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1. Introduction

Organic structures with high vapor pressure, low boiling point,

QSAR models for the ozonation of diverse volatile
organic compounds at different temperaturesy
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and Zohreh Mirjafary®

In order to assess the fate and persistence of volatile organic compounds (VOCs) in the atmosphere, it is
necessary to determine their oxidation rate constants for their reaction with ozone (ko ). However, given
that experimental values of ko, are only available for a few hundred compounds and their determination
is expensive and time-consuming, developing predictive models for ko, is of great importance. Thus, this
study aimed to develop reliable quantitative structure—activity relationship (QSAR) models for 302 values
of 149 VOCs across a broad temperature range (178-409 K). The model was constructed based on the
combination of a simplified molecular-input line-entry system (SMILES) and temperature as an
experimental condition, namely quasi-SMILES. In this study, temperature was incorporated in the models
as an independent feature. The hybrid optimal descriptor generated from the combination of quasi-
SMILES and HFG (hydrogen-filled graph) was used to develop reliable, accurate, and predictive QSAR
models employing the CORAL software. The balance between the correlation method and four different
target functions (target function without considering IIC or ClI, target function using each IIC or Cll, and
target function based on the combination of IIC and ClI) was used to improve the predictability of the
QSAR models. The performance of the developed models based on different target functions was
compared. The correlation intensity index (Cll) significantly enhanced the predictability of the model. The
best model was selected based on the numerical value of Rm2 of the calibration set (split #1, Rtrainz =
0.9834, Reaibration> = 0.9276, Ryaidation> = 0.9136, and R,,? calibration = 0.8770). The promoters of
increase/decrease for log ko, were also computed based on the best model. The presence of a double
bond (BOND10000000 and $10 000 000 000), absence of halogen (HALOO0000000), and the nearest
neighbor codes for carbon equal to 321 (NNC-C---321) are some significant promoters of endpoint
increase.

items.> Alternatively, BVOCs are mostly derived from microor-
ganisms, plants, and animals.?
Typical VOCs are halogenated compounds, aromatic

and low water solubility at room temperature and pressure
(293.15 K and 101.325 kPa, respectively) are known as volatile
organic compounds (VOCs).! VOCs come from two primary
sources, namely, anthropogenic VOCs (AVOCs) released from
humans and biogenic VOCs (BVOCs) from soil ecosystems. It
should be noted that AVOCs are hydrocarbons released by
human activities. These compounds are emitted from various
daily activities such as industrial processes, traffic, energy
production, and the use of solvents, paints, adhesives, lubri-
cants, wear-reducing products, cosmetics, and personal care
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compounds, aldehydes, ketones, alcohols, and ethers. High
concentrations of these VOCs can lead to headaches, nausea,
dizziness, and irritation. Unfortunately, significant amounts of
VOCs are being emitted into the environment, posing a poten-
tially significant threat to both climate and life.* Also, they
secondarily act as ozone/smog precursors and directly as
poisonous materials in the environment. Inferior indoor air
quality can lead to various short-term and long-term harmful
health effects.® In this case, reaction with ozone is a meaningful
way to remove most VOCs in the atmosphere.® The kinetic rate
constant for the degradation of VOCs is a crucial parameter that
must be considered to assess their removal efficiency and the
ecological risk of contaminants.”

Ozonolysis is a chemical reaction involving the breakdown of
organic compounds in the presence of ozone (O3). This process
plays a central role in atmospheric chemistry, contributing to
the formation of secondary organic aerosols and the
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degradation of VOCs emitted by diverse sources. The chemical
oxidation process in the atmosphere plays a primary role in the
composition of the atmosphere, resulting in the elimination of
initially released species and the production of secondary
products. In many instances, emitted species or their oxidation
products adversely affect the air and climate quality.®* Among
the many ingredients of atmospheric aerosol fragments,
organic aerosol particles are less well-known.® Secondary
organic aerosol (SOA) is a significant component of organic
aerosols. Thus, identifying the chemical pathways of
compressible products is essential for predicting the formation
of SOA.***3

Quantitative structure-property relationship (QSAR) is
a computational tool for building models to predict various
activities.”** In this case, different machine learning packages
are available to build reliable models. Among them, CORAL is
one of the user-friendly packages for building valid QSAR
models based on the simplified molecular-input line-entry
system (SMILES) notation.'*"” One of the excellent applica-
tions of CORAL software is entering the experimental condition
into SMILES of a molecule, namely as quasi-SMILES."**

To date, researchers have developed various QSAR models
for predicting the reaction rate constants of organic compounds
in ozonation reactions. Zhu et al. (2014 and 2015) constructed
two optimized QSAR models to estimate the reaction rate
constants in ozonation reactions under acidic and neutral
conditions at room temperature. These models successfully
predicted the reaction rates of diverse organic compounds,
yielding the determination coefficients of R”> = 0.802 and 0.723,
respectively. In both models, the Fukui indices of a molecule
had a notable impact on the reaction rate constants.”*** Sud-
hakaran et al. (2013) developed a QSAR model for the ozone
oxidation of organic micropollutants. This model incorporated
parameters such as double bond equivalence, solvent accessible
surface area, and ionization potential, achieving a notable
determination coefficient of 0.832.** In a separate study,
McGillen et al. (2008) employed an SAR model to predict the
rates of alkyl substituents. The results indicated a strong
agreement between the experimental and predicted values.>

Due to the significant impact of temperature on degradation
behavior, it is imperative to incorporate this variable as an
independent factor in QSAR models for accurately predicting
the reaction rate constants at various temperatures. Recently,
several temperature-dependent QSAR models have been devel-
oped. For example, Li et al. (2014) devised a QSAR model for
room temperature and a temperature-dependent model for the
hydroxyl radical oxidation process, demonstrating high
goodness-of-fit and robustness measures.”® Similarly, Gupta
et al. (2016) established QSAR models for nitrate radical
oxidation at room temperature and under temperature-
dependent conditions. In a recent study, our group investi-
gated the quantitative relationship between the rate of Fenton
oxidation and various parameters, including temperature and
quantum chemical and physical-chemical properties of mole-
cules. The findings indicated that temperature exerted the most
significant influence on the reaction rate constants.””
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Li et al. (2013) constructed a QSAR model for predicting
ozonation reaction rates at different temperatures, displaying
robust predictive capability for 379 reaction rate values,?
despite the limitation that the molecular weights (MWs) of the
studied organics were 200.03 (linalool) or smaller.

Liu et al. (2021) developed QSAR models to predict the rate
constant of VOC degradation by O;. The models were developed
based on factors such as bond order, Fukui indices, and other
relevant descriptors, in addition to considerations related to
temperature. The utilized dataset consisted of 302 log ko,
values, ranging from 178 to 409 K. This dataset was partitioned
into training and test sets for the development and evaluation of
the model. The optimized QSAR model demonstrated a favor-
able determination coefficient for both the training and test
sets, achieving R* and Q? values of 0.83 and 0.72, respectively.
These temperature-dependent QSAR models have expanded the
applicability domain of traditional QSAR models. However, it is
crucial to acknowledge that measured data are subject to errors,
impacting the reliability of the models. In this case, utilizing
data obtained within the same laboratory can mitigate these
errors and enhance the accuracy of the models.

This study aimed to develop a simple and reliable model to
predict the rate constants of VOC reaction with ozone at
different temperatures based on the Monte Carlo technique. To
identify the optimal model, various target functions were
assessed through the utilization of the correlation intensity
index (CII) and the index of ideality correlation (IIC) employing
the CORAL software.

2. Materials and methods

2.1. Dataset

The data set included diverse organic compounds such as
alkanes, alkenes, alkynes, and aldehydes. It also included
aromatic compounds containing nitrogen, oxygen, and fluo-
rine. Here, 302 log ko, values in a broad temperature range (178~
409 K) for 149 VOCs were obtained from the literature.* Log ko,
was selected as the dependent variable for QSAR modeling,
which ranged from —25.3 to —13.92. All QSAR models were
constructed using the latest version of the CORAL free software
(https://www.insilico.eu/coral).

2.2. Optimal quasi-SMILES descriptors

In the CORAL software, three types of optimal descriptors are
available, i.e., SMILES-based, graph-based, and hybrid descrip-
tors (a combination of SMILES and graph) for the creation of
QSAR models.***

One of the excellent features of the CORAL software is
entering the experimental condition with SMILES of the
compounds.™ Here, the experimental temperature was entered
as quasi-SMILES. The temperature with a 5° increment was
divided, and each increment was defined as [T0], [T1], [T2], etc.,
as shown in Table 1.

Each quasi-SMILES for each data point was obtained by
combining the SMILES with code for temperature [Tx]. Some
examples of the created quasi-SMILES and the relevant

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Defined codes for different temperature ranges to convert the temperature range of experimental data to quasi-SMILES

T (K) range Code T (K) range Code T (K) range Code T (K) range Code
T =178 [To] 233 <T =238 [T12] 293 < T = 298 [T24] 353 < T = 358 [T36]
178 < T = 183 [T1] 238 <T =243 [T13] 298 < T = 303 [T25] 358 < T = 363 [T37]
183 < T = 188 [T2] 243 < T = 248 [T14] 303 < T = 308 [T26] 363 < T = 368 [T38]
188 < T = 193 [T3] 248 < T = 253 [T15] 308 < T =313 [T27] 368 < T =373 [T39]
193 < T = 198 [T4] 253 < T = 258 [T16] 313 <T =318 [T28] 373 <T =378 [T40]
198 < T = 203 [T5] 258 < T = 263 [T17] 318 < T = 323 [T29] 378 < T = 383 [T41]
203 < T = 208 [T6] 263 < T = 268 [T18] 323 < T =228 [T30] 383 < T = 388 [T42]
208 < T =213 [T7] 268 < T =273 [T19] 328 <T =333 [T31] 3888 < T = 393 [T43]
213 < T =218 [T8] 273 < T =278 [T20] 333 <T =338 [T32] 393 < T = 398 [T44]
218 < T = 223 [T9] 278 < T = 283 [T21] 338 < T =343 [T33] 398 < T = 403 [T45]
223 < T = 228 [T10] 283 < T = 288 [T22] 343 < T = 348 [T34] 403 < T = 408 [T46]
228 <T =233 [T11] 288 < T =293 [T23] 348 < T = 353 [T35] >408 [T47]

experimental log ko, of the VOCs are presented in Table 2. The
corresponding quasi-SMILES for the total dataset are presented
in Table S1.7¥

Following the generation of quasi-SMILES, the dataset was
divided nine times. Subsequently, each VOC within each split
was randomly allocated to the active training (ATRN, 25%),
passive training (PTRN, 25%), calibration (CAL, 20%), and
validation (VAL, 30%) sets. The quasi-SMILES symbol, split
distribution, observed log ko, and calculated log ko, are pre-
sented in Table S1.t The role of each set in the developing QSAR
models was previously described in the literature.’>*

The one variable model used in this study is based on the
“descriptors of correlation weights” (DCWs). In the CORAL soft-
ware, the DCWs for each feature are optimized by the Monte Carlo
algorithm. The final QSAR equation is a univariate equation based
on the summation of DCWs. Here, the hybrid descriptor was used
to build the QSAR models.*** The following equations were used
based on optimal descriptors for log ko, modeling:

DCW(T*, N¥) = SMILESDCW(T*, N¥) + SPhDCW(T*, N*) (1)

SMILESHCW(T*, N*) = S.CW(SSS;) + CW(BOND)
+ CW(NOSP) + CW(HALO) + CW(HARD) (2)

CrPDCW(T*, N¥) = CW(EC2,) + SCW(pt2y)
+ > CW(pt3y) + > CW(VS2y)

+ 3 CW(nny) + S CW(APP)) 3)

where T is the threshold and N indicates the number of epochs.
T is an integer that divides the SMILES features into active and
rare classes. If a molecular feature, F, occurs less than T times,
this molecular feature should be removed from the model
building (the molecular feature is calculated from SMILES in
the training set); therefore, the correlation weight F, CW(F) = 0.
Consequently, this molecular feature is known as rare. T* and
N* are the optimal values of T'and N that give the best statistical
result for the calibration set. The details of the notation given in
eqn (2) are as follows:

The notation details presented in eqn (2) are as follows: SSS;
is fragments of SMILES containing one symbol; the presence/
absence of double (‘=), triple (‘#’), and stereochemical (‘@’
or ‘@@’) bonds are indicated by BOND; the presence/absence of
nitrogen (N), oxygen (O), sulfur (S), and phosphorus (P) is dis-
played by NOSP; HALO is the presence of fluorine, chlorine, and
bromine; and HARD implies the combination of BOND, NOSP,
and HALO. CW(F) demonstrates the correlation weight for the
SMILES features, e.g., SSSx, BOND, NOSP, HALO, and HARD.*

Moreover, in eqn (3), the attribute EC2 is the extended
Morgan's connectivity of second order; pt2; and pt3; are the
number of path lengths 2 and 3, which start from the ™ vertex
of the molecular graph, respectively; VS2 is the valence shells of
radius 2 in the hydrogen field graph (HFG); and nn; is the
nearest neighbor code for the k™ vertex of the molecular graph.
The correlation weights (CWs) were calculated using Monte
Carlo optimization.’”**

Table 2 Some examples of the name, temperature reaction, SMILES, code for temperature, quasi-SMILES, and the relevant experimental log ko,

of VOCs

No. Name T (K) SMILES Code for T (K) Quasi-SMILES Log ko, (exp.)
1 Alpha-phellandrene 295 CC(C)C1CC=C(C)C=C1  [T24] CC(C)C1CC=C(C)C=C1[T24]  —13.92
10 2,3-Dimethyl-2-butene 227 Cc(=c(c)c)C [T10] CC(=C(C)C)C[T10] —15.05
61 trans-4-Octene 290 CCC\C=C\CCC [T22] CCC\C=C\CCC[T22] —16.00
128 Trimethylamine 296 CN(C)C [T24] CN(C)C[T24] —17.01
242 1,1,1-Trifluoroethane 298 CC(F)(F)F [T24] CC(F)(F)F[T24] —25.30
183 Tetrachloroethene 409 Clc(ch)=c(cl)cl [T47] CIC(Cl)=cC(Cl)Cl[T47] —18.23
185 trans-1,2-Dichloroethene 380 Cl\C=C\Cl [T40] CI\C=C\CI[T40] —18.25
251  cis-2-Butene 336 C\C=C/C [T31] C\C=C/C[T31] -15.71
300  Ethene 193 c=C [T3] C=C[T3] —19.83

© 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Adv, 2024, 14, 8041-8052 | 8043


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08805g

Open Access Article. Published on 07 March 2024. Downloaded on 1/22/2026 11:54:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Using the APP; features in the CORAL software is another new
conceptual method to improve the predictability of models. APP;
is the vector of the atom pair proportions® related to fluorine (‘F’),
chlorine (‘Cl’), bromine (‘Br’), nitrogen (‘N’), oxygen (‘O’), double
bonds (‘="), and triple bond (‘#) proportions. APP; indicates that
the compound contains atoms Atom1 and Atom2 and the ratio of
Atom1 and Atom2 in the molecule, e.g., 2:1,1:3,2:3,and 3:1.

The correlation weights for these events (positions in
compounds) can be derived through the Monte Carlo approach.
Finally, by calculating the numerical data of DCW (algebraic
sum of weights for all features included in the model), the
prediction of log ko, of VOCs by the least square method is
obtained based on the following equation:

Lngo3 = CO + () x DCW(T*, N*) (4)

2.3. Monte Carlo optimization

In this study, four distinct types of target functions, namely TF,,
TF4, TF,, and TF3, were employed for the development of robust
QSAR models. Subsequently, the resultant statistical outcomes
were compared for evaluation.*

The following equations are the mathematical relationship
for each target function:

TFy = Ratrn + RprRN — |RATRN — RprRN| X dryeigne  (5)
TF, = TF, + IICcar x weight for IIC (IICy.ight) (6)
TF, = TF, + Clcap x weight for CIT (ClLyeigho) 7)

TF3 = TFy + HHCcar X IICyeight + Clcar X Cllyeight  (8)

where the correlation coefficients between the experimental and
predicted log ko, for the active and passive training sets were
denoted by Rarrny and Rprry, respectively. The parameters
dryeighty IICweight; and Cllycighe represent the weights assigned to
IIC and CII, and they are constant throughout the analysis.
Here, the numerical values assigned to the parameters dryeight,
IICyeight, and Cllyejghe Were 0.1, 0.5, and 0.3, respectively.

IICcar and Cllgs, were computed for the calibration set
using eqn (9).

min (7 MAECAL ,+ MAECAL) (9)
max(~MAEcar,"MAEcar)

IICcaL = ReaL X

‘PATRN (EL) - PPTRN (E{)'

| Patrn (Fi) — Pear (Fi)

View Article Online
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positive errors, which were calculated using the following
equations:

1 .
"MAEcaL = N Z |4;| 4 <0, "N isno. of 4,<0 (10)
y=1

Nt

1 .
TMAEcL = +N ; |4y 4,=0, "Nisno.of 4,=0 (11)

Ak = Eka — PI‘dk (12)
where Exp, and Prd; are the experimental and predicted
endpoint values, and ‘¢’ ranges from 0 to N.

CIICAL =1- Z PI'OtCStk
(13)

R>—R* ifR*—R*>0

Protest, = )
0 otherwise

R? is the correlation coefficient for a set with n samples. R;” is
the correlation coefficient for n — 1 samples of a set after
removing the k™ sample. Therefore, if (Ri2 — R?) > 0, the k™
substance is an “oppositionist” for the correlation between the
observed and predicted values of the set. The more “intensive”
correlation appears with the small sum of “protest”.

2.4. Domain of applicability

Applicability domain (AD) analysis indicates whether the
developed QSAR model can be applied to any set of chemicals.
AD is defined based on the theoretical region in the chemical
space of molecular descriptors and the activity region modeled
by the training dataset. In the CORAL software, AD assessment
is done through the probability density distribution. The
distribution of the quasi-SMILES features in the ATRN, PTRN,
and CAL sets defines AD. Thus, the AD of the model built by
Monte Carlo optimization varies depending on the distribution
of the datasets in the training and calibration sets. In the
CORAL software, the statistical defects of quasi-SMILES are
used to define AD. The “statistical defect,” d(A4) is obtained by
the following equation:*

P, F.)— P F,
|Porn (F%) caL (Fy)| if F,>0

Defecty, =
i Natrn(Fi) + Nptrn (Fr)

Defecty, =1 if F, =0

The correlation coefficient between the observed and pre-
dicted values of log ko, for the calibration set is indicated by
Rcar. “MAE and "MAE are the mean absolute of negative and

8044 | RSC Adv, 2024, 14, 8041-8052

Natrn(Fx) + Neaw (Fr)

Nprrn (Fi) + Neaw (Fr) (14)

where, Paren(r), Prrrnr), and Pcay,) are the probability of
features in the ATRN, PTRN, and CAL sets, and Narrn(ry,
Nprri(ry, and Ncarr are the frequencies of the features in the
ATRN, PTRN and CAL sets, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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The statistical defect of quasi-SMILES was obtained from the
sum of the statistical defects of all the features.

Ng
Defectquasi-smiLes = E Defectp,
k=1

(15)

where Ny denotes the number of active quasi-SMILES features
for the specified data.
A quasi-SMILES is considered an outlier if:

Table 3 Mathematical equations of goodness-of-fit criteria for QSAR
models built using the CORAL software

Type of validation Criterion of the predictive potential Ref.
Internal o1 5™ (Yobs — prd)z 44
> (Yobs — 7)2
Q2 —1_ > (Yprd - YobS)2
Z (Yobs - 7train)2
External 0r2—1- S (Yperteest) — Yobs(test))” 45
" > (Yobstest) — Y train)’
On2—1- > (Yprd(test) — Y(ts(testz))z
> (Yobstest) — Yext)
QFZZ —1_ Z (Yprd(test) - Yobs(test))z/next

Z (ans(test) - 7tra\in)z/"ltra\in
Rn? =R*x (1 —/R®— Ry?) 46
23X -X)(Y-Y 47
CCC = f%:( )L 3 )f —
X -X)X(Y-Y)+nX-7)
1
MAE = Z X Z‘ Yobs — Yprd|
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Defectquasi.SMILEs >2 X DefectATRN (16)

Defectarry represents the average statistical defects for the
active training set.

2.5. QSAR model validation

The goodness-of-fit of the generated QSAR models for log ko,
of VOCs was assessed based on three methods, as follows: (i)
internal validation by measuring R?, IIC, CCC, Q% and F test
in the training set; (ii) external validation by measuring Q*F;,
Q’F,, Q°F3, Cg >, RMSD, MAE, Ry% and AR,” using the test
set materials and (iii) data randomization or Y-scrambling
(Table 3).

In Table 3, Y, is the experimental activity; Y4 is the
calculated activity; R> and R,” are the squared correlation
coefficient values between the experimental and predicted
property/activity with intercept and without intercept, respec-
tively; and R,” is R* for the randomized models.

3. Results and discussion

3.1. QSAR models

To obtain predictive and reliable models, nine different QSAR
models were constructed for each type of objective function
(TF,, TF,, TF,, and TF;) using hybrid optimal descriptors. Fig. 1
depicts a graphical representation of the attributes and various
goodness-of-fit criteria for split #1, as determined by TF, using
the CORAL software. This figure shows the graphics of the

Y-randomization 48
— 2 _R2 . .
Cr2 =R (R = R7) software. The descriptors derived from SMILES and GRAPH are
ﬁ Please see results for validation set in file .../model/#ModelForValidationSet.txt; Now you can study plots "expr vs calc” - O X
[quasi] - SMILES for TRN,{TRN,ané CLB  CORALSEA-2020
|nTraww1g‘Eu:—r bt
. V¥ GRAPH[™ HSG HFG[™ GAO IE fHILES
g ’f.’d‘ A elele2e3p2pipds2 s3nn [ R3 [ ss
£ . (T} | OFFCECCECCT I Re 5 ses
eiCCCCCCCCCC — ps ™ BOND
A e EZI—I_WI_I_I_I_I_V_FI—HE v NOSP
Active Training zet (TRN) SCCCCrCrrrr I~ R7 Ilg HﬁlﬁlIJ)
[n=79: R2=0.9834: 5=0.215: MAE=0.156: F=4551 RECEEMET T T T s ioms pairs proportions
Zhieeh: Z | cFERFRBERRR QBN DS Pt
p r ' N -
= o Phass | eCCCCCCCRrC F2i2]2)2)0/02)2
=] - SCOCCCCCrCrrr o 2/2(2/0/0)2]2
. mC OO W Br.... 2]2[0][0]2]2
e — ] Contributions 2| 0]0]2]2
e e e TR N g s
[n=58: R2=0.957 ABE=0.289: F=1498 CF [Cco T8 G —0lo|o
Calculation Endpaint for dark SMILES | = T # | Cmax P =0l o]
o
g list txt Endpoint txt [~ Classification model = ...m2
" CLASSIC SCHEME . <
. N (¥ CORRELATION BALANCE  dR weight|"!
& TG | EXPR Co= 221731746 Cl= 0.3161054 r ICm:Ie)n:| ni‘ IdtTaIity n‘f Clnr;elation B
n=B5: R2-0 9276; 50,455 MAE-0.359 F=807 | _Insert a SMILES for calculation of DCW and EndPaint I¥ Conelaton Intensiy Index crep  [03 0]
g .- [FC=CIFIFT24] | Dy [05 it |01 Mepoch [15
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- - DCw(1,15)= EndPoint = 93 Nurber of b
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Fig.1 Graphical representation of the attributes used for modeling and the predicted log ko, for best model (split #1) based on TF, by the CORAL

software.
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Table 4 Goodness-of-fit criteria for QSAR models developed based on TF; for log ko, of VOCs

Split  Set n R ccc  IIC CII Q* Ori®  Om® Qp> RMSE MAE F Rn®  ARw®  Ydest Cgp

1 ATRN 79 0.9834 0.9916 0.7888 0.9882 0.9825 0.215 0.156 4551 0.9768
PTRN 68 0.9578 0.9710 0.8675 0.9682 0.9554 0.382 0.289 1498 0.9532
CAL 65 0.9276 0.9592 0.7878 0.9615 0.9230 0.9129 0.9129 0.9224 0.455 0.359 807 0.8770 0.0709 0.9218
VAL 90 0.9136 0.9464 0.5804 0.9410 0.9086 0.5730 0.4433 937 0.8698 0.0824 0.0141

2 ATRN 79 0.9650 0.9822 0.9578 0.9749 0.9630 0.308 0.215 2125 0.9568
PTRN 79 0.9446 0.9662 0.8630 0.9617 0.9416 0.442 0.321 1313 0.9383
CAL 54 0.8982 0.9416 0.6120 0.9563 0.8893 0.8894 0.8894 0.9200 0.462 0.367 459 0.8364 0.0978 0.8932
VAL 90 0.9037 0.9501 0.8266 0.9324 0.8998 0.5670 0.4319 823 0.8589 0.0555 0.0093

3 ATRN 88 0.9866 0.9932 0.8665 0.9901 0.9860 0.191 0.132 6325 0.9832
PTRN 87 0.9574 0.9777 0.8604 0.9695 0.9556 0.411 0.297 1912 0.9532
CAL 42 0.9361 0.9231 0.6887 0.9850 0.9268 0.8914 0.7953 0.9450 0.425 0.324 586 0.7224 0.1087 0.9236
VAL 85 0.8955 0.9368 0.7375 0.9386 0.8897 0.5178 0.4113 712 0.8149 0.1030 0.0148

4 ATRN 84 0.9707 0.9851 0.8956 0.9815 0.9691 0.229 0.166 2713 0.9648
PTRN 70 0.9509 0.9736 0.9504 0.9630 0.9481 0.431 0.303 1318 0.9487
CAL 61 0.9495 0.9641 0.6687 0.9769 0.9412 0.9177 0.9159 0.8759 0.567 0.390 1109 0.8105 0.0684 0.9445
VAL 87 0.8952 0.9334 0.6880 0.9443 0.8872 0.5348 0.4116 747 0.8102 0.1041 0.0138

5 ATRN 75 0.9739 0.9868 0.9110 0.9808 0.9725 0.239 0.163 2726 0.9689
PTRN 80 0.9460 0.9714 0.9139 0.9654 0.9421 0.327 0.223 1365 0.9386
CAL 61 0.9419 0.9686 0.8129 0.9688 0.9327 0.9415 0.9409 0.8781 0.504 0.361 956 0.8846 0.0587 0.9337
VAL 86 0.8910 0.9434 0.7194 0.9266 0.8852 0.5330 0.4071 687 0.8412 0.0156 0.0134

6 ATRN 84 0.9810 0.9904 0.8584 0.9857 0.9801 0.228 0.155 4227 0.9783
PTRN 71 0.9569 0.9723 0.7565 0.9677 0.9543 0.391 0.282 1532 0.9483
CAL 56 0.9097 0.9422 0.8120 0.9543 0.9006 0.8668 0.8639 0.8902 0.546 0.432 544 0.7757 0.1033 0.8990
VAL 91 0.9126 0.9471 0.6621 0.9469 0.9073 0.5758 0.4389 929 0.8488 0.0856 0.0105

7 ATRN 86 0.9786 0.9892 0.7470 0.9844 0.9776 0.238 0.156 3842 0.9730
PTRN 80 0.9546 0.9761 0.8704 0.9667 0.9526 0.370  0.256 1641 0.9529
CAL 43 0.9124 0.9289 0.5774 0.9727 0.9009 0.9098 0.8295 0.9362 0.421 0.317 427 0.7824 0.1000 0.8968
VAL 93 0.9085 0.9432 0.5673 0.9365 0.9046 0.5763 0.4287 902 0.8661 0.0266 0.0124

8 ATRN 83 0.9817 0.9907 0.9672 0.9853 0.9808 0.231 0.156 4336 0.9762
PTRN 73 0.9509 0.9713 0.5904 0.9637 0.9485 0.450 0.319 1375 0.9433
CAL 59 0.9080 0.9509 0.8728 0.9655 0.8972 0.8983 0.8968 0.9198 0.498 0.408 562 0.8609 0.0876 0.9012
VAL 87 0.9031 0.9478 0.5651 0.9485 0.8953 0.4817 0.3752 812 0.8387 0.0940 0.0124

9 ATRN 91 0.9828 0.9913 0.7435 0.9873 0.9821 0.236  0.163 5099 0.9711
PTRN 71 0.9830 0.9797 0.4955 0.9889 0.9812 0.313 0.264 3999 0.9778
CAL 52 0.8898 0.9395 0.9119 0.9602 0.8794 0.8696 0.8693 0.9237 0.467 0.392 404 0.8274 0.1050 0.8813
VAL 88 0.9173 0.9501 0.6652 0.9431 0.9142 0.5463 0.4355 954 0.8787 0.0202 0.0097

marked in green and pink, respectively. The different types of
descriptors selected are marked with a tick mark. Also, the type
of the target function and the corresponding coefficients can be
seen. In addition, a plot of the predicted values according to the
experimental values of log ko, can be seen on the left side of the
graph.

The goodness-of-fit criteria for all the models obtained by
TF, are shown in Table 4. The goodness-of-fit criteria for all
splits obtained by TF,, TF;, TF,, and TF; are indicated in
Table S2.t

The comparison of the fit criteria of the models shows that
for all models, the R* of the validation set based on TF, (eqn (7))
is higher than that of the other target functions. Fig. 2 compares
the R” for the validation set across all models obtained based on
the four target functions. The R of the validation set for split 1
(0.9136) calculated based on TF, is the highest, and thus this
split was selected as the best model.

In the validation of models, apart from evaluating R?, it is
essential to check the value of MAE. Based on the comparison of
this parameter in all the models, it can be concluded that split 1
exhibits the lowest value of MAE (Fig. 3). Therefore, in this

8046 | RSC Adv, 2024, 14, 8041-8052

study, TF, was chosen as the best target function and split #1 as
the best split.

The observed versus predicted graph is a valuable tool in
modeling to evaluate the performance of a forecasting model.
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Fig. 2 Comparison of determination coefficients of models con-
structed based on TFq, TFy, TF,, and TFz of all nine splits.
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Fig. 3 Comparison of mean absolute error of models constructed
based on TFq, TFy, TF,, and TF3 of all nine splits.

Model evaluation, accuracy evaluation, pattern recognition,
outlier detection, heterogeneity analysis, and model refinement
are several methods in which this chart is helpful. Fig. 4 pres-
ents a direct comparison between the experimental values of
log ko, and the corresponding predictions generated by the
model. This visual inspection helps to understand how well the
model captures the underlying patterns in the data. By evalu-
ating the proximity of points to the diagonal line (y = x), one can
gauge the accuracy of the model. The points near the diagonal
line indicate accurate predictions, while deviations from the
line suggest discrepancies between the predicted and observed
values. Also, the plot helps identify systematic patterns or
trends in the predictions by the model. Detecting any consistent
overestimation or underestimation can provide insights into
potential biases in the model. Outliers, or data points that
deviate significantly from the general trend, are shown on the
graph. Recognizing and understanding these outliers are
crucial for improving the robustness of the model. Hetero-
scedasticity, which is the presence of non-constant variability in
the errors across predicted values, can be observed in the plot.
Uneven spreads of points around the diagonal line may indicate
varying levels of uncertainty in the model predictions. The
insights gained from the graph can guide model refinement.
Adjustments, such as feature engineering or modifying the
model structure, can be informed by the observed patterns to
enhance the predictive accuracy. In essence, the observed vs.
predicted plot serves as a diagnostic tool, offering a visual
representation of how well the model aligns with actual data. It
helps modelers understand the strengths and weaknesses of the
model, facilitating informed decisions for model improvement.

As shown in Fig. 4, there are no outliers, and the points near
the diagonal line indicate accurate prediction. Furthermore,
there is no bias and non-linearity in the reported models.

The following equations represent the QSAR models for
predicting the log ko, of VOCs from 9 splits by TF,:

Split 1

Log ko, = —22.1732(+0.0087)
+0.3161(:0.0005) x DCW(1, 15) (17)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Split 2

Log ko, = —22.0600(£0.0151)

+ 0.2551(£0.0007) x DCW(l, 15) (18)
Split 3
Log ko, = —21.9851(£0.0063)
+ 0.1813(£0.0002) x DCW(l, 15) (19)
Split 4
Logko, = —21.9109(£0.0124)
+ 0.2606(£0.0006) x DCW(1, 15) (20)
Split 5
Log ko, = —21.7750(£0.0115)
+ 0.2765(£0.0006) x DCW(1, 15) (21)
Split 6
Log ko, = —23.1789(%0.0103)
+ 0.2412(£0.0003) x DCW(1, 15) (22)
Split 7
Log ko, = —21.7489(£0.0076)
+ 0.2546(£+0.0004) x DCW(1, 15) (23)
Split 8
Log ko, = —22.3377(£0.0088)
+ 0.2845(£0.0004) x DCW(1, 15) (24)
Split 9
Log ko, = —22.5932(£0.0082)
+ 0.2430(£0.0004) x DCW(1, 15) (25)

Ojha et al. (2010) proposed Ry,> as a reliable criterion for
determining the optimal model.* The best split is split #1, with
the maximum average Ry,” for the CAL and VAL sets. According
to the AD results for the models in Table S3, 86%, 88%, 85%,
90%, 91%, 91%, 91, 90%, and 86% of the dataset are in the AD
models for splits 1-9, respectively. This shows that nine reliable
and robust QSAR models can predict more than 85% of the new
data.

3.2. Model interpretation

Mechanistic interpretation is one of the basic steps in QSAR
modeling. In the CORAL software, the procedure is carried out
relying on the structural features extracted from SMILES or
HFG, which are responsible for the enhancement or reduction
of the targeted activity. If the correlation weight of these
structural features is negative in at least three Monte Carlo
optimization runs, then these structural attributes are
considered activity reduction drivers. Otherwise, if the corre-
lation weights of these structural attributes are positive in at

RSC Adv, 2024, 14, 8041-8052 | 8047
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Fig. 4 Plot of the experimental versus predicted log ko, of splits 1 to 9 for VOCs based on TF,.

least three runs, these structural attributes are considered
triggers for increasing the activity. However, if the correlation
weights of the structural features are positive in some opti-
mization runs and negative in others, the structural features

are not considered.

8048 | RSC Adv, 2024, 14, 8041-8052

The promoters responsible for an increase/decrease in log
ko, were calculated from the best model (split 1) and are shown
in Table 5. The presence of a double bond (BOND10000000 and
$10 000 000 000), absence of a halogen atom (HALO00000000),

the number of paths of length two, which started from a carbon

© 2024 The Author(s). Published by the Royal Society of Chemistry
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atom, is equal to 2, 3, or 5 (PT2-C---2..., PT2-C---3..., and PT2-
C---5...), the number of paths of length three, which started
from a carbon atom, is equal to 6 (PT3-C:--6...), valence shell of
second order for hydrogen atom equal to 5 (VS2-H:--5...),
valence shell of second order for carbon atom equal to 6 (VS2-
C--+6...), Morgan extended connectivity of second-order for
hydrogen atom equal to 9 (EC2-H---9...), two successive
aliphatic carbon with a double bond (C:--C---==...), carbon-
bonded double bond with branching (=---C--+(:+), the nearest
neighbor codes for carbon equal to 312 (NNC-C---312), and
temperature between 353 and 358 K ([T24]...) were some
significant promoters of a logko, increase. The nearest
neighbor code for hydrogen is equal to 110 (NNC-H---110),
Morgan extended connectivity of second-order for hydrogen
atoms equal to 5 and 7 (EC2-H---5... and EC2-H---7...), Morgan
extended connectivity of second-order for carbon atoms equal
to 19, 22, and 26 (EC2-C---19..., EC2-C---22..., and EC2-C---
26...), the number of paths of length three, which started from
a hydrogen atom, is equal to three (PT3-H---3...), the number of
paths of length three, which started from a carbon atom, is
equal to three (PT3-C---3...), the number of paths of length two,
which started from a carbon atom, is equal to four and six (PT2-
C--+4..., and PT2-C---6...), valence shell of second order for
a carbon atom equal to 13 (VS2-C---13...), two aliphatic carbons
joined by a double bond (C---=:--C...), two successive aliphatic
carbons with branching (C---C--+(--+)), carbon-bonded double
bond with branching (C...=:-+(--+)), and presence of oxygen
(NOSP01000000) were some significant promoters of a log ko,
decrease.

Table S4t presents the correlation weights assigned to each
attribute incorporated in the model for split #1 based on TF,.
Another noteworthy observation is that despite the evident
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impact of temperature on VOC degradation, as indicated in
Table S4,1 the correlation weights for temperature (CW(SAK))
are predominantly positive, with the exception of some lower
temperatures, where they exhibit a negative trend. Furthermore,
a positive coefficient of temperature is also found in increasing
descriptors ([T24], temperature between 353 and 358 K), also
explaining the positive effect of high temperature on the
degradation of VOCs. This conclusion is consistent with the
results of the latest QSAR model for this data set.”®

3.3. Reliability of QSAR models compared to the best
available predictive methods

The literature review shows that only one QSAR model has been
reported to predict the rate constants of 302 VOCs with ozone
reaction.®® Table 6 compares the goodness-of-fit criteria of the
current QSAR model with previous QSAR models. Based on
statistical criteria, all the proposed models show a good
performance. The datasets for models no. 1, 2, 3, 4, 5, and 7
(Table 6) are relatively small, and the influence of temperature
was not considered. Moreover, the previous model was per-
formed with only one partition, but in the current QSAR models,
nine partitions were produced to design 36 QSAR models using
four objective functions (TF,, TF,, TF,, and TF;). In this study,
two crucial criteria, namely the ideal correlation index (IIC) and
the correlation intensity index (CII), were explored. These
criteria have not been examined in previous studies. The
numerical value of the coefficient of determination for the
validation set (R,q;°) of the QSAR model obtained by TF, for split
11is 0.914, which is better than the proposed model based on the
same data.*® Thus, the current QSAR model is more accurate
and robust.

Table 6 Comparison of the goodness-of-fit of the developed QSAR model with other reported models

No. Set n T (K) Descriptor generator package  Regression method R RMSD  Ref.

1 Total set 117 298 MOPAC and CODESSA MLR 0.83 0.99 51

2 Training 83 298 DRAGON MLR 0.88 0.73 52
Test 42 — —

3 Training 103 298 CODESSA ANN 0.99 0.36 53
Test 17 0.98 0.46
Validation 17 0.98 0.48

4 Training 93 298 CODESSA Projection pursuit regression ~ 0.92 0.66 54
Test 23 0.91 1.04

5 Training 68 298 Gaussian Support vector machine 0.86 0.68 55
Validation 36 0.77 0.77
Test 35 — 0.71

6 Training 306 178-409 MOPAC and DRAGON PLS 0.840 0.551 28
Test 73 0.813 0.612

7 Training 109 295 DRAGON and Gaussian MLR 0.734  1.05 56
Validation 27 0.797  0.858
Training 109 SVM 0.862  0.801
Validation 27 0.782  0.970

8 Training 242  178-409  Gaussian, Material Studio MLR 0.83 0.48 29
Test 60 0.72 —

9 ATRN 79 178-409  CORAL package LR 0.983 0.215 Present work (split 1)
PTRN 68 0.958 0.382
CAL 65 0.928 0.455
VAL 90 0914  0.573
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4. Conclusion

In this study, 36 QSAR models were developed to predict 302 log
ko, values from 149 VOCs across a broad temperature range
(178-409 K). These models were derived from nine random
splits of the dataset. The QSAR modeling was done using the
CORAL software based on the Monte Carlo approach. The
different temperature feature was incorporated in models by
considering the quasi-SMILES of compounds instead of
SMILES. To investigate the importance of different target
functions for the optimization weights of descriptors, four
different target functions were used based on IIC and CII or
without using these objective functions. The QSAR models
using CII (TF,) produce more predictive and reliable models. All
the proposed models provided satisfactory fit criteria for pre-
dicting the logko, of VOCs. However, TF, for split #1 was
identified as the best model. Various goodness-of-fit criteria
such as R, IIC, CII, CCC, Q% Qg% Qp% Qps%, S, MAE, F, RMSE,
R2, ARZ, Cr > and Y-test were used to assess the reliability and
predictive ability of all the proposed models. The applicability
domain of the models is defined based on “statistical defect”
d(A). Structural features based on both graphs and SMILES were
generated from split #1 (considered the best model) and
employed to identify the factors promoting either an increase or
decrease in logko,. The presence of a double bond
(BOND10000000 and $10000 000 000), absence of halogen
(HALO00000000), and the nearest neighbor codes for carbon
equal to 321 (NNC-C---321) are some of the significant
promoters of endpoint increase. Alternatively, two successive
aliphatic carbons with branching (C---C--+(:++)), valence shell of
second order for carbon atom equal to 13 (VS2-C---13...), and
two aliphatic carbons joined by a double bond (C---=---C...) are
some significant promoters of endpoint decrease.
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