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Luminescent mechanochromism is a phenomenon that
involves an emission-color change in solids or liquid crystals
induced by mechanical stimulation such as grinding and
pressing.’™* Various organic and organometallic compounds
have been reported to show luminescent
mechanochromism.*™* So far, a variety of strategies have been
developed to generate mechanochromic compounds, including
the use of multiple intermolecular interactions,”**'* connection
of donor and acceptor units,'*"” controlling dipole moments,*®
and switching between monomeric and assembled states.'®
However, these strategies require mechanochromic compounds
with rather complicated molecular structures; thus, low-
molecular-weight mechanochromic compounds are still scarce.

Polycyclic aromatic hydrocarbons (PAHs) such as
anthracene,**>* pyrene,”*?® and perylene* > are among the
structurally simplest mechanochromic compounds. These
PAHs contain a variety of functional substituents, such as
amide, cyano, boronic ester, and alkyl groups and/or linkages to
other aromatic or heteroaromatic groups. However, except for
an unusual example,® reports that describe unsubstituted
PAHs show luminescent mechanochromism remain elusive.
This indicates that the introduction of several substituents or
connection to the same or other m-conjugated groups is
required to endow simple PAHs with mechanochromic prop-
erties. Especially mechanochromic PAHs that bear only one
simple substituent remain a rarety.**

Here, we report structurally simple monosubstituted pyrene
isomers 1 and 4, which exhibit luminescent mechanochrom-
ism. Compared with other reported mechanochromic
compounds, the chemical structures of 1 and 4 are relatively
simple, i.e., they contain only one isocyano group as a substit-
uent and their molecular weight is low (MW = 227). Solid
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Structurally simple aromatic hydrocarbons that possess only one isocyano group show luminescent
mechanochromism. The structural isomers of these aromatic hydrocarbons exhibit blue- and red-shifted
emission bands upon mechanical stress. Their low molecular weight enables their sublimation under

samples of 1 and 4 exhibit luminescent mechanochromism
with blue- and red-shifted emission bands, respectively. X-ray
diffraction (XRD) analyses indicated that the ground phase of
1 is a crystalline phase, while that of 4 is an amorphous phase.
The crystal structures revealed the presence of moderate dipole-
dipole interactions in the ground phases compared to those in
their pristine phases, which is the key for the mechanochrom-
ism of 1 and 4.

Pyrene 4 was prepared from 4-nitropyrene according to
a previously reported procedure for monoisocyano PAHs (for
details, see the ESIt).*> Pyrene 1, which has already been re-
ported, was prepared in a similar manner.*® Although 1 was
reported not to show luminescent mechanochromism,* we
found that both 1 and 4 exhibit luminescent mechanochromic
properties.

Under excitation at 365 nm, solid samples of pristine 1 and 4
emit green and blue photoluminescence, respectively (Fig. 1).
Crystalline 1 shows an intense green emission with an absolute
emission quantum yield (@) of 48% (Table S1f) and an
unstructured emission spectrum with a peak at 495 nm
(Fig. 2a). Compared with the structured emission of monomeric
1 in CH,Cl, (¢ = 5 pM, Fig. Sib and S27%), the emission
maximum wavelength (Aem max) Of 1 in the solid state is red-
shifted. The average emission lifetime (t,,) of pristine solid 1
is 61 ns, which is longer than that of monomeric 1 in CH,Cl, (13
ns; Fig. S3a and Table S1t). This indicates that the emission of 1
should be characterized as excimer fluorescence.**?**** Mean-
while, pyrene 4 shows blue emission upon photoexcitation
(Fig. 1) with an @, of 51% (Table S1f) and a broad emission
spectrum with a Aem,max Of 452 nm (Fig. 2b), which is shorter
than that of 1. An emission-decay analysis indicated that the t,,
of 4 is 38 ns (Fig. S3b and Table S17), revealing its excimer
character.?***** The longer Aemmax and t,, of the excimer
emission of 1 compared with those of 4 could stem from the
stronger interactions of 1 in the excited state.**

To investigate the difference between the Ay, max Of pristine 1
and 4, single-crystal XRD analyses were performed. A single
crystal of 1 was obtained from the vapor-diffusion method using
CHCI; and n-pentane. Compound 1 crystallizes in the triclinic P1
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Fig.2 Emission spectra of solid samples of (a) 1 and 1,¢er and (b) 4 and
4,ter UPON excitation at 365 nm.

space group (Fig. 3a and S5 as well as Table S2t).** As typically
observed for the crystal structures of flat -systems,***” 1 adopts
a co-facial stacking arrangement in a head-to-tail manner with
a rotational angle of the isocyano groups (f,) of ~180° (Fig. 3a).
These molecules form a one-dimensional (1D) column with an
offset along the long axis of the pyrene core (20.97°; Fig. 3a and
S51) and a short distance of ~3.44 A between the pyrene cores.
Single crystals of 4 were also obtained using the vapor-diffusion
method with CHCl; and n-pentane. Compound 4 crystallizes in
the monoclinic P2,/c space group (Fig. 3b and S6 as well as Table
S2+) and also adopts a stacking arrangement to form a column
with a longitudinal offset along the molecular long axis (25.08°;
Fig. 3b and Sé6t) similar to that of 1. However, head-to-head
arrangements (6, = 0°) within the column were confirmed for
4 despite the presence of the electron-withdrawing isocyano
group (the dipole moment of 4 was estimated to be 4.41 D via
DFT calculations; Fig. S71). However, the stacking distance
between molecules of 4 is relatively short (~3.43 A), which is
almost identical to that of 1 with 6, = 180°. Thus, the dipole
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Fig. 3 Molecular structures of (a) 1 and (b) 4 in the single crystal.

moment of 4 should be cancelled out along the bc plane, i.e.,
orthogonal to the stacking direction (Fig. S81).

The different stacking arrangements of 1 (head-to-tail) and 4
(head-to-head) are most likely responsible for their different
Aem,max- Considering that the m-stacking distance and offset
angles within the co-facial 1D columns of 1 (3.44 A and 20.97°,
respectively) and 4 (3.43 A and 25.08°, respectively) are close,
a similar degree of excimer formation would be expected.
However, the Aem max Of 1 (495 nm) is longer than that of 4 (452
nm), which can be attributed to the stronger dipole-dipole
interactions of the former as revealed by its head-to-tail
arrangement (6, = 180°). Indeed, structurally simple anthra-
cene molecules have been reported to show longer wavelength
emission when excimer formation is assisted by dipole-dipole
interactions within the stacked dimers.*” The stronger excimer-
like character for the emission of 1 compared to that of 4 is
supported by the longer emission lifetime of the former
compared to that of the latter (Fig. S3 and Table S17).

Upon grinding, the emission band of 1 was blue-shifted
whereas that of 4 was red-shifted. Upon applying mechanical
stimulation using a spatula, the emission color of 1 changed
from green to light blue (Fig. 1). The resulting powder, 1.¢er,
showed a broad emission band with a Aemmax Of 478 nm
(Fig. 2a). Such a blue-shifted emission induced by grinding is
less common for luminescent mechanochromic compounds®**°
than a corresponding red-shifted emission. The ground powder
of 1,¢r showed an @, of 37% and an t,, of 45 ns, indicating
excimer-emission character (Fig. S9a and Table S3t).2*2*** In
contrast, when pristine 4 was mechanically ground, a red-
shifted emission band was observed (Fig. 2b). The ground
powder of 4 (4,f.,) showed light-blue emission (Fig. 1) with an
@ of 33% and an t,, of 31 ns (Fig. S9b and Table S37). This
long emission lifetime was attributed to excimer emission.?*?>***
The emission spectrum of 4, is broad and has a maximum at
470 nm, similar to that of 1 ger (Aemmax = 478 nm; Fig. 2).
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Importantly, we confirmed that unsubstituted pyrene molecules
exhibit no mechanochromic properties (Fig. S10t), indicating
that the introduction of the single isocyano group endows 1 and
4 with mechanochromic properties.

Powder XRD (PXRD) analyses indicated that 1, forms
a crystalline phase, while 4,¢., forms an amorphous phase. The
PXRD patterns of 1,¢er and 4,per Were compared with those
simulated for the corresponding pristine phases derived from
the single-crystal coordinates. The simulated pattern of 1 shows
three intense diffraction peaks at 9.40°, 10.93°, and 12.10°
(black line in Fig. 4a). After applying stress for a short time, new
crystalline peaks appeared at 9.47°, 11.31°, and 12.35°, while
the original diffraction peaks of 1 remained as shoulders (yellow
line in Fig. 4a). This result implies the coexistence of two
different crystalline structures of 1 in an intermediate state.*’
After thorough grinding, the residual shoulders derived from
the pristine molecular arrangement disappeared (red line in
Fig. 4a), suggesting that the mechanochromism of 1 is based on
a crystal-to-crystal phase transition, which is an uncommon
phase transition for mechanochromic compounds.®'3?5414
Conversely, upon mechanical stimulation of 4, the intensity of
the diffraction peaks (i.e., 26 = 10°-12°) of pristine 4 (black line
in Fig. 4b) decreased significantly in ground 4., and no new
diffraction peaks emerged (red line in Fig. 4b). This result
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Fig. 4 Simulated PXRD patterns of pristine forms derived from the
single-crystal structures (black lines) and experimental PXRD patterns
of the ground powders (red lines) of (a) 1 and (b) 4. The yellow line in (a)
is the PXRD pattern of the “intermediate” sample of 1, which was ob-
tained from grinding for a short time. Miller indices are shown for four
intense diffraction peaks of the simulated powder patterns of 1 and 4.
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indicates that a crystal-to-amorphous phase transition is the
origin of the mechanochromism of 4, which is typically
observed for this class of materials,®'>*5717,21,28:39,43,44

In ground-phase 1,per and 4,ger, “moderate” dipole-dipole
interactions might be formed compared to pristine 1 and 4. As
mentioned above, the dipole-dipole interactions along the
stacking direction in the crystalline phases of 1 and 4 are strong
and weak, respectively, as reflected in their corresponding 6,
values (~180° for 1 and ~0° for 4). These extreme 6, values of
the unground phases should become moderate (6, # 0° or 180°)
upon phase transition into the ground phases irrespective of
the crystalline (1,fe) Or amorphous phases (44fcer, Fig. 5). This
result indicates that the dipole-dipole interactions are most
likely weakened after the phase transition from 1 and
strengthened from 4 in terms of ¢, upon grinding (Fig. 5). This is
consistent with the blue-shifted emission of 1 and the red-
shifted emission of 4. Generally, in addition to 6., dipole-
dipole interactions are also affected by the torsional angles and
distance between the 7 planes relative to the stacking direction
(Fig. S111).* However, the lack of a detailed crystal-structure
analysis for unknown crystalline 1,¢., and amorphous 4, at
this stage hindered unveiling the effect of the torsional angles
and distances on the emission wavelength.

Upon thermal treatment, pristine 1 and 4 exhibited a similar
behavior to that induced by mechanical stimulation. Thus, heat-
ing a pristine solid sample of 1 to 100 °C resulted in an emission-
color change from green to light blue (Fig. S12at). The resulting
light-blue emission of 1 remained intact upon cooling to room
temperature (Fig. S12at). The light-blue-emitting crystals of 1 can
be regarded as 1,¢r because their emission spectrum and PXRD
patterns are similar to those of 1,¢., obtained from mechanical
stimulation (Fig. S12b and Si12ctf). Differential-scanning-
calorimetry (DSC) studies of 1 confirmed a thermal phase-
transition temperature of 100 °C (Fig. S13 and S14+t).* Similar
to 1, a solid sample of 4 showed thermoresponsive behavior
similar to that observed upon mechanical stimulation, ie.,
thermo-induced amorphization of 4 led to a red-shifted emission
band (Fig. S15%). These results indicate that mechanical stimu-
lation and thermal treatment induce the same phase transitions
in 1 and 4, leading to clear luminescent chromic behavior.

Compounds 1 and 4 are the luminescent mechanochromic
compounds with one of the lowest molecular weights (MW =
227) reported to date.*” Accordingly, we expected that it should
be possible to sublime 1 and 4 under mild conditions,
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Fig. 5 Schematic representation of the relationship of 6, within the
co-facial arrangements of the dipoles (depicted by arrows) in the
stacked dimer and the strength of the dipole—dipole interactions.
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potentially enabling the low-cost preparation of thin films. To
confirm this hypothesis, we conducted preliminary sublimation
experiments. After placing a solid sample of 1 in a round bottom
flask and reducing the pressure to 2.5 mbar while slowly
increasing the temperature, sublimation started at 40 °C
(Fig. S16at). "H NMR and polarized-optical-microscopy analyses
confirmed that the sublimated solid is 1, i.e., 1 did not undergo
decomposition and maintained crystallinity (Fig. S16b and
S177).*® A similar result was observed for pyrene 4, ie., subli-
mation occurred at 2.5 mbar and 50 °C (Fig. S18 and S197). Such
mild sublimation conditions (moderate pressure/low tempera-
ture) might enable the cost-efficient preparation of large thin
films. A more detailed analysis of the sublimation properties,
i.e., determination of the vapor pressure, and preparation of
thin films with a single domain of 1 and 4 will be the subject of
future work.

Conclusions

We have reported that structurally simple pyrene molecules 1
and 4, which bearing only one small isocyano group, exhibit
luminescent mechanochromism. Upon exposure to mechanical
stress, 1 showed a blue-shifted emission band as a result of
a crystal-to-crystal phase transition, while 4 exhibited a red-
shifted emission as a result of amorphization. The crystal-
structure analyses of 1 and 4 indicated that the change in the
strength of the dipole-dipole interactions with neighboring
molecules is the origin of their opposite emission-color
changes. The low molecular weight of these compounds
enables their sublimation under mild conditions (2.5 mbar and
40-50 °C). This study thus offers a new molecular-design
strategy to obtain mechanochromic compounds based on the
connection of one aromatic core and one small substituent.
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