is the absorbance of the blank control after incubation,
B is the absorbance of the blank control before incubation, C is
the absorbance of the test compound solution after incubation,
and D is the absorbance of the test compound solution before
incubation.

Inhibition reversibility and type assay

The methodology for evaluating the reversibility of inhibition
and the inhibition type of the compounds on mTyr closely
parallels the procedure outlined in the inhibitory activity assay
of compounds on mTyr.

For the evaluation of inhibition reversibility, a constant
concentration of 1 mM r-tyrosine was employed. Various mTyr
concentrations (100, 200, and 300 U mL ') were applied,
accompanied by compounds 3a-3e concentrations that will be
determined based on the ICs, (ODyys x min~') value. The
absorption was measured to determine the initial enzymatic
reaction rate corresponding to each enzyme concentration.
Specifically, the initial enzymatic reaction rate was calculated by
subtracting the initial absorbance from the absorbance recor-
ded at a specific time and then dividing the result by the cor-
responding time interval.*> Subsequently, the collected data
were plotted on a scatter plot, with the initial enzymatic reaction
rate represented on the Y-axis and the enzyme concentration on
the X-axis. In cases of reversibility, this will result in fitting a set
of straight lines passing through the origin. Conversely, when
reversibility was absent, a set of parallel lines emerged as the
fit.*

In order to investigate the inhibition type, a final concen-
tration of 300 U per mL mTyr was employed, accompanied by
varying concentrations of L-tyrosine. The enzymatic reaction
rate was evaluated for different concentrations of compounds
3a-3e. Subsequently, the AOD,,5 values were plotted against the
L-tyrosine concentration using the Lineweaver-Burk equation,
allowing for the creation of double reciprocal plots. The inter-
section points of these lines revealed the nature of mTyr inhi-
bition caused by the compounds.**

UV-visible spectroscopy analysis

The chelation between hydroquinone ester derivatives and the
copper(u) ion active center of mTyr was investigated using a UV-

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2600 spectrophotometer (Shimadzu, Japan), with some modi-
fications based on a previously published method.** For the
assay, 1.0 mg of the sample was dissolved in 10 mL of PBS. The
concentration of copper sulfate (CuSO,) in the PBS was set at
0.125 mM, and the mTyr concentration was adjusted to 300 U
mL . All working solutions were made up to a final volume of
3 mL using PBS, ensuring consistency across all samples. After
gentle mixing with a vortex shaker, the samples were incubated
at 30 £ 2 °C for 10 minutes with intermittent shaking. Subse-
quently, the UV-visible spectrophotometer was employed to
measure the absorption spectrum in the range of 240 nm to
500 nm.*

Molecular docking and molecular dynamics studies

For molecular docking, the three-dimensional structure of the
mTyr protein 2Y9X was firstly obtained from the Protein Data
Bank (PDB). Then the protein structure was processed using
UCSF Chimera 1.16, where H,O molecules were removed,
redundant chains were deleted, and the AMBER {f14SB force
field was applied. The small molecule ligands were drawn using
ChemOffice 2018 and converted into three-dimensional
conformations using Chem3D, followed by energy minimiza-
tion and saving the structures in the mol2 format. To construct
the active site, the crystallographic ligand positions from the
protein structure were used as references. The active site was
defined with the centre coordinates at (x = —10.02,y = —28.82, 2
= —43.59), and a box of dimensions 25 x 25 x 25 A was created
around it. The AutoDock Vina software was utilized to perform
docking calculations, with the default settings.*®

After the molecular docking, pre-equilibration involved NVT
and NPT simulations, followed by a 50000 ps molecular
dynamics simulation using GROMACS. LINCS algorithm con-
strained hydrogen bonds, SETTLE maintained water molecules,
and Parrinello-Rahman controlled pressure. The PME method
was used for long-range electrostatic interactions. Trajectory
files provided crucial data on complex properties.*”

Cell cytotoxicity study

Cell proliferation and cytotoxicity assays were performed using
the CCK-8 on Human Epidermal Melanoma A375 and HaCaT
cells. Initially, the cells were seeded in 96-well plates at a density
of 4 x 10* cells per well and incubated for 24 hours at 37 °C with
5% CO, in a humidified incubator. Each treatment was con-
ducted in six duplicate wells. Various concentrations of the
tested compounds were added to the wells, and the cells were
further incubated for 72 hours. After the incubation period,
CCK-8 solution was added to each well and incubated for an
additional 2 hours. The absorbance of each well at 450 nm was
measured using an absorbance microplate reader (BioTek
ELx800, USA). Negative controls with cells treated with distilled
water and positive controls with cells were treated with 10 ng
mL ™" taxol was included in the assay. The percentage of cell
growth inhibition was calculated using eqn (2).

G — G

Cell growth inhibition rate [%)] = ey
1— G

x 100  (2)
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where G, represents the absorbance of a mixture containing
cells, medium, and CCKS8, G, represents the absorbance of
absorbance of a mixture containing cells, medium, CCK8, and
the test compound; G; represents a mixture containing medium
and CCKS8.

Cell growth and morphology were observed using an inver-
ted microscope (Olympus IX51, Japan). The experiments were
conducted in triplicate to ensure accuracy and consistency of
results.

Statistical analysis

All data obtained from cultured cells were analysed by one-way
analysis of variance (ANOVA) followed by post hoc Bonferroni's
multiple comparison test. In some cases, Student's t-test was
applied. Analyses were carried out using the Prism 4.0 statistics
program (GraphPad, San Diego, CA). Differences were consid-
ered significant at p < 0.05.

Conclusions

Tyrosinase are a diverse class of proteins with a wide range of
physiological functions and are crucial enzymes in melanin
biosynthesis. Focusing on the excellent inhibitory activity of
hydroquinone against tyrosinase and the controversial safety
concerns, this study employed a scaffold hybridization strategy
to synthesize hydroquinone-benzoyl ester derivatives, aiming to
develop novel, highly efficient, and low-toxicity tyrosinase
inhibitors. In this research, we synthesized a series of hydro-
quinone-benzoyl ester analogs (3a-3g). In vitro inhibition
results indicated that these compounds all exhibited inhibitory
activity against mTyr, with compounds 3a-3e displaying
particularly good inhibition. We further elucidated the molec-
ular mechanisms of compounds 3a-3e in inhibiting mTyr
through inhibition kinetics, UV spectroscopy analysis, and
molecular simulations. The results revealed that the inhibition
process of compounds 3a-3e on mTyr was reversible, and they
did not chelate with the copper ions in the active center of
enzyme. However, the inhibition mechanisms varied, closely
related to the presence or absence of double bonds and
phenolic hydroxyl groups in the chemical structures. Molecular
docking simulations and molecular dynamics analysis further
supported these experimental findings. To explore the potential
applications of these compounds, we selected the most active
compound 3b, and conducted toxicity tests on melanoma cells.
In cell toxicity experiments, compound 3b exhibited high
toxicity to A375 cells, while displaying low toxicity to HaCaT
cells, with a dose-dependent effect. This study provides prom-
ising candidate compounds for the development of tyrosinase
inhibitors with broad application prospects.
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