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The photocatalytic activity of fluorine (F) doped CuO nanoparticles (NPs) prepared employing modified sol—
gel process was investigated here in this study. Structural and elemental characterization using XRD and XPS
data confirmed successful incorporation of F as dopant. F doping led to lattice distortion and reduced
crystallinity with smaller crystallite size while promoting the emergence of Cu,O as the second phase.
Morphological analysis showed irregularly shaped, fused particles with a decreasing particle size trend
upon doping. Addition of hydrogen peroxide generated hydroxyl radicals (OH) under ultra-violet (UV)
light, which effectively degrades pollutants by facilitating the photocatalytic kinetics. Photocatalytic
activity of all the nanoparticles was examined against Rhodamine B (Rh B) dye and most efficient
degradation (97.78%) was observed for 3 mol% F dopant concentration. The emergence of Cu,O phase
for doping beyond 1 mol% F doped CuO might be the prime reason to enhance its degradation

performance. Conversely, 5 mol% doping caused notable phase changes and decreased degradation rate
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CuO nanoparticles to disintegrate organic contaminants by producing reactive oxygen species when

DOI: 10.1039/d3ra08790e exposed to UV light suggests their potential effectiveness in applications such as dye degradation, water
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Introduction

One prevalent form of pollution found in wastewater is dyes,
which are produced by several industries, most notably those
involved in the manufacture of paper, leather, and textiles.
Wastewater containing dyes is hazardous to the ecosystem and
human health due to its toxicity. Therefore, implementation of
effective wastewater management practice is crucial for public
health protection and environmental preservation. Advanced
Oxidation Processes (AOPs) are specialized chemical treatments
used in wastewater treatment to break down stubborn
contaminants.” In order to speed up the breakdown of
pollutants in wastewater, particularly in photocatalytic
processes, nanoparticles can be incorporated into AOPs for
more effective and efficient wastewater treatment?

Metal oxide nanostructures have shown excellent aptitude to
the environmental sectors. For instance, when exposed to
ultraviolet (UV) light, nanoparticles act as photo catalysts, effi-
ciently breaking down organic pollutants and sanitizing
water.*® Modern air filtration systems are incorporated with
nanostructured metal oxides as they adsorb or chemically react
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purification, and environmental sustainability.

with harmful gases and particulate matter resulting in
enhanced air quality.® These nanoparticles are also useful for
soil and groundwater purification due to their adsorbing or
catalytic properties to degrade pollutants like organic chemicals
and textile dyes. Among such nanoparticles,” narrow band gap
p-type CuO semiconductor materials are considered as poten-
tial photocatalysts. The selection of CuO among all metal oxide
semiconductors is contingent upon particular demands of the
intended application, however, CuO NPs are often suitable for
preferentially absorbing visible light due to narrower bandgap
along with its non-toxic nature.*

Size, shape, and morphology of the nanostructures control
various properties tailoring their final performance, and inter-
estingly, these parameters are highly dependent on the
synthesis route." Various synthesis routes like sol-gel, chemical
precipitation, hydrothermal methods, etc. are adopted to
produce nano structures, especially metal oxide nanoparticles
(NPs).”>** Among these, the wet chemical sol-gel route is
considered to be a useful approach as it offers several advan-
tages, including control over particle size, homogeneity, high
purity, versatility, low-temperature synthesis, and scalability
providing better control over its properties."”**° Here, photo-
catalytic activity of the CuO NPs synthesized via sol-gel route
has been explored from photocatalytic degradation of Rhoda-
mine B (Rh B).?° Photocatalytic degradation uses semiconductor
nanoparticles to generate reactive oxygen species (ROS), which
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oxidize pollutants and break them down into harmless
byproducts. This approach offers eco-friendly applications in
pollution control and water purification.*

Apart from selecting a proper synthesis route, to enhance any
specific properties of NPs, doping has proven to be a very
effective way.*»*® For any metal oxide nanoparticles, non-metals
are very potent doping agents which modify the band gap and
electronic properties, and also for tailoring optical and
magnetic responses and to incorporate fluoride ions in CuO
NPs, NH,F was utilized as it controls doping concentration,
enhances reactivity, and stabilizes particle formation, influ-
encing band gap, and catalytic activity.>* Fluorine (F) can either
operate as a donor or an acceptor. Due to CuO's variable
oxidation states which allow for both electron and hole
production, depending on synthesis route, second phase Cu,O
may appear on doping due to the oxidation tendency of the
dopant like F.**

In a recent study, authors have reported significantly altered
magnetic properties as CuO NPs were doped with F generating
defect states and forming second phase Cu,0.** However, the
effect of F doping in CuO on photocatalytic degradation is yet to
be explored, and no such work has been reported to the best of
the authors' knowledge so far. Considering these factors, the
present study focuses on the photocatalytic activity of the doped
nanoparticles, which allows to disintegrate organic contami-
nants generating reactive oxygen species when exposed to light.
The findings support the candidacy of F doped CuO NPs as an
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effective reagent in the field of dye degradation, water purifi-
cation and environmental sustainability.

Experimental
Materials

To synthesize nanoparticles following modified sol-gel method
the high purity (>99%) reagents used were copper nitrate tri-
hydrate, Cu(NOj3),-3H,0 (Sigma-Aldrich), ammonium fluoride,
NH,F (Sigma-Aldrich), citric acid CgHgO, (Sigma-Aldrich),
deionized (DI) water and ethylene glycol, C,HsO,. They were
included as the precursor solution, dopant, chelating agent,
solvent, and chain transfer agent, respectively. All the reagents
were used in their as-received state without undergoing further
purification.

Synthesis of nanoparticles

Scheme 1 demonstrates the schematic diagram for CuO NPs
synthesis by modified sol-gel route. Here, 0.3 M precursor
solution was prepared in 70 mL of DI water while being agitated
continuously at 400 rpm, controlling solution temperature at
80 °C. After that, citric acid was added at a molar ratio of 2: 1 to
the copper precursor. To get 1, 3 and 5 mol% F doped NPs,
0.0077 g, 0.023 g, and 0.038 g of NH,F were added to the
precursor, respectively, following a period of 30 minutes of
continuous stirring. Ethylene glycol was added as a chain

String for
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F-doped CuO
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transfer agent at a molar ratio of 6:1 to copper precursor and
a dense gel was formed after 3 hours of stirring. Later, the
solution was kept into the oven for 20 hours in a crucible for
drying at 120 °C followed by grinding for production of finely
powdered substance. The annealing process at 700 °C was fol-
lowed for 1 hour to get the fluorine doped CuO NPs.

Characterization

X-ray powder diffraction (XRD) patterns of the annealed nano-
particles were acquired to conduct structural and phase analysis
using Rigaku Smart lab® SE diffractometer. Cu K,; with
a wavelength of 0.1540598 nm was used following a scanning
rate of 5° min~" in 26 = 20-80° ranges for all the diffraction
spectra. For measuring crystallinity, crystallite size, strain,
dislocation density, and lattice parameters Origin-Pro software
was used. For morphological and structural analysis high
resolution transmission electron microscopy (HRTEM) was
carried out using Talos F200X TEM, Thermo Fisher Scientific,
USA, X-ray photoelectron spectroscopy (XPS) was used to study
chemical composition of the nanoparticles. Energy-dispersive
X-ray spectroscopy (EDS) mapping and surface morphology
were further studied using FE-SEM: JEOL, JSM, 7600F. Particle
size information was studied using Image] and Origin-pro. To
record the transmittance and absorbance spectra a ultra-violet
visible (UV-vis) spectrometer from PerkinElmer Lambda 365
was used, and from Tauc plot indirect band gap was estimated.
Presence of any functional group was verified by Fourier-
transform infrared spectroscopy (FT-IR) using Nicolet™ iS20
FTIR spectrometer.

Photocatalytic activity

To assess the photocatalytic efficacy synthesized nanoparticles
were taken into a 25 mL 5 ppm Rh B solution. The solution
mixture was placed into a dark box and kept there for 30
minutes stirring at a speed of 400 rpm. Mixing was done
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thoroughly to get the adsorption-desorption equilibria of the
dye on nanoparticle surface. After 30 min, just before turning
UV light on, H,O0, was added to the mixture to promote the
catalytic property of the nanoparticles. After specified time of
irradiation, 3 mL of supernatant liquids was subjected to
filtration.”® The absorbance intensity of the Rh B was recorded
at 30 minutes time intervals for 3 hours and degradation effi-
ciency was determined following eqn (1).*

A=A 100 =
0 0

G -C

Degradation (%) = x 100 (1)
where, A, and C, are initial absorbance and concentration of Rh
B dye and A and C are absorbance and concentration of Rh B dye
after certain time. Subsequently, scavenger tests were performed
to comprehend the active species involved in the degradation
reaction of Rh B in the presence of 3 mol% CuO NPs.”®

Results and discussion
Phase study and structural analysis

Synthesized nanoparticles were examined by XRD diffraction
technique (Fig. 1). XRD peaks for the planes (110), (111), (111),
(202), (020), (202), (113), (311), (220), (311) and (222) were
observed at 26 values 32.636, 35.65, 38.85, 48.89, 53.43, 58.29,
61.65, 66.39, 68.16, 72.38, and 75.12, respectively, are in
complete accord with JCPDS card no. 05-0661.>** All the
nanoparticles showed diffraction patterns corresponding to the
tenorite phase of copper oxide with a monoclinic structure. No
diffraction peak was detected for fluorine-based phases or
compounds like CuF and CuF,. This indicates either complete
incorporation of fluorine in the crystal lattice or insignificant
content of any fluorine-based compound below detection
limit.** Formation of cuprite (Cu,0) phase and metallic copper
was evident from XRD patterns for higher mole percentage of
dopant. XRD peaks for (020), (111) and (011) planes at 26 values
42.23, 36.25 and 29.45 respectively, confirmed the presence of
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(a) XRD spectra of pure and doped CuO NPs and (b) peak shift after doping.
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Table 1 Structural analysis of XRD spectra

Lattice parameter (nm)

Crystallinity Crystallite Micro strain
Sample (%) size (nm) Dislocation-density (x107%) a b c Phase
Pure CuO 82.6 29.3 2.7 1.69 0.468 0.342 0.513 Monoclinic
1 mol% F doped 80.6 28.9 2.9 1.71 0.469 0.342 0.513 Monoclinic
CuO
3 mol% F doped 79.2 26.2 3.2 1.90 0.469 0.342 0.513 Monoclinic
CuO 0.427 0.427 0.427 Cuprite
5 mol% F doped 78.6 25.3 3.2 1.95 0.469 0.342 0.513 Monoclinic
CuO 0.427 0.427 0.427 Cuprite

Cu,O phase with a cubic structure. Peaks for (111) and (200) ion resulting in its reduction into Cu' ion in the second phase
planes at 26 values 43.37 and 50.47 confirmed the presence of Cu,0.>* In addition to the formation of Cu,O for 3 and 5 mol%
metallic copper, which was only detectable for 5 mol% doping. doping, continued reduction proceeded to the formation of
It can be explained in a way that on substitution of O~ ion by F~  metallic copper for 5 mol% dopant concentration. Crystallite
ion, a free electron is generated and readily transferred to Cu®"  size (D) was measured from Scherrer's formula,*
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Fig. 2 (a) Morphology, (b) particle size distribution from HRTEM, (c) interplanar spacing calculation of (111) plane using IFFT data, and (d) SAED
pattern of pure CuO.
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0.92

D (nm) = B cos @)

The relationship between D and the wavelength of Cu K,; is
given by the formula where § represents full width at half
maximum (FWHM) of the diffraction peak and 6 is the Bragg
angle. A gradual decrease in both crystallinity and crystallite
size was observed with increasing amount of dopant concen-
tration (Table 1). Lattice disorder was induced due to the size
difference between dopant fluorine atom and oxygen in CuO
lattice, which engendered lower crystallinity. Again, reduced
crystallite size can be attributed to the formation of Cu-F-Cu
instead of Cu-O-Cu sequence resulting in hindrance of the
crystal growth.>»** Dislocation density and micro-strain was
estimated from the eqn (3) and (4) using XRD data where ¢ and ¢
represent dislocation density and micro-strain, respectively.
Micro-strain and dislocation density were increased with
increasing dopant concentration due to ionic size mismatch

(@)

Fig. 3
pattern of 3 mol% F doped CuO.
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between fluorine (dopant) and oxygen (host) atom. The shift in
XRD peaks of fluorine doped CuO NPs, which is shown in
Fig. 1(b), can be attributed to dopant-induced lattice distortions
as well as formation of defects and strains.*® At 3% doping, the
presence of fluorine exerts greater influence resulting in an
increase in interplanar spacing or a shift towards lower angles,
validating the analysis performed by HRTEM.

6= — (3)

(4)

HRTEM analysis was conducted to provide detailed struc-
tural characterization as seen in Fig. 2 and 3. Both the pure and
3 mol% F doped CuO nanoparticles displayed irregular
agglomerations, however the average particle size was reduced
for the doped sample. The particle size was determined to be

(b) 3 mol% F doped CuO
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Table 2 Interplanar spacing data from HRTEM and XRD analysis
Samples (h kD) d (A) JCPDS djz (A) XRD dy (A) HRTEM FWHM degree
Pure (110) 2.7512 2.7506 2.7420 0.152

(111) 2.5293 2.5215 2.5297 0.208

(111) 2.3227 2.3231 2.3410 0.173
3 mol% F doped CuO (110) 2.7530 2.7531 2.7535 0.187

(111) 2.5252 2.5253 2.5278 0.236

(111) 2.3243 2.3247 2.3990 0.290

176 nm for pure nanoparticles and 156 nm for fluorine doped
nanoparticles, validating the analysis performed by FESEM. The
SAED patterns verified the crystalline nature of the nano-
particles once again and also identified the planes associated
with the CuO nanoparticles in both samples, which are shown
in Fig. 2(d) and 3(d). As seen in the XRD spectra, a peak asso-
ciated with Cu(i) oxide was also detected in 3 mol% F doped
CuO NPs. The presence of the Cu(i) oxide was confirmed from
the (020) plane of Cu,O shown in Fig. 3(d). Interplanar distance
for (111) plane of CuO phase was calculated from the high-
resolution images and depicted in the Fig. 2(c) and 3(c),
respectively. The d-spacing for the nanoparticles were measured
for three major crystallographic planes of CuO, namely (110),
(111) and (111) and tabulated in Table 2.

As the doping increased the interplanar distance of the host
lattice, which is validated by both XRD and TEM analysis, the
FWHM is also increased correspondingly found from XRD data,
resulting in reduced crystallite size which in turn increases
dislocation density as (dislocation density, & = 1/D?) crystallite
size decreased. From pure to 3 mol% F doped CuO NPs, the
dislocation density rose from 2.7 to 3.2 nm > The elastic
residual strain was calculated for the doped sample following, ¢
= (d — d,)/d,, where d is the interplanar spacing and d, is the
value from strain free lattice [materials 11]. The relative elastic
residual strain of 3 mol% F doped CuO with respect to pure CuO
for (110), (111) and (111) planes are 0.00065, 0.0015 and 0.0007
which indicates the introduction of strain after fluorine doping.

Morphological evolution

FE-SEM micrographs of all the nanoparticles evidently dis-
played a distinct irregularity and agglomeration in their shape
(Fig. 4). However, it was obvious from the micrograph that
increased dopant concentration reduced the particle sizes
gradually.®* Particle size was measured using Image] and the
size distribution was measured using origin pro software
(Fig. 4). Average particle size of pure, 1, 3 and 5 mol% F doped
nanoparticles was found to be 179, 172, 159 and 152 nm,
respectively. Dopant segregation on the surface can reduce
particle size and increase effective surface area by inhibiting
particle growth.

The elemental composition was examined using Energy
Dispersive X-ray Spectroscopy (EDX), as shown in Fig. 5 and 6.
Fig. 5(b) shows the EDX spectrum of CuO NPs doped with 3%
fluorine, revealing a fluorine content of approximately 1.8
atomic percent (Table 3). The fluorine content in the sample
doped with 3 mol% is apparently lower than anticipated which

1682 | RSC Adv, 2024, 14, 1677-11693

could be due to the spot measured not being representative of
the whole sample. Hence, probabilistic methods might be
needed to support the results. Fig. 6 displays the elemental
mapping of the 3 mol% fluorine doped CuO NPs exhibiting the
uniform distribution of fluorine in the CuO host lattice.

Optical analysis

Optical properties were studied using UV-vis spectrometer. The
Diffuse reflectance spectra for the fluorine doped CuO NPs are
presented in Fig. 7 showing strong absorption edge in the
visible region at around 800 nm. The doped nanoparticles
exhibited slight red shift referring to the lower band gap
compared to pure CuO, corroborating the indirect band gap (E,)
calculation. Tauc plot was utilized to calculate the indirect band
gap from the absorbance data.

(ahv)” = A(hv — E,) (5)

where « is absorbance co-efficient, & is plank's constant, v is
photon's frequency, A is proportionality constant and E, is band
gap. Here, v = 1/2 is used to calculate the indirect band gap.

Fig. 8 illustrates the decreasing trend of indirect band gap
energy with increasing dopant concentration. For pure, 1, 3 and
5 mol% F doped CuO, band-gap energy was 1.233, 1.228, 1.219,
and 1.211 eV, respectively. Upon doping, F~ ions replace O*~
ions, which may generate a side-way defect state within
forbidden zone of the band structure, making the band gap
effectively narrower. Also, a higher percentage of fluorine
doping facilitated cuprous oxide formation in the doped
nanoparticles, which is corroborated by the XRD data, may also
contribute to the decreasing band gap in the doped
nanoparticles.*

XPS analysis

From XPS spectroscopy, general survey scans of CuO and
3 mol% F CuO NPs presented in Fig. 9(a) show peaks for Cu 2p3,
2, CU 2Py, C 1s and O 1s appeared at nearly identical binding
energies and peak at 684.90 eV found in the F doped CuO NPs,
indicating successful incorporation of dopant element in the
lattice.*® C 1s peak at 284.1 eV in the survey scan can be found
which was used as a reference to calibrate XPS spectra.*®

Core level scanning for Cu 2p and O 1s were recorded indi-
vidually in high resolution setting. In Fig. 9(b) core level XPS
spectra of the doped nanoparticles appeared with a doublet at
932.62 eV and 952.48 eV, associated to Cu 2pz, and Cu 2py,
energy level with a separation of 19.86 eV confirming the Cu®*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a—d) Morphological analysis and (e—h) particle size distribution.

oxidation state.***”* Likewise, two strong satellite peaks at around deconvolution of core level spectra of F doped CuO resulted in two
941 eV and 961.53 eV associated to the Cu 2p;/, and Cu 2p;, arein  pair of fitted curves indicating existence of both Cu® and Cu*
well agreement with the previous studies.*®* Performing supporting the co-existence of Cu,0O and CuO found in XRD

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2024, 14, 11677-11693 | 11683


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08790e

Open Access Article. Published on 11 April 2024. Downloaded on 1/15/2026 9:53:35 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Paper

(b)

onanis

-
5 u)

kv

10 100 30 400 600 T 900 .00

OK ————— 1.0 ym

FK

£ y 48
Fig. 5 (a) Microstructure and (b) EDS spectra of 3 mol% F doped CuO NPs.
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Fig. 6 Elemental mapping of 3 mol% F doped CuO NPs.

Table 3 Atom percentage data from EDS Spectra

Element Atom (%) Sigma
O K 32.92 1.75
FK 1.80 0.69
CulL 65.29 3.18
Total 100.00

analysis.>*" Fig. 9(c) and (d) show the O 1s spectra of pure CuO
and F doped CuO respectively, each resolved into two components
by Gaussian fittings and Fig. 9(e) illustrates the F 1s peak from
high resolution image of 3 mol% F doped CuO. Peaks at binding
energy 529.18 eV and 530.88 eV correspond to lattice oxygen (Oy)
and oxygen vacancies (Oy) in pure CuO and the percentage area
under the fitted curve was 43% (Or) and 57% (Oy), respectively.
The percentage area under two fitted curves of O 1s XPS spectra
from F doped sample showed 52% (Oy) and 48% (Oy) at binding
energy 529.38 eV and 531.23 €V, respectively suggesting a decrease
in the oxygen vacancies in the doped nanoparticle. Upon doping,
fluorine might have occupied the oxygen vacancies as the atomic
size is compatible with the vacancy sites, previous studies also

1684 | RSC Adv, 2024, 14, 11677-11693

showed a similar phenomenon upon fluorine doping which
corroborates this mechanism.*

Vibrational analysis

FTIR analysis of the nanoparticles reveals molecular composi-
tion, surface modifications, and interactions with other
substances. It identifies functional groups, assesses surface
changes, quantifies ligand coverage, and aids in quality control.
FTIR analysis was conducted utilizing the transmission mode
throughout the wavelength range of 4000 cm™" to 400 cm ™.
Fig. 10 depicted FTIR spectra of pure along with 1, 3 and 5 mol%
F doped nanoparticles.

Peak located at wavenumber 477 cm ™ is accountable for the
vibrational stretching of Cu-O bond and peak at 625 cm ™'
provides evidence for Cu(i)-O vibrations**** which is also sup-
ported by the XRD as fluorine doped nanoparticles included
some cuprous oxide. The peak found at 2365 cm ™' might be an
indication of CO, incorporation from air as the analysis was
performed in atmospheric environment, Again, the peak
observed at 3721 cm ™' is associated to the vibrational mode of
the O-H bond.**

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Photocatalytic activity

Photocatalytic activity of the nanoparticles was assessed by the
photodegradation performance of Rh B dye after a total irradi-
ation time of 180 minutes under UV lamp.* Fig. 11 shows the
degradation of pure and doped CuO NPs where 3 mol% F doped
CuO exhibited the best performance among all nanoparticles.
Incorporation of H,O, significantly promotes the photo-
catalytic performance of CuO according to previous
studies.’****” Verma et al. demonstrated the promoting effect of
H,0, along with NaOH for the dye degradation.*” When H,0, is
introduced into the photocatalytic system surrounded by pho-
tocatalysts like TiO,, ZnO or CuO under UV irradiation, it can
function as a source of hydroxyl radicals (OH') undergoing
photochemical reaction.***® The Ey for the formation of H,0,/
OH’ generated by the hole is around 2.2 eV with respect to the
Normal Hydrogen Electrode Potential (NHE), which is lower
than the reported Ey value of CuO.* This suggests that the holes
formed as a result of UV light absorption by CuO NPs have the
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Fig. 8 Tauc plot showing indirect band gap of pure and doped CuO NPs.

© 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Adv, 2024, 14, 1677-11693 | 11685


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08790e

Open Access Article. Published on 11 April 2024. Downloaded on 1/15/2026 9:53:35 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

(a) —— 3 mol% F doped CuO
—CuO

Dca
Cu2p
F 1s (684.98 eV)

Cu LMM

{:u 2s
S Cu2
-

| 'g
=0 1s
C1s
Cu3s
= Cu 3p
02s

[

Intensity (a.u.)
Intensity (a.u.)

-
~
Py
o

Cu LMM

T T T T T T
1150 950 750 550 350 150
Binding Energy (eV)

View Article Online

Paper

®) 19.86 eV Cuzp

T T T T T T T
925 930 935 940 945 950 955 960 965
Binding Energy (eV)

(c) Pure CuO — O 1s (d) 3 mol% F doped CuO —O1s
—— Cumulative Fit Peak ——— Cumulative Fit Peak
- 529.18 eV—— —~ 529.38 eV
3 S
85, L,
2 2
‘B ‘»
(= [ =
Be) 2
£ = 531.23 eV—
T T T T T T T T T T T
538 536 534 532 530 528 526 536 534 532 530 528 526
Binding Energy (eV) Binding Energy (eV)
(e) ——F s
Background
684.90 eV

El

&

z

17

=

j)

E

T T T T T T T T

T
680 681 682 683 684
Binding

Fig.9 XPS spectra for (a) pure and 3 mol% F doped CuQO, core level XPS
O 1s of 3 mol% F doped CuO (e) F 1s of 3 mol% F doped CuO.

ability to oxidize H,O, into OH" radicals. This OH" radicals help
to break the dye. It is noteworthy to mention that while H,0, in
isolation does not contribute considerably to the degradation of
Rh B, its combination with photocatalysts or OH" formers

1686 | RSC Adv, 2024, 14, 11677-1693

685 686 687 688 689 690
Energy (eV)

spectra of (b) Cu 2p of 3 mol% F doped CuO, (c) O 1s of pure CuO and (d)

significantly enhance their activity. These highly reactive OH"
radicals are potential oxidizing agents that can efficiently break
down organic pollutants or other target compounds, thereby
enhancing the photocatalytic efficiency.** Therefore, H,0, was
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added in this study to facilitate the photocatalytic degradation
mechanism.

Effect of fluorine doping

Degradation efficiency was found to be 69.46, 87.78, 97.78 and
88.05% for pure and 1, 3, 5 mol% F doped CuO, respectively
(Fig. 12). Degradation gradually increased with F doping up to
3 mol% and later decreased after 5 mol% F doping making
3 mol% F doped CuO nanoparticles the best photocatalyst
compared to other synthesized counterparts. During annealing
at higher temperature, oxygen atoms escape out from lattice
sites producing oxygen vacancies in the p type CuO NPs.*
Addition of fluorine reduced the extent of these oxygen vacan-
cies which is authenticated earlier by XPS analysis where
a significant decrease in oxygen vacancies after doping was
evident. This phenomenon inhibits electron-hole recombina-
tion for effectual degradation of Rh B dye. Again, CuO/Cu,O
forms a staggered type II band structure which helps to improve
the photo degradation.® It might be the reason for higher

1.2 —Blank (b) 1 mol% F doped CuO
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Fig. 11 Absorbance curve of RhB with time of pure and doped CuO NPs including adsorption performance.
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Table 4 1st and 2nd rate constant and regression coefficient
calculation

Sample kq R? ks, R?

Pure CuO 0.00659 0.99568 0.01299 0.96039
1 mol% F doped CuO 0.01179 0.99453 0.04101 0.88310
3 mol% F doped CuO 0.02105 0.99523 0.24677 0.79278
5 mol% F doped CuO 0.01186 0.99139 0.04512 0.90925

photo-degradation for 3 mol% F doped CuO than 1 mol% F
doped nanoparticle since former contains cuprous oxide phase,
but latter does not. However, decreased photocatalytic degra-
dation efficiency was observed for 5 mol% F doping. The
concentration of dopants (either donor or acceptor impurities)
in a semiconductor pronouncedly affects carrier concentration
and mobility, hence, high doping levels can lead to increased

View Article Online
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scattering, resulting in lower charge carrier mobility and
a reduction in the overall charge transport rate causing the
decreased photo degradation efficiency of 5 mol% F doped
CuO.> Another reason might be the presence of metallic copper
formation which may facilitate electron-hole recombination
process impeding the photocatalytic performance of 5 mol% F
doped CuO NPs.

Degradation kinetics

Photocatalytic processes have been investigated in recent
research employing pseudo-first-order kinetics in relation to the
substrate concentration.>>*® Nevertheless, in order to determine
the reaction order, the degradation kinetics of RhB dye in
presence of CuO and F doped CuO photocatalyst (Rh B 5 ppm,
pH10) were estimated using the first order and second order
reaction given by the eqn (6) and (7)

G\
1 1
roln a+kzz (7)

Here, C, is the primary concentration of the dye, C stands for
the concentration of Rh B solution at any time ¢ and ¢ is the UV
irradiation time. The first order rate constant (k;) and second
order rate constant (k,) are presented in Table 4. The assess-
ment of the credibility of the rate constant was accomplished
through the evaluation of the regression correlation coefficient
(R*). Here, R* values for first order rate model is greater than
0.99, surpassing R* value of second order rate model. Therefore,
here the photocatalytic degradation process adheres to the laws
of first order rate kinetics.>® k; value was increased as dopant
concentration was raised from 1 to 3 mol%. However, the rate
constant decreased upon reaching 5 mol% fluorine doping. The
reasoning behind the reduction of the rate constant has been
previously discussed. 1st and 2nd order linear fitted regression
lines are plotted on Fig. 13(a) and (b).
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(a) 1st and (b) 2nd order linear regression model of degradation.
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degradation efficiency.

Impact of radicals’ scavenger on photocatalytic degradation

The phenomenon of photocatalytic activity occurs in 3 steps, initi-
ated with UV light absorption. Afterwards, the process involves the
separation of electron-hole pairs produced during photochemical
reaction, followed by the oxidation-reduction of the surface charge.
Because of the high e~ and h* recombination rate, transfer of the
surface charges is very constrained. To enhance photocatalytic
activity, the recombination rate needs to be mitigated.”>

In general, superoxide radical (0,7), electron (e), hole (h")
and hydroxyl radical (OH") are the four active species that
contribute to photocatalytic dye degradation process. For
assessing the underlying mechanism of the F doped CuO as
photocatalyst under UV light irradiation, trapping tests for the
active species were conducted during the photodegradation
phase of 3 mol% F doped CuO, as depicted in the Fig. 14(a). To
scavenge O,, €, h" and OH" active sites, ascorbic acid (AA),
K,Cr,0, (Cr,0,°7), NaCl (ClI7) and C;HgO (IPA) were used,
respectively.”**° Based on the observation presented in Fig. 14(b),
it is evident that the use of IPA as a trapping agent leads to
a substantial reduction in photodegradation, up to 85%. Addi-
tionally, chloride ions (C17) have been observed to significantly
mitigate degradation, resulting in a reduction of approximately
82%. Both AA and K,Cr,0, also decreased the photocatalytic
activity, although they were unable to suppress the photocatalytic
activity as effectively as IPA and Cl~ suggesting hydroxyl radicals
and holes as the leading active species that control the photo-
catalytic activity of the F doped CuO nanoparticles.

Proposed mechanism of degradation

In this proposed mechanism, photodegradation begins with UV
irradiation and, thereafter, the generation of electron-hole (e”/
h") pairs in doped nanopatrticles, as stated in eqn (8). On irra-
diating UV light to nanoparticles, photo induced electron-hole
pairs are generated, facilitated by the narrow band gaps of the
nanoparticles as band gap is decreased.*® Ec of CuO with respect
to NHE is —0.5 eV which is lower than Ey; of 0,/0,™ (—0.33 V).

© 2024 The Author(s). Published by the Royal Society of Chemistry

Therefore, molecular oxygen is reduced to superoxide anion
radicals (O, ™) following eqn (9). The conduction band electrons
can take part in reduction reaction with dye molecule or
adsorbed O, on nanoparticle surface or dissolved O, in water.
The holes in the valence band (VB) can effectively contribute to
the oxidation of Rh B molecules and, simultaneously, can also
oxidize water through their interaction with hydroxide ions
(OH7) asin eqn (11) leading to the emergence of OH" radicals as
shown in eqn (12). This oxidation process takes place since
redox potential of H,O/OH" is lower than Ey of CuO with respect
to NHE. The collaborative efforts of both electrons and holes
contribute to the process of decolorization, which eventually
leads to the generation of damaged products. Based on
provided information, the pertinent reactions occurring at the
surface of CuO NPs that led to the degradation of dyes can be
stated in the following manner as shown in eqn (8)—(17).5

CuO + hw (UV) = CuO (ecg™ + hyg") (8)
CuO(ecg™) + O, = O, + CuO 9)

CuO (ecp ) + Dye = Reduced product (10)
CuO (hyg") + H,O = CuO + H*+ OH™ (11)
CuO (hyg*) + OH™ = CuO + H'+ OH" (12)
CuO (hyg") + Dye = Oxidation product (13)
O,” + H" = HO;, (14)

HO; + HO; = H,0, + O, (15)

H,0, + hv = 20H" (16)

Rh B + OH" — Degradation product (17)
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Fig. 15 Reusability of CuO NPs after 4 cycles.

Reusability

The photocatalysts should be stable and reusable in addition
to having exceptional catalytic performance for practical
applications.®®** The reusability of the 3 mol% F doped CuO
NPs has been assessed. Fig. 15 demonstrates insignificant
decrease in the photodegradation efficiency against RhB dye
even after 4 consecutive cycles, indicating the photocatalyst's
potential for reusability. Therefore, it can be concluded that
the synthesized photocatalyst is stable under experimental
conditions and can be easily reused for multiple cycles of dye
degradation though unavoidable loss during the recycling
process remains.

Conclusion

In current studies, modified sol-gel process was used to
synthesize fluorine doped nanoparticles. XRD analysis showed
complete dissolution of fluorine in the crystal with decreased
crystallinity and crystallite size along with smaller particle size
on doping. SEM examination revealed fused irregular-shaped
morphology of the nanoparticles. For doping beyond
1 mol%, presence of second phase Cu,O was evident from
XRD, HRTEM and XPS analysis. On doping band gap decreased
gradually with increasing concentration of dopant. Later, this
study assessed photocatalytic efficiency of pure and doped
CuO NPs, using hydrogen peroxide as catalyst promoter. The
most effective photodegradation occurred with 3 mol% F
doped CuO NPs due to decreased band gap, staggered type II
band structure due to formation of second phase Cu,O and
side way defect state introduced by dopant to trap charge
carriers resulting in reduced electron-hole recombination
rate. However, 5 mol% F doping resulted in increased scat-
tering of charge carriers and subsequent reduced carrier
mobility leading to the decreased photo degradation efficiency
in presence of metallic copper. Therefore, with optimum
doping content CuO NPs seems to be potential candidate for
wastewater treatment.
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