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eration of machine learning and
molecular docking for prostate-specific antigen
ligand design†
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Ming-Qi Wang *b and Bao-Quan Liu*a

Prostate-specific antigen (PSA) serves as a critical biomarker for the early detection and continuous

monitoring of prostate cancer. However, commercial PSA detection methods primarily rely on antigen–

antibody interactions, leading to issues such as high costs, stringent storage requirements, and potential

cross-reactivity due to PSA variant sequence homology. This study is dedicated to the precise design

and synthesis of molecular entities tailored for binding with PSA. By employing a million-level virtual

screening to obtain potential PSA compounds and effectively guiding the synthesis using machine

learning methods, the resulting lead compounds exhibit significantly improved binding affinity compared

to those developed before by researchers using high-throughput screening for PSA, substantially

reducing screening and development costs. Unlike antibody detection, the design of these small

molecules offers promising avenues for advancing prostate cancer diagnostics. Furthermore, this study

establishes a systematic framework for the rapid development of customized ligands that precisely target

specific protein entities.
Introduction

Prostate cancer ranks as the second most prevalent malignancy
among men on a global scale and stands as the h leading
cause of cancer-related mortality. Timely screening and precise
diagnosis are pivotal facets of cancer prevention and thera-
peutic intervention.1–4 Prostate-specic antigen (PSA) is a pivotal
biomarker for both the early diagnosis and ongoing monitoring
of prostate cancer, exhibiting an estimated sensitivity of 0.88 for
the detection of prostate cancer.5 This biomarker can be divided
into various subclasses, including complex PSA (cPSA), free PSA
(fPSA), and the PSA homology-specic antigen, specically the
isoform [-2] proprostate-specic antigen (p2PSA). Within the
realm of prostate cancer diagnostics, there has been a growing
emphasis on exploring and understanding these diverse PSA
markers.6,7

PSA, an enzyme of the serine protease class, is secreted by
prostate epithelial cells and presents as a glycoprotein
composed of 237 amino acid residues.4 Prostate-specic
antigen is also a natural constituent of semen, where its
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primary function lies in facilitating the hydrolysis and lique-
faction of semen clots, thereby aiding in the release of sperm.8

The Prostate Health Index (PHI) and other composite indices
evaluating prostate health, incorporating comprehensive
assessments of cPSA, fPSA, and p2PSA, have signicantly
enhanced the detection rate of prostate cancer.7

Currently, a diverse array of PSA detection chips and assay
kits is commercially available, primarily relying on the principle
of antigen–antibody specic recognition. However, it is impor-
tant to note that antibodies used in these assays are associated
with considerable costs, necessitate stringent low-temperature
storage conditions, and contribute to elevated detection
expenses.9 Concurrently, the considerable amino acid sequence
homology among cPSA, fPSA, and p2PSA poses a signicant
challenge, as it can readily lead to antibody cross-reactivity,
a phenomenon readily discerned when employing these afore-
mentioned chips and kits.10,11

Interface diversity is crucial for understanding protein
functions, designing drug molecules, and developing new
antibodies.12,13 It enables proteins to interact with a variety of
partners, thus participating in a wide range of biological
processes. For instance, ab initio docking methods for anti-
bodies play a signicant role in leveraging interface diversity,
especially in the recognition of prostate-specic antigens.14

Although antibody recognition is a commonly used approach,
exploiting the potential of interface diversity for the combined
use of ligands and antibodies in recognizing prostate-specic
antigens could offer innovative potential.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Virtual screening has emerged as a pivotal tool within the
domain of small molecule development, encompassing appli-
cations in drug development and the preparation of molecular
probes. This computational approach comprises two funda-
mental strategies: structure-based design and ligand-based
design. Structure-based design capitalizes on the spatial
arrangement of proteins and ligands, as well as the interactions
with local residues, to construct a lock-and-key model for
guiding drug development and molecular probe formulation.15

In contrast, ligand-based design encompasses methodologies
such as Quantitative Structure–Activity Relationship (QSAR) and
pharmacophore modeling, aiming to identify ligand structures
exhibiting structural or functional similarities to known
ligands16 The integration of both structure-based and ligand-
based virtual screening methodologies has demonstrated
notable success in drug development endeavors, thereby
enhancing the likelihood of successfully identifying target
compounds.17,18 While direct utilization of open source data-
bases like ZINC enables the screening of a vast array of small
molecule compounds with binding potential to target proteins,
challenges arise when dealing with unknown proteins. In such
cases, the establishment of effective pharmacophore models
becomes impractical, thereby necessitating substantial efforts
for compound property verication. Furthermore, it is worth
noting that many compounds within these open databases are
characterized by their intricate synthesis requirements and
high production costs.19

This research endeavors to elucidate the design and
synthesis of a small molecule compound ligand tailored to the
distinct binding pocket of prostate-specic antigen (PSA). We
employed a comprehensive analytical approach, which incor-
porated a synergistic integration of Virtual Screening and
Machine Learning methodologies, supported by a diverse
spectrum of computational and empirical methods, including
Surface Plasmon Resonance (SPR), Microscale Thermophoresis
(MST), Circular Dichroism (CD), and Molecular Dynamics (MD)
simulations, to meticulously evaluate the binding affinity of the
synthesized compound with the target protein (refer to
Fig. 1).20–23 This endeavor has yielded a promising lead
compound characterized by a robust binding affinity, holding
signicant potential for advancing the diagnosis and treatment
of prostate cancer. Moreover, it lays the groundwork for a viable
development pathway for designing ligands targeted at specic
protein. This multifaceted approach not only facilitates the
development of a lead compound for prostate cancer manage-
ment but also exemplies a systematic framework for the
rational design and synthesis of binding ligands tailored to
target proteins.

Materials and methods
Virtual screening

In pursuit of a comprehensive virtual screening of potential
ligands, we initiated our investigation by acquiring the prostate-
specic antigen (PDB: 3qum) crystal structure, featuring
a resolution of 3.2 Å, from the Protein Data Bank (PDB) (https://
www.wwpdb.org/).4 Due to the limited availability of crystallized
© 2024 The Author(s). Published by the Royal Society of Chemistry
structures of prostate-specic antigen, a key reason for our
selection of this protein is that it represents one of the few
crystal structures used in market-available reagent kits and
chips, employing the antigen–antibody sandwich method. To
prepare the protein structure for subsequent analysis, we
employed Autodock Tools (ADT), a soware suite renowned for
its utility in molecular docking studies. ADT was employed to
eliminate extraneous water molecules within the protein chain
and to introduce hydrogen atoms as required. Subsequently, we
accessed the ZINC database (https://zinc.docking.org/) to
download a vast collection of 1 511 709 small molecules,
which were then subjected to Autodock (version 2.5) with
a grid spacing of 0.375 Å, set between 2.5 Å and 3.5 Å, to
prepare the ligands in the Autodock Vina-friendly PDBQT
format.24,25

For the exploration of potential binding sites within the
prostate-specic antigen, we harnessed the capabilities of the
PlayMolecule BindScope module. This innovative module
leverages voxelization techniques to delineate binding pockets
and ligand poses based on distinctive pharmacophore class
attributes. Notably, it employs a 3D convolutional neural
network (CNN) to predict binding affinities, thus enhancing the
precision of our virtual screening efforts.26 Furthermore, we
utilized drugs targeting prostate-specic antigen developed by
scientists like LeBeau AM for the full protein docking of
prostate-specic antigen. This aligns with the cavity prediction
by the aforementioned soware, therefore, we are condent in
designating this cavity as the one for virtual screening.27

In the realm of virtual screening, Autodock Vina emerged as
our tool of choice. It capitalizes on a global optimization algo-
rithm, a marked improvement over the genetic algorithm
employed by AutoDock 4, thereby bolstering search efficiency
and result accuracy. Moreover, Autodock Vina offers support for
multithreaded parallel processing, augmenting computational
throughput.

Our computational endeavors were executed on a robust 192-
core Linux server, enabling the completion of all docking
simulations within a time frame of 30 days. The simulation
parameters were set with a box size of 60 × 60 × 60 Å3, centered
at coordinates X = −30.53, Y = −30.375, and Z = −24.965. A
search accuracy level of exhaustiveness = 32 was employed, and
the analysis focused on the ten best docking poses selected
from the screening results.
K-means clustering

K-means clustering is a prominent technique within the
domain of unsupervised machine learning, representing one of
the prevailing methods for data clustering in contemporary
research. Additionally, k-means is widely applied in pharma-
ceutical development for drug structure clustering.28,29 This
algorithm centers on the identication of cluster centroids,
with data points gravitating toward these centroids. Conse-
quently, clusters are formed as a result of this process.30,31 This
paper employs the following steps for K-means clustering:

Initially, the SMILES representations of the selected
compounds postdocking are converted into molecular
RSC Adv., 2024, 14, 8240–8250 | 8241
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Fig. 1 Pipeline for PSA ligand design and validation. This schematic illustrates the comprehensive methodology employed, encompassing
highscoring docking experiments, K-means cluster analysis, the extraction of core structural motifs utilizing the Maximum Common
Substructure (MCS) approach, exploration of compound databases, andmeticulous functional validation assays. These steps collectively facilitate
the identification and characterization of specific binding ligands tailored to prostate-specific antigen (PSA).
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ngerprints using the RDK soware. Additionally, a binary
coding or counting vector representation is created for the
SMILES notation of chemical and physical properties, en-
compassing molecular weight, polarity, charge distribution,
stereochemistry, and other relevant features.32 Principal
Component Analysis (PCA) is subsequently employed to reduce
the dimensionality of the data, ultimately resulting in a 166 bit
binary evaluation index serving as the input le for K-means
cluster analysis.33

Utilizing the generated algorithm input le, a random
function is formulated to select the initial cluster centers for the
clustering process. The Euclidean distance metric is then
utilized to determine the nearest cluster center for each data
point, thereby minimizing the sum of distances between each
data point and its respective cluster center. The rst iteration
produces the initial cluster distribution by assigning data
points to the nearest cluster centers. Subsequently, the mean
value of data points within each cluster is calculated to establish
new cluster centers and minimize intracluster variance. This
step is iteratively applied until the cluster distribution stabi-
lizes, indicating the completion of the clustering process.30

In this study, the K-means clustering model adopts the
Euclidean distance metric for assigning data points to their
respective clusters. The calculation formula is as follows:

argSmin
Xk

i¼1

X

x˛Si

kx� mik2 ¼ argSmin
Xk

i¼1

jSijVar Si (1)

Here, Sirepresents the ith cluster, mi represents the cluster
center of Si, x represents a data point within Si, and ‖x − mi‖

2

denotes the square of the Euclidean distance between x and mi.
This computation aids in determining the nearest cluster center
for each data point.
8242 | RSC Adv., 2024, 14, 8240–8250
To evaluate the quality of the clustering process and assess
the cohesion and separation of the clustering outcomes, the
Silhouette Coefficient and Calinski–Harabasz Index are
employed as performance indicators.

The Silhouette Coefficient is calculated as follows: For each
data point i, the average Euclidean distance between i and other
members within the same cluster is computed as a(i). Addi-
tionally, b(i) is determined, representing the average Euclidean
distance from data point i to all members within other clusters.
Subsequently, the silhouette coefficient for each data point i is
calculated as follows:

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg (2)

For the entire cluster, the average silhouette coefficient is
computed, with n signifying the total number of cluster
members:

S ¼ 1

n

Xn

i¼1

sðiÞ (3)

The Silhouette Coefficient yields values within the range [−1,
1]. A higher Silhouette Coefficient indicates superior clustering
results, implying that data points are tightly clustered within
their respective clusters while maintaining clear separation
from other clusters. A coefficient closer to 1 signies optimal
clustering outcomes, while a value near 0 suggests potential
overlap among clusters. Conversely, a coefficient near −1 indi-
cates potential misclustering of data points.31

The Calinski–Harabasz Index is computed as follows:
The inter-class dispersion B of the clusters is evaluated.

Inter-class dispersion measures the difference between each
© 2024 The Author(s). Published by the Royal Society of Chemistry
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cluster and the sum of squared distances between all cluster
members and the overall average

B ¼
XK

k¼1

nk � kxk � xk2 (4)

Here, K represents the total number of clusters, nk denotes the
total number of members within the Kth cluster, x�k signies the
average of all members in the cluster, and x� represents the
overall average across all clusters.

Maximum common substructure identifying

The Rdkit package, available at https://www.rdkit.org and
specically the version 2019.03.4.0, plays a crucial role in
transforming SMILES notation into graph representations.32

Within this framework, the rdFMCS module is harnessed to
identify the Maximum Common Substructure (MCS) within
a set of diverse molecules. In the pursuit of this goal,
a pairwise comparison strategy is employed, leveraging the
graph matching algorithm VF2 to pinpoint the Common
Subgraph (CSG) shared between each pair of molecules.

To iteratively expand the subgraph, all CSGs are amalgam-
ated, adhering to the constraint of preserving the molecular
connectivity. The parameters -atomcompare- and -bondCom-
pare- serve as pivotal tools for evaluating atom and bond
equivalences, respectively. Through the meticulous application
of these parameters, the framework succeeds in extracting the
Maximum Common Subgraph (MCSG). Ultimately, this process
culminates in the extraction of the compound's skeletal char-
acteristics, thereby facilitating in-depth analysis and further
scientic inquiry.34

Surface plasmon resonance (SPR)

Surface Plasmon Resonance (SPR) is a sensitive and widely
employed optical technique for realtime monitoring of biomo-
lecular interactions occurring at the surface of a sensor chip.
This study employed the Biacore T200 system, manufactured by
GE Healthcare Life Sciences in Uppsala, Sweden, to rigorously
quantify the interaction dynamics between the test compound
and the designated target protein. To initiate the analysis, the
puried target protein was immobilized directly onto a Carbox-
ymethylation 5 (CM5) sensor chip. Subsequently, analytes con-
sisting of small molecules at varying concentrations were
introduced into the system for multicycle kinetic assessment.20

To prepare the CM5 chip for target protein immobilization,
the carboxylic acid groups on the chip's surface (Cytiva) were
initially evaluated using a solution comprising amixture of EDC
and NHS (Cytiva) at a temperature of 25 °C and a ow rate of 10
mL min−1. This activation process spanned a duration of 7
minutes. Following activation, the chip was subjected to an
injection of a sodium acetate soluble buffer (10 mM; pH 4.5)
containing the target protein until the protein content immo-
bilized on the chip reached a level of 2500 resonance units (RU).
Ultimately, the multicycle kinetics of the chip were quenched
using ethanolamine.35

Subsequently, the target protein was securely anchored to
the CM5 chip, and the gradient-diluted analytes were
© 2024 The Author(s). Published by the Royal Society of Chemistry
consecutively introduced, with each concentration examined
during a distinct cycle. During these experiments, solvent
corrections were diligently applied using DMSO to ensure
precision in the evaluation of affinity and kinetics. The
concentration series of small molecules tested included the
following values: 0, 1.25, 2.5, 5, 10, and 20 nM. The experi-
mental conditions were maintained at a temperature of 25 °C,
a ow rate of 30 mL min−1, a binding duration of 90 seconds,
a dissociation duration of 60 seconds, and a running buffer
comprising 5% DMSO in PBS-PSA.

Micro thermal diffusion (MST)

MST (Micro Thermal Diffusion) is an optical method used to
characterize the properties of biological molecules, specically
the directed motion of particles within microscopic tempera-
ture gradients. This technique involves the labeling of one of
the interacting molecules, typically proteins, with uorescent
dyes or the fusion of a GFP (Green Fluorescent Protein) tag. The
labeled proteins and ligand molecules are placed in a capillary
with specic concentration gradients. A microscale temperature
gradient is generated by infrared laser heating, causing ther-
mophoretic motion. This results in changes in the molecular
properties such as hydration shell, molecular size, and charge,
which subsequently lead to variations in the uorescence
distribution within the reaction system. The MST instrument
records changes in uorescence within the infrared laser-
illuminated region inside the sample during the laser's on/off
states, allowing for the determination of binding affinities
within a relatively short period of time.21 In this experiment, the
Monolith NT.115 instrument was employed to detect interac-
tions between compounds and target proteins. Initially, puri-
ed proteins were labeled using the MonolithTM RED-NHS
second-generation protein labeling kit. The RED dye carried
by the NHS ester in the labeling rea-gent can covalently bind to
primary amino groups (lysine residues) on the target protein.
Subsequently, solutions of the test compounds at 16 gradient
concentrations were prepared, and 20 mL volumes of each were
mixed thoroughly with the RED-NHS-labeled target proteins.36

The mixed samples were then drawn into a capillary for MST
experiments. The MO.Affinity Analysis X86 soware was used to
t the MST curve and obtain the binding constant (Kd) values.21

Circular dichroism

Circular Dichroism (CD) spectroscopy is a powerful analytical
technique employed in the eld of structural biology and
biophysics. It is used to investigate the secondary structure of
biomolecules, particularly proteins and nucleic acids, by
studying their differential absorption of le and right circularly
polarized light. CD spectroscopy provides valuable insights into
the conformational characteristics, stability, and folding of
biomolecules, making it an essential tool for researchers in
understanding their structural and functional properties.23

The CD experiment was conducted using the Chirascan
circular dichroism spectrometer produced by Applied Photo-
physics. The cuvette had a volume of 400 mL, with a PSA
concentration of 2 mM. The buffer solution used was PBS with
RSC Adv., 2024, 14, 8240–8250 | 8243
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a concentration of 10 mM and a pH of 7.4. During the experi-
ment, a scanning wavelength range of 180–260 nm was
employed. In the cuvette, 1.5 mL of a 100 mM small molecule was
added sequentially with thorough mixing between additions.
Circular dichroism spectra were recorded aer each compound
addition to investigate the impact of compound titration on the
protein.

The obtained results were subjected to analysis using the
Circular Dichroism by Neural Networks (CDNN) soware.
CDNN utilizes neural networks to predict the secondary struc-
ture of proteins based on CD spectroscopy data.37
Fig. 2 K-means clustering analysis results for small molecules.
Molecular dynamics simulations

The molecular dynamics simulations described in this study
were conducted using the Gromacs 2022.3 soware version.38,39

Small molecules were prepared with the General Amber Force
Field (GAFF) using AmberTools22, and hydrogen atoms were
added and RESP charges were computed using Gaussian
16W.34,35 The calculated potential energy parameters were
subsequently integrated into the molecular dynamics system
topology le. Simulations were carried out under static condi-
tions at a temperature of 300 K and atmospheric pressure (1
Bar). The Amber 99SB force eld was employed, and the solvent
consisted of water molecules (Tip3p water model). Sodium ions
(Na+) were introduced to neutralize the overall charge of the
simulated system. The system underwent initial energy mini-
mization using the steepest descent method, followed by
separate equilibration phases: 100 000 steps of isothermal-
isochoric ensemble (NVT) equilibration and 100 000 steps of
isothermal-isobaric ensemble (NPT) equilibration, with
a coupling constant of 0.1 ps and a duration of 100 ps. Subse-
quently, a production molecular dynamics simulation was
performed, comprising a total of 15 000 000 steps with a time
step of 2 fs, resulting in a total simulation time of 300 ns. Aer
completing the simulation, trajectory analysis was performed
using builtin tools in the soware, including root mean square
deviation (RMSD), root mean square uctuation (RMSF), and
Molecular Mechanics-Generalized Born Surface Area
(MMGBSA) calculations, as well as the generation of free energy
landscapes.

The Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA) method is widely employed for the analysis of
binding affinities between proteins and ligands.40 Its binding
free energy calculation formula includes contributions from van
der Waals interactions, electrostatic interactions, polar solva-
tion, and solvent-accessible surface area (SASA). Free energy
landscapes provide insights into the interactions and energy
distribution among molecules within the system, aiding in the
understanding of molecular interactions, conformations, and
stability characteristics. Typically, free energy values are repre-
sented using color intensity and contour lines, with the X-axis
representing RMSD and the Y-axis representing R(g) (Radius of
Gyration). R(g) is a measure of molecular volume and
compactness, where smaller R(g) values indicate a compact
molecular structure and larger R(g) values indicate a more
extended or loose molecular structure.
8244 | RSC Adv., 2024, 14, 8240–8250
Results
Molecular selection

In order to identify potential ligand molecules specic to
prostate cancer antigens, this study employed virtual screening
using Autodock Vina. A total of 1 511 709 small molecules from
the ZINC database were screened. In ESI Table S1,† we have
submitted docking scores for 1160 molecules. The selected
compounds demonstrate docking scores within the controllable
error margin of Autodock Vina (less than 1.5 kcal mol−1) and are
superior to the docking score of −8.9 kcal mol−1 for the already
discovered drug, Drug 1.27,41 The extensive data available in the
ZINC database offers a diverse range of compounds, increasing
the possibilities for selecting target molecules. However, two
main challenges were encountered: rst, conducting property
studies and synthesis for all 1160 screened compounds would
be excessively demanding in terms of resources; second, many
of these compounds were difficult to synthesize.

To streamline the characterization and synthesis efforts
following virtual screening, K-means clustering analysis was
applied to the 1160 compounds with different cluster numbers
(K = 2, 3, 4, 5). The results, as depicted in the Fig. 2, show
Silhouette Coefficient values ranging from −1 to 1, with larger
values indicating better clustering performance. The Silhouette
Coefficient was highest at 0.60 for K = 2, making it the optimal
choice among the various clustering options. Subsequently, the
compounds of Cluster I, identied through this analysis, were
used for further investigation.

To characterize the central compounds within the clusters,
the Euclidean distance formula was utilized to calculate the
cluster center for Cluster I (ZINC000013683205) and its
surrounding compounds, namely ZINC000028333181,
ZINC000257278584, and ZINC000257297002, as shown in
Fig. 3B. Subsequent sections will provide a detailed analysis of
these four structures, including molecular similarity and their
interactions with protein cavities.

In Fig. 3, we employed PYMOL for visualization.42 It can be
observed that these four compounds bind to the same cavity.
The compounds ZINC000013683205, ZINC000028333181,
ZINC000257278584, and ZINC000257297002, enclosed in the
red box, share similar structural motifs, benzimidazolone. This
region is primarily involved in hydrogen bond interactions,
driven by the structural similarities of these molecules. The
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Binding poses of compounds within the protein pocket. (A) Depicts the binding orientations of the central compound and its surrounding
compounds in the clustering analysis. (B) Presents the molecular overlay of the compounds. Subfigures (C) to (F) represent the binding inter-
actions of compound 1, compound 2, compound 3, and compound 4 within the pocket, respectively. Hydrophilic residues are shown in blue,
while hydrophobic residues are depicted in orange, with color intensity indicating the strength of interaction. Hydrogen bond acceptors are
indicated in green, and hydrogen bond donors are represented in pink. Cyan highlights the key amino acid residues involved in the interaction
between compounds and the protein. Key chemical interactions are denoted by green (hydrogen bonds) and pink (hydrophobic interactions).

Fig. 4 Maximum common substructures selected by K-means clus-
tering and newly designed molecules, with (A) and (B) showcasing the
newly designed compounds LIG1 and LIG2, respectively.
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structures enclosed in the blue box exhibit greater structural
diversity and pose greater synthesis challenges. The blue box
primarily consists of hydrophobic groups based on benzene
rings, with hydrophobic interactions being the dominant mode
of interaction, as indicated in the accompanying table. The
central part of the structure includes amide and other structural
elements contributing to fewer interactions, suggesting its role
as a linker between hydrogen bonding moieties and variable
hydrophobic groups.

Due to the sensitivity of the K-means algorithm to initial
centroid selection, there is a risk of converging to local optima.
This study combined the features of central compounds and
their surrounding compounds, along with insights into the
cavity's structural characteristics, to further deduce the skele-
tons of the 1160 compounds, aiding in guiding compound
synthesis. The maximum common substructure (MCS) for this
cluster was established by employing rdkit soware and the VF2
graph matching algorithm on the results of the K-means clus-
tering (K = 2). Ultimately, two maximum common substruc-
tures were identied (Fig. S1A and B†).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Compound synthesis and binding affinity validation

In accordance with critical residues, binding cavity charac-
teristics, and structural features, we designed new molecules
with potent binding affinities and relatively low synthetic
complexities for PSA, as depicted in Fig. 4A and B. The
molecular skeleton of compound 1 was retained, along with
the preservation of groups that form hydrogen bonds similar
to those in the central compound. For the variable hydro-
phobic regions, a simpler substitution with biphenyl groups
was employed, resulting in LIG 1 and 2 as illustrated in Fig. 4A
and B.
RSC Adv., 2024, 14, 8240–8250 | 8245
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The synthesized compounds conform to the key functional
group requirements, skeleton criteria, binding cavity specica-
tions, and exhibit lower synthetic complexities, as depicted in
Fig. S2.† The nuclear magnetic resonance spectra of these
molecules are provided in ESI Fig. S3.†

In the SPR experiment, all obtained data underwent kinetics/
affinity tting analysis, employing a 1 : 1 binding model. Data
analysis was conducted utilizing Biacore evaluation soware
(version T200 2.0). The results revealed a binding affinity of
59.33 nM between LIG 1 and PSA, whereas the binding affinity
between LIG2 and PSA was determined to be 144 nM (Fig. 5A–
D). This observation signies that LIG 1 demonstrates a notably
higher binding affinity towards PSA.

In contrast to SPR principles, MST relies on the inuence of
temperature gradients on the diffusion behavior of molecules in
solution. When two molecules bind or dissociate, their diffu-
sion behavior in a temperature gradient undergoes changes. In
this study, we validated the binding of PSA with its ligands in
a multisystem approach, providing more comprehensive and
reliable results. MST results showed that between concentra-
tions of 0.15 nM to 5 mM, as the concentrations of LIG 1 and LIG
2 increased, the uorescence signal gradually intensied,
indicating that both LIG 1 and LIG 2 could bind to PSA (Fig. 5G
and H). The binding affinity between LIG 1 and PSA was
determined to be 78.91 nM, while the bind-ing affinity between
LIG 2 and PSA was 106.31 nM, indicating that both LIG 1 and
LIG 2 possess strong binding affinities, with LIG1 exhibiting
stronger binding to PSA.

To further explore the impact of synthesized compounds on
the spatial structure of PSA, circular dichroism (CD) titration
experiments were conducted. As shown in Fig. 5I and J, it can be
observed that upon addition of the compounds, the negative
peak height of PSA in the range of 200 nm to 210 nm decreased
with increasing compound concentration. This change was
Fig. 5 Validation experiments of protein-molecule affinity. (A–D) Surf
experiments. (I and J) Circular dichroism titrations of LIG 1 and 2 with P

8246 | RSC Adv., 2024, 14, 8240–8250
further analyzed using CDNN soware to assess the impact of
compound addition on protein structure. As depicted in
Fig. S4,† in the absence of compounds, beta sheets constituted
the major part of the protein, accounting for approximately 44%
± 1%, while alpha helices were the least prevalent, comprising
approximately 23%. Upon the addition of LIG 1, there was
a slight decrease in beta sheet structure by approximately 1%,
and when the ratio of alpha helix to PSA and LIG 1 was 1 : 3,
there was a reduction of 3%, resulting in an alpha helix
composition of approximately 15%, along with an increase in
random coil structure by 5%, accounting for approximately
13.5% of the nal structure (as shown in S4A†). In the case of
LIG 2 addition, there was a slight increase of approximately 1%
in beta sheet structure, and when the ratio of alpha helix to PSA
and LIG 2 was 1 : 3, there was a reduction of 5%, resulting in an
alpha helix composition of approximately 29%, along with an
increase in random coil structure by 5%, accounting for
approximately 12.8% of the nal structure (as shown in
Fig. S4B†). In summary, given the structural similarity between
LIG 1 and LIG 2, their impact on protein structure exhibited
a consistent trend, as both compounds signicantly altered the
PSA structure by converting alpha helices into random coil
congurations upon binding with PSA.
Molecular docking and molecular dynamics simulation

LeBeau AM and other scientists used high-throughput
screening methods to select some compounds at the same
site of prostate-specic antigen. We analyzed two of these
compounds that demonstrated better binding effects, and their
2D structures are included in Fig. S5.† Furthermore, in our
opinion, the pathways for synthesizing these compounds are
challenging. Therefore, we utilized molecular docking with the
same criteria as in virtual screening as a more convenient
ace plasmon resonance experiments. (E–H) Micro thermal diffusion
SA.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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method for comparing binding affinities. We also used molec-
ular dynamics simulations to evaluate the stability of the
compounds' binding with PSA. In order to investigate the
distinctions in the interaction forces and modes of action
between the synthesized compounds 1 (LIG 1), compounds 2
(LIG 2), and the Drug 1 and Drug 2 as reported in the literature
with respect to PSA (Prostate-specic antigen), molecular
docking was employed for comparative analysis in this study.
The docking results are summarized in Table 1. The docking
poses of the four compounds are depicted in Fig. 6A–D.
Specically, LIG 1 forms hydrogen bonds with Thr 190, Ser 226,
and Ser 217, with bond distances of 2.88 Å, 3.17 Å, and 3.01 Å,
respectively. Additionally, it exhibits hydrophobic interactions
with His 57, Leu 95, Cys 191, Ser 192, Gly 216, Cys 220, and
others. LIG 2 forms hydrogen bonds with Thr 190, Gly 193, and
Ser 217, with bond distances of 3.14 Å, 3.26 Å, and 3.20 Å,
respectively. It also engages in hydrophobic interactions with
His 57, Leu 95, Asp 102, Cys 191, Cys 220, Gly 216, and others.
Drug 1 forms hydrogen bonds with His 57, Thr 190, Gly 193, Ser
195, and Ser 226, with bond distances of 3.19 Å, 2.98 Å, 3.13 Å,
2.78 Å, and 2.84 Å, respectively. Furthermore, it exhibits
hydrophobic interactions with Leu 95, Cys 191, Ser 192, Cys 220,
Trp 215, and others. Drug 2 forms hydrogen bonds with Ala 39,
Tyr 94, Ser 195, and Ser 226, with bond distances of 3.12 Å, 3.09
Å, 3.28 Å, and 3.04 Å, respectively. It also engages in hydro-
phobic interactions with Leu 95, Thr 190, Tyr 215, Ser 217, Glu
218, etc. Based on the docking scores, the synthesized LIG 1 and
2 exhibit scores of −10.8 and −10.3, respectively, which are
higher than those of the literature-reported Drug 1 and Drug 2
with scores of −8.9 and −8.1, indicating a stronger binding
affinit.43–45

To further evaluate the stability of compound-PSA-ligand
complexes and ligand conformations, various indicators
including RMSD (Root Mean Square Deviation), RMSF (Root
Mean Square Fluctuation), and MMPBSA (Molecular Mechanics
Poisson-Boltzmann Surface Area) were assessed in this study
(Fig. 6E–H). Simulations for all structures were carried out over
a 300 ns timescale. The RMSD data reveals that the average
RMSD values for LIG1 and LIG2 are 0.1293 nm and 0.1321 nm,
with standard deviations of 0.0132 nm and 0.0144 nm, respec-
tively. For Drug 1 and Drug 2, the average RMSD values are
0.1628 nm and 0.1621 nm, with standard deviations of
0.0165 nm and 0.0170 nm, respectively. Lower RMSD values
indicate greater system stability, and both the average and
variance values for LIG 1 and 2 are lower than those for Drug 1
and Drug 2, suggesting better stability. Overall, all RMSD values
are below 0.3 nm, indicating the stability of the four compound
Table 1 Summary of docking scores and interactions for four compoun

ID
Docking score
(kcal mol−1) Hydrophobic residues

LIG 1 −10.8 His 57, Leu 95, Cys 191, Ser 192, Gly 216, C
LIG 2 −10.3 His 57, Leu 95, Asp 102, Cys 191, Cys 220,
Drug 1 −8.9 Leu 95, Cys 191, Trp 215
Drug 2 −8.1 Leu 95, Thr 190, Try 215

© 2024 The Author(s). Published by the Royal Society of Chemistry
structures and validating the rationality of the system setup for
further in-depth analysis.

MMPBSA results are presented in Table 2. Among the four
systems, the PSA-LIG1 complex exhibits the lowest binding free
energy of−36.60 kcal mol−1. Although the free energy scores for
LIG2 and Drug 1 are relatively close, with LIG2 scoring
−35.36 kcal mol−1 compared to Drug 1 scoring
33.89 kcal mol−1, LIG2 still maintains a lower free energy score.
To enhance visualization, MMPBSA results were visualized
using the builtin plugins of Gromacs 2022.3.38,39

In this study, 2D and 3D free energy landscape plots were
constructed. The rmsd_gyrate.log, bindex.ndx, and rmsd_gyr-
ate.log les recorded the relationship between indices and
energies. By analyzing these les, the conformations corre-
sponding to the lowest energy for each system were identied at
266 ns, 85 ns, 114 ns, and 71 ns for LIG1, LIG2, Drug1, and
Drug2, respectively (as shown in Fig. S6†). The RMSD values for
these conformations are close to the average, and R(g) values are
relatively low, indicating structural similarity to the initial
structures and compactness in the low-energy region. This
suggests that during the simulation, molecules may remain in
this state for an extended period, demonstrating stability and
further conrming the reliability of the binding free energy
calculations.
Discussion

In summary, our study encompassed a multifaceted approach
to identify specic binding compounds for prostate-specic
antigen (PSA) cavities. We employed Autodock Vina for high-
throughput docking experiments, K-means clustering analysis,
and the determination of maximum common substructures
(MCS) through rdFMCS.24,30,32 These methods culminated in the
identication and characterization of specic binding ligands
with promising affinities for the target protein. Furthermore, we
integrated compound and synthesis technique databases to
assess cost-effectiveness and synthesis routes. Our rigorous
functional validation analyses conrmed the potential of these
compounds, offering valuable insights into PSA recognition by
small molecules.

High-throughput screening techniques enable the detection
of alterations in enzyme or receptor function, the interaction
between probes and proteins, as well as the kinetic properties of
protein-ligand binding.46 Nevertheless, the scarcity of
compound samples for high-throughput screening poses
a challenge: a substantial number of compound samples are
required, but obtaining these samples can be difficult.27,43–45 For
ds

Hydrogen bond residues

ys 220 Ser 189, Thr 190, Ser 217
Gly 216 Thr 190, Ser 193, Ser 217

His 57, Thr 190, Ser 192, Gly 193, Ser 195, Cys 220, Ser 226
ALA39, His 57, Ser 99, Thr 190, Ser 192, Gly 216
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Fig. 6 The docking andmolecular dynamics simulation results of four compounds were visualized using PYMOL. (A)–(D) Docking poses of LIG 1,
LIG 2, Drug 1 and Drug 2. (E)–(H) Represent the Root Mean Square Deviation (RMSD) values during a 300 nanosecond molecular dynamics
simulation of the complex structures of LIG 1, LIG 2, Drug 1 and Drug 2, respectively.
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instance, compounds targeting prostate-specic antigen,
designed by previous researchers using high-throughput
screening, entail considerable experimental costs. In contrast,
this study employs an integrated approach, combining
computer aided drug design and machine learning techniques,
to rapidly and cost-effectively identify and synthesize ligands
with high binding affinity for prostate-specic antigen within
the diverse ZINC database.
Table 2 Binding free energy of four systems using MMPBSA

Complex
Binding free
(kcal mol−1)

Van der Waals
(kcal mol−1)

PSA-LIG1 −36.60 −46.53
PSA-LIG2 −35.36 −34.97
PSA-Drug1 −33.89 −54.72
PSA-Drug2 −30.59 −54.33

8248 | RSC Adv., 2024, 14, 8240–8250
In this study, a comprehensive evaluation of compound-
protein binding affinity is conducted using four techniques:
molecular docking, molecular dynamics simulations, surface
plasmon resonance (SPR), and microscale thermophoresis
(MST). SPR is an optical phenomenon that arises when incident
light at the interface between a metal and a dielectric medium
meets specic energy and momentum matching conditions,
leading to the excitation of coherent oscillations of free
Electrostatic
(kcal mol−1)

Polar solvation
(kcal mol−1)

SASA (kcal
mol−1)

−23.87 38.75 −4.95
−36.75 48.87 −12.51
−51.95 80.02 −7.24
−31.80 63.41 −7.87

© 2024 The Author(s). Published by the Royal Society of Chemistry
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electrons on the metal surface.20 MST employs infrared lasers
for localized heating of molecules, inducing directional move-
ment, and subsequently analyzing the molecular distribution
ratio within the temperature gradient eld via uorescence
analysis.21 Despite the distinct principles underlying the two
systems, the experimental values obtained are comparable.
Although the data for LIG 1 and LIG 2 are relatively similar, both
systems demonstrate that LIG 1 exhibits a higher binding
affinity for prostate-specic antigen than LIG 2, corroborating
the molecular docking and molecular dynamics simulation
data. This, to some extent, validates the reliability of the
computational data and ultimately establishes a dependable,
rapid, and cost-effective ligand screening approach for specic
proteins.

However, our work also revealed certain challenges.
Conventional antibody-based prostate cancer detection
methods exhibit limitations related to temperature sensitivity,
cost, and cross-reactivity. While our synthesized compounds
exhibit lower binding affinities, they address cost and storage
issues. Nevertheless, there remains room for optimization.
Future research directions could include enhancing compound
binding affinities through fragment-based drug design and
designing residues for multiple PSA cavities.47 Additionally,
cost-effective uorescent labeling methods, such as incorpo-
rating Fmoc groups, could be explored to improve PSA
detection.48

Conclusions

In conclusion, our study provides a foundation for the devel-
opment of lead compounds for prostate cancer treatment and
molecular probe design. Our comprehensive screening
approach, integrating various techniques and databases,
streamlines compound selection and synthesis. As we look
ahead, further research can rene our compounds, making
them more potent, cost-effective, and applicable in prostate
cancer diagnostics. This work exemplies the potential of
a multidisciplinary approach to target-specic protein pocket,
offering a promising avenue for future drug development and
molecular probe design endeavors.
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