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lysis of the illegal addition of
Atenolol in Panax notoginseng based on NIR–MIR
spectral data fusion and calibration transfer

Jie Du, Zhengwei Huang, Chun Li* and Ling Jiang *

To address the issue of the common illegal addition of Atenolol in Panax notoginseng, we propose an

approach that realizes multivariate calibration transfer between different particle sizes based on near-

infrared (NIR) and mid-infrared (MIR) spectral data fusion. To achieve high prediction accuracy, we

construct three data fusion schemes (full-spectrum fusion, feature-level fusion, and decision-level

fusion) that combine NIR and MIR spectral data. Among three data fusion schemes, the feature-level

fusion based on the UVE-SPA-PLS model for 120-mesh spectral data achieves optimal prediction

accuracy. Here, a Piecewise Direct Standardization (PDS) algorithm has been applied to calibration

transfer from 100-mesh and 80-mesh to 120-mesh to reduce the influence of particle size and improve

the robustness of the model. The correlation coefficient (R2) of 100-mesh, and 80-mesh prediction sets

can reach 0.9861 and 0.9823, respectively. The corresponding root mean square error (RMSE) are 0.1545

and 0.2045, respectively. This research provides a method for illegal additions in precious herbs and

reduces the effect of particle size on spectral modeling, enabling high-precision quantitative detection.

In addition, it has important application prospects in reducing experimental losses of precious medicinal

materials and ensuring the safe use of Chinese and Western medicines, which provides an alternative

method for non-destructive testing.
1. Introduction

As a precious traditional Chinese medicine (TCM) resource,
Panax notoginseng has remarkable efficacy in activating blood
circulation, reducing oedema, and enhancing immunity.1 Due
to the limited geographical areas suitable for its growth, the
larger demand for the product in the market has greatly stim-
ulated unscrupulous elements to provide inferior or shoddy
products to reap high prots.2 For example, anti-hypertensive
chemicals, such as Atenolol, and Nifedipine, are directly
mixed into Panax notoginseng powder to enhance its anti-
hypertensive effect.3,4 With the increasing awareness of the
health concept, the efficient and accurate quantitative method
for analyzing illegally added substances has become a hot
research topic in the eld of modern medicine and food.

Existing detection methods are mainly based on chemical
methods represented by physicochemical tests, gas chroma-
tography, and liquid chromatography.5 Although these tradi-
tional methods may be reliable, they are limited by the need for
complex sample pre-treatment and the inevitable loss of
precious TCM. As a fast, non-destructive, and simple technique
(only a small amount of samples need to be prepared), spectral
analysis technology combined with chemometric methods
mation Science and Technology, Nanjing,
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provides an alternative approach to quality testing of agricul-
tural products and drugs.6 Compared to conventional analytical
methods, the process of spectral analysis technology has the
advantages of rapid, accurate, and non-secondary pollution.
Besides, it provides robust analytical reproducibility and cost-
effectiveness without compromising the integrity of the
sample. Near-infrared spectroscopy (NIR, 700 to 2500 nm) can
provide information on the octave and combined-frequency
absorption of hydrogen-containing groups (e.g., C–H, O–H, N–
H) due to the high penetrating power.7 In recent years, NIR has
been widely used in multi-component analysis in the areas of
food, agriculture, pharmaceutical manufacturing, chemical
industry, and biomedicine. Mid-infrared spectroscopy (MIR,
2500 to 25 000 nm), which can effectively provide fundamental
frequency vibration information caused by internal vibration
and rotational energy level transitions of analyte molecules. It
has also been used in analyzing the vibrational modes and
chemical bonds of molecules, providing detailed information
about the molecular structure.8 By correlating the sample
spectra and their quality parameters through the calibration
model and the spectral information, the quality parameters of
the unknown samples can be predicted by machine learning
algorithms.9 However, quantitative analyses of illegal addition
in Panax notoginseng are a complex process. Panax noto-
ginseng usually contains a variety of bioactive components,
such as saponins, lactones, and saponic acids.10 These
© 2024 The Author(s). Published by the Royal Society of Chemistry
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components will interfere with the absorption in the spectra,
leading to difficulty in the quantitative analysis process. The use
of one technique in isolation may not provide sufficient infor-
mation to enable accurate prediction.

Multi-spectra data fusion achieves resource integration and
optimization by merging data from different sources and
complementing information between different instruments.11

By combining the respective advantages of these spectra, a more
accurate and superior prediction model can be obtained.12 The
basic physical origin of the MIR and NIR are the same. The
absorption bands in the infrared spectrum can be viewed as
molecular vibration-induced responses. The NIR is primarily an
overtone or combined vibration.13 However, in the MIR region,
absorption is mainly caused by fundamental frequency vibra-
tions, especially the fundamental vibrational leaps of polar
groups such as C]O or C–O. In contrast, the signals of these
groups are almost absent in the NIR region.14 Therefore, it is
necessary to fuse the NIR and MIR spectra to obtain more
complete information about the analyte, to improve the
prediction accuracy of the model.15 Spectral information fusion
strategies can be classied as full-spectrum fusion, feature-level
fusion, and decision-level fusion. Through different data fusion
strategies of NIR and MIR, Tao, LY study the process of liquid
extraction of various mixtures of two plants, Honeysuckle and
Artemisia annua. The correlation coefficient (R2) of the best
feature-level data fusion model were improved from 0.900 to
0.984 compared to a single spectral model.16 Xinhao Yang et al.
fused NIR and MIR to quantitatively detect 10-HDA. Compared
with the single NIR-model results, the accuracy of the feature-
level fusion model is improved from 0.8531 to 0.9585.17 These
studies mentioned above have proved that multi-spectral
information fusion technology can effectively improve the
accuracy and stability of the complex analysis model. However,
considering the difference in correlation between fusing 2 or
more spectra, the optimal fusion strategies requires for further
discussion. During the measurement of the spectral data, the
applicability and stability of the models are oen affected by
various multivariate calibration information, such as sample
morphology (e.g., particle size), environmental conditions (e.g.,
temperature), etc.18,19 As a common form in the pharmaceutical
and food elds, solid particles have signicant scattering
properties in both free powders and solidied compressed
forms. This directly results in the impact of particle size
parameters on the robustness and accuracy of NIR spectroscopy
models.20,21 Generally, the smaller the particle size of the ana-
lyte, the more stable the corresponding spectral information. To
ensure the accuracy of the quantitative analysis model, the
Panax notoginseng powder used for measurement needs to be
repeatedly sieved to ensure a smaller particle size, which inev-
itably increases the loss of precious herbs. To solve these
problems, Jinrui Mi et al. investigated the effect of sample
particle size on NIR. A new particle size regression correction
(PRC) method was introduced to accurately differentiate three
different samples (rice, glutinous rice, and sago).22 However,
this method usually requires large standard sample volumes
and sample pre-treatment and processing are time-consuming
and costly.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Based on the similarity of data distribution between
different domains, the calibration transfer strategy transfers the
trained data model to another related but different data.23

Utilizing a set of standard samples from two instruments, this
method is commonly used to solve the process differences
between different test conditions.24 For example, the evapora-
tion of ethanol directly affects the accurate detection of alcohol
concentration in high-temperature environments. With the
introduction of a calibration transfer model in short-wave NIR
(SW-NIR), Barboza et al. achieved the same prediction accuracy
as 20 °C at 25 °C, 30 °C and 35 °C conditions. The accuracy and
stability of the prediction model have been signicantly
improved, especially at these higher temperatures.25 The cali-
bration transfer method can effectively avoid errors caused by
different temperatures. Considering the excellent characteris-
tics, model transfer can also be used to reduce the impact of
different particle sizes on NIR data. During the modeling
process, we further investigate the calibration transfer strategy
between different particle sizes based on data fusion strategies
to reduce the loss of traditional Chinese medicine in subse-
quent practical tests.

In this work, we investigate spectral characteristics of
mixtures of Atenolol and Panax notoginseng at different
concentrations and wavelengths in the NIR and MIR. To further
improve the predictive accuracy, we establish three quantitative
models using full-spectrum, feature-level, and decision-level
fusion methods. Aer comparing the model results, the best
UVE-SPA-PLS dual-band feature fusion model has been selected
for further use. To reduce the NIR spectral variability caused by
granularity, the PDS method is used for transfer learning with
different particle sizes based on feature-level fusion. In the
quality inspection of illegally added Panax notoginseng, the
model prediction accuracy of this method at 80-mesh and 100-
mesh can reach close to 120-mesh. This study provides
a comprehensive method for the rapid detection of unreason-
able combinations of Chinese and Western medicine and has
profound implications for ensuring the safety of medicine
dosage.

2. Materials and methods
2.1 Sample preparation

Atenolol was purchased from Sigma-Aldrich (Sigma-Aldrich Co.,
St. Louis, MO, USA) and had a purity exceeding 99%. Panax
notoginseng was purchased from Nanjing Tongrentang Health
Pharmaceutical Group (Nanjing, China) and ground into solid
powders. Before sample preparation, all of the materials were
dried at 40 °C for 8 hours. The Atenolol was mixed with Panax
notoginseng in different proportions. To ensure uniform mix-
ing, we shook mixtures with a shaker for 1 minute. Then the
samples were screened sequentially with 80-mesh, 100-mesh,
and 120-mesh sieves, with a total of 189 samples. Each mesh
has the same 21 different concentrations in which the atenolol
concentration ratio increases in the range of 0.5–20%. To avoid
the inuence of the instrument, each sample had been tested 3
times, and the average of the three measurement results was
taken as the nal measurement result for the sample.
RSC Adv., 2024, 14, 12428–12437 | 12429
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2.2 Spectra acquisition

NIR spectra were collected with the UV-VIS-NIR spectropho-
tometer (Lambda 950, PerkinElmer, USA). Every spectrum was
recorded as the average of 64 scans in the spectral range of
860–2500 nm with 2 nm resolution. FT-MIR spectra were
collected with a Frontier FT spectrometer (Vertex 80v, Bruker,
USA). All spectra were recorded within the spectral range of
4000–400 cm−1 with 4 cm−1 resolution, and 16 scans were
averaged. Notably, compared to MIR, the operations for NIR
are simpler with the mixture placed directly in the module and
attened for direct measurement. In MIR, to minimize vari-
ability due to path length in sample preparation with KBr, we
use spectral grade purity KBr. In the sample preparation
process, we made mixture of 120-mesh samples and KBr in the
ratio of 1 : 150. The mass of KBr is xed and is deducted as
background during the tests. The 120-mesh samples and KBr
were thoroughly ground in an agate mortar under infrared
light. The mixture was then poured into the HF-12 non-
removable infrared pressing mould and pressed under a pres-
sure of 15 MPa to make akes.26 In addition, MIR needs
compensation operations to eliminate the effects of H2O and
CO2. In large sample measurements, the sample preparation
process of NIR has more advantages compared with MIR.

2.3 Spectral pre-treatment

The raw spectra obtained from the spectrometer are easily
affected by the physical properties of the sample, background
information, and noise interference. Optimal pre-processing of
the raw spectra can reduce the noise information and effectively
extract the key information.27,28 Standard Normal Variate (SNV)
transformation, Savitzky–Golay (SG),29 Multivariate Scatter
Correction (MSC) and their combinations are chosen as pre-
processing approaches in this study. The SNV and MSC can
eliminate the effects of scattering due to uneven particle
distribution, thereby enhancing the correlation between spectra
and data. However, noise is still present, so the SG smoothing
algorithm is used to smooth the spectrum to eliminate high-
frequency noise and improve the signal-to-noise ratio. The
principle of SG is to t a least squares polynomial to the data in
a moving window. A polynomial of order k is synthesised from
the data of an odd number of equidistant points in the window
to compute a weighted average sum of the points near the
centre of the window. It is therefore also known as a polynomial
smoothing algorithm. The calculation formula is shown below:

xk;smooth ¼ xk ¼ hi

H

Xþw

i¼�w
xkþihi (1)

where h is the smoothing coefficient, obtained by tting
a polynomial through the least squares method, the coefficient
may cut down the misclassication of valid information
produced by the smoothing operation, and to some extent make
up for its own disadvantage.

By applying the classic Kennard-Stone (KS) uniform
sampling algorithm to the NIR, the samples are divided into
a 2 : 1 ratio, resulting in 42 samples for the calibration set and
21 samples for the prediction set.
12430 | RSC Adv., 2024, 14, 12428–12437
2.4 Feature variable extraction

Due to the complexity and high dimensionality of molecular
information contained in infrared spectral data, feature selec-
tion methods are commonly employed to extract relevant
information for the accurate and efficient analysis of complex
mixtures. In this study, we mainly use Sparse and informative
Partial Least Squares (SiPLS), Successive Projections Algorithm
(SPA), and Uninformative Variable Elimination (UVE) for data
compression and wavelength selection of the spectral features.
The UVE is a commonly used feature wavelength selection
algorithm in infrared spectral analysis, aimed at eliminating
variables that do not provide useful information.30 In particular,
when the number of variables is much larger than the number
of samples, this method effectively reduces the impact of irrel-
evant features. The SiPLS algorithm identies a sparse and
informative subset of features highly correlated with the
response variables.31 The SPA is a forward iterative search
method that aims to select spectra with minimal redundancy. It
is important to note that during the iteration process, the SPA
selects new variables that have the maximum projection onto
the previously selected variables, which may result in the
exclusion of useful information with smaller projections.32

Therefore, a comprehensive consideration needs to be consid-
ered when applying these approaches.
2.5 Spectral fusion

Based on the fusion structure of multi-spectral data, the fusion
strategies can be classied into three categories: full-spectrum
fusion, feature-level fusion, and decision-level fusion. Aer
preprocessing, the spectral data from different wavelengths
are directly concatenated to form a specic ngerprint of the
samples, serving as the input variables for the full-spectrum
fusion model. In this study, considering that the MIR and
NIR are acquired on different instruments, we normalise the
spectral data to avoid disconnections at fusion points. In the
feature-level fusion, preprocessed spectral data from different
wavelengths are separately subjected to several feature
extraction methods (such as UVE, SPA, and SiPLS) to extract
informative features. These features are then concatenated
into a single feature matrix for multivariate analysis. As it
enhances the correlation between the input variables and the
substance information in the mixture, feature-level fusion is
more effective compared to full-spectrum fusion. In the
decision-level fusion, pre-processed spectral data from
different wavelength sources are analyzed by separate multi-
variate analysis models, and the results from each model are
integrated to obtain the fused prediction results at the deci-
sion level. In this study, we employ the entropy-weighted
TOPSIS voting mechanism, calculating the entropy weight of
each spectral model and combining it with the TOPSIS method
to compute the optimal and worst distances for each crite-
rion.33 This process yields a comprehensive score for each
spectral model, determining the weights of each spectral data
which can be expressed as:

yp-topsis = nyNIR + myMIR (2)
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra08183d


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
16

/2
02

5 
9:

03
:0

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
where, yp−topsis represents the predicted values of prediction
sets from the TOPSIS. yNIR and yMIR represent the predicted
values of the prediction set in the NIR and MIR regions,
respectively. n and m represent the weights of the NIR and MIR
indicators in the TOPSIS calculation.

In addition, we also employ Multiple Linear Regression
(MLR) to obtain the integrated results at the decision-level
fusion.34 The equation for MLR can be expressed as:

yp-MLR = b + k1yNIR + k2yMIR (3)

where, yp−MLR represents the predicted values of prediction
sets, obtained from the decision-level data fusion by MLR. k1
and k2 represent the coefficients of MLR for the NIR and MIR
regions, respectively. b is the intercept of the MLR equation.

2.6 Calibration transfer based on PDS

Most methods inmodel transfer for spectral data rely on labeled
samples. Labeled sample model transfer algorithms involve
establishing a functional relationship between spectra, pre-
dicted values, or model parameters obtained from corre-
sponding spectra collected on the host and target machines
using labeled standard samples.35 In this study, we employ the
Piecewise Direct Standardization (PDS) method for the model
transfer.36 The PDS method utilizes transfer matrices F80 and
F100 to transform NIR spectra X80s and X100s (target spectra) into
NIR spectra X120m (host spectra X80m and X100m). The specic
implementation steps of PDS are as follows:

X80,i = [X80s,i−j, X80s,i−j+1, X80s,i+k−1, X80s,i+k] (4)

X100s,i = [X100s,i−j, X100s,i−j+1, X100s,i+k−1, X100s,i+k] (5)

X120,i = X80,iF80,i (6)

X120,i = X100s,iF100,i (7)

X80m,un = X80,unF80 (8)

X100m,un = X100,unF100 (9)

where, X120,i represents the spectral matrix of the standard
sample at wavelength point i of 120-mesh. X100,i and X80,i

represent the spectral matrices on both sides of the i-th wave-
length point with selected window widths of size k + j + 1. F80,i
and F100,i represent conversion coefficients of i-th wavelength.
F80 and F100 represent the conversion coefficients of all wave-
lengths. X80,un and X100,un represent the spectral matrix of
unknown samples at 80-mesh and 100-mesh.

We select the standard sample spectral matrix X120,i corre-
sponding to the i-th wavelength point of the 120-mesh NIR
spectrum data from the spectral segments X80s,k+j+1 and
X100s,k+j+1, which are of size k + j + 1, on both sides of the i-th
wavelength point in the NIR standard sample spectral matrices
X80 and X100. These segments form the matrices X80,i and X100,i,
respectively. The X120,i associated with X80,i and X100,i. To
determine the conversion coefficients F80,i and F100,i, we use the
PLS method. By iterating through i, the conversion matrices F80
© 2024 The Author(s). Published by the Royal Society of Chemistry
and F100 are computed for all wavelengths within the full
spectral range. For achieving transfer spectra consistent with
the 120-mesh spectra, the spectra of unknown samples X80,un

and X100,un at 80-mesh and 100-mesh are segmented into opti-
mized window sizes. Through an iterative process, the transfer
spectra X80m,un and X100m,un can be obtained.
3. Results and discussion
3.1 Spectral data and pre-processing analysis

Fig. 1a and b show the average spectral data between NIR and
MIR in which the Atenolol concentration ratio increases in the
range of 0.5–20%. Due to the internal molecular vibration of
Panax notoginseng, many characteristic peaks can be observed
in the wavelength region of 4000–11 627 cm−1. From Fig. 1a, it
can be seen that the absorbance of the NIR spectra decreases
with the increased concentration ratio. There is an obvious
negative correlation between the concentration ratio of atenolol
and the absorbance of the mixture. As shown in Fig. 1b, similar
to NIR spectra, MIR spectra can also be regarded as the
ngerprints of the mixture. As the concentration of atenolol
increases, the absorbance of the mixture also increases,
showing a positive correlation that can be used for further
investigation and analysis of the content and interaction
between Atenolol and Panax notoginseng in the mixture.

The raw NIR and MIR spectra contain a lot of information
about the chemistry and structure of the sample, but there
exists peak overlap and interference from background signals
and noise. To improve the signal-to-noise ratio of the spectral
data and make the spectral features more obvious, ve main
methods have been selected for analysis: SG, SNV, MSC, SG +
SNV, and SG + MSC. Partial Least Squares (PLS) has been used
to predict Atenolol concentrations. In SG, we adopt a window
size of 5 and a third degree polynomial. As shown in Fig. 2,
through the introduction of pre-processing algorithms, the
accuracy of NIR and MIR models can be effectively improved.
Aer the pre-processing with SG + SNV and MSC, the prediction
accuracy R2 of NIR and MIR can be improved to 0.8409 and
0.8373, respectively, improving the correlation between spectral
information and the content of the substance.
3.2 Quantitative analysis of using spectral fusion

3.2.1. Prediction results using full-spectrum fusion. To
further improve the prediction accuracy and compensate for the
loss of information caused by single-band modeling, we fuse
the spectra of MIR and NIR. Full-spectrum data fusion is the
process of concatenating all source data into a single matrix in
sampling order. In this study,the fused data is a two-band
spectral matrix with a total of 2661 wavelength points.

We apply the classic Kennard-Stone (KS) uniform sampling
algorithm to the NIR and MIR, with a total of 126 samples. Each
spectrum has the same 21 different concentrations with 3
samples. The samples are divided into a 4 : 1 ratio, resulting in
101 samples for the calibration set and 25 samples for the
prediction set. As shown in Fig. 3, the prediction results of R2

obtained from PLS, Support Vector Machine (SVM) and Back
RSC Adv., 2024, 14, 12428–12437 | 12431
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Fig. 1 The spectra of the mixture of Atenolol and Panax notoginseng in (a) NIR and (b) MIR.

Fig. 2 The R2 and RMSE for pre-processing methods in NIR and MIR.
Fig. 3 Model construction results of prediction set under different
data fusion methods.
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Propagation Neural Network (BPNN) algorithms can reach
0.8813, 0.8351 and 0.8794, respectively. To avoid over-tting,
the maximum number of latent variables is set to 6 for the
PLS model, and the optimal latent variables (LVs) used for each
PLSmodel are determined by the 10-fold cross validation. Based
on the PLS prediction model, the R2 can be improved by 4.80%,
and the RMSE can be reduced by 26.99% compared to the single
NIR prediction model with higher accuracy. The SVM uses the
radial basis function to train the model, with the penalty factor
(c) set to 5 and the maximum number of iterations set to 100. In
BPNN, we mainly focus on three data-type parameters, the
number of hidden layers (l), the number of hidden neurons (n),
learning rate (lr) and a non-data-type parameter transfer func-
tion with Tan-sigmoid, l = 2, n = 6, lr = 0.01. The SVM and
BPNN prediction models do not show signicant improvement
in R2 value due to limited sample size and linearity between
Atenolol concentrations and spectral absorbance.

The merging of dual-band spectral data improves the overall
quality and richness of data. This allows for better
12432 | RSC Adv., 2024, 14, 12428–12437
comprehension of the content of the illegal addition of Atenolol
in the complex mixture by PLS, SVM, and BPNN. However, this
method signicantly increases the redundancy of spectral data
and the workload of data processing, as well as the complexity
of model manipulation.

3.2.2. Prediction results using feature-level fusion.
According to previous research, feature-level fusion usually
achieves higher accuracy and reliability, and its performance
exceeds that of full-spectrum fusion. This approach can extract
and integrate the most informative and discriminative features
from each source, thereby improving the representativeness of
the data. Therefore, we further explore the impact of feature-
level fusion on the quantitative analysis of illegally added Ate-
nolol in Panax notoginseng. Feature-level fusion selects features
separately from different spectra and combines them into
a feature matrix. The extracted feature variables are concate-
nated into multiple dual-band fused feature matrices. Based on
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the optimal combination of dual-band fusion feature matrices,
the introduced PLS algorithm is used to establish the nal
fusion model, thereby obtaining the best description of the
illegally added Atenolol content in Panax notoginseng.

In this model, we introduce the UVE algorithm to eliminate
irrelevant variables. However, during the modeling process, we
nd that the remaining effective wavelength points are still
much larger than the sample size, resulting in high complexity
and overtting of the model. To solve these problems, we use
the SPA algorithm to further eliminate redundant information
and covariance between variables based on the characteristic
wavelength selected by UVE. As shown in Fig. 4a, aer the
feature extraction operations mentioned above, 10 variables are
retained by UVE-SPA in NIR. In Fig. 4b, only 8 variables are
selected by UVE-SPA in MIR. The extracted variables contain
most of the information in the spectral data, which improves
model training efficiency. To ensure the accuracy of the
prediction model, we also make a comprehensive comparison
of SiPLS, UVE, and SPA feature extraction algorithms. The UVE-
SPA feature-level fusion model demonstrates the best predic-
tion potential, as shown in Fig. 3. With the optimal PLS algo-
rithm obtained from fusion results, the R2 and RMSE of the
prediction model can reach 0.9906 and 0.1390, respectively.

It is worth noting that the model established by dual-band
feature fusion not only contains more feature information of
illegally added Atenolol but also has signicant advantages
compared with the model obtained from simple data concate-
nation. Taken together, the UVE-SPA feature extraction method
has been utilized to highlight the spectral variables related to
the illegal addition of Atenolol.

3.2.3. Prediction results using decision-level fusion. The
decision-level fusion approach aims to compensate for the
limitations of each model on a single modality by combining the
decision outputs of multiple models. Different models can
capture different aspects or features of the data, and by inte-
grating this diverse information, a more comprehensive and
accurate decision can be obtained. Furthermore, decision-level
fusion can increase the robustness of the model, mitigating
the impact of misjudgments or erroneous decisions made by
Fig. 4 Feature variables after UVE-SPA selection: (a) NIR and (b) MIR.

© 2024 The Author(s). Published by the Royal Society of Chemistry
a singlemodel. Therefore, we further explore the improvement of
constructing a dual-band PLS model using decision-level fusion.

In this study, the SNV-SG and MSC algorithms have been
used to pre-process the NIR and MIR spectral data of the doped
Panax notoginseng samples. Based on the UVE-SPA algorithm,
we perform feature extraction on the processed spectra.
Subsequently, the decision-level fusion approach is employed to
combine the results of these individual models using the
TOPSIS and MLR. The decision-level fusion formula based on
TOPSIS and MLR can be calculated with the following
equations:

yp-topis = 0.4073yNIR + 0.5927yMIR (10)

yp-MLR = 0.3566yNIR + 0.6058yMIR − 0.0013 (11)

It is worth noting that although the decision-level fusion
based on MLR achieves higher prediction accuracy (R2 = 0.9524
and RMSE = 0.6241), it is still signicantly insufficient
compared with the dual-band feature fusion results, as shown
in Fig. 3. Since the decision-level fusion only combines or
weights the prediction results of individual NIR and MIR
spectra, which results in the information loss. Furthermore,
both MIR and NIR originate from the same type of molecular
vibrations, the results of NIR and MIR have a certain linear
correlation. Therefore, in decision-level fusion, data fusion of
NIR and MIR is less advantageous than feature-level fusion.

In summary, we perform a detailed comparison of several
quantitative prediction models for the concentration of illegally
added Atenolol in Panax notoginseng. The actual and predicted
concentration of Atenolol tting results based on a single 120-
mesh NIR with PLS, full-spectrum fusion with PLS, feature-level
fusion with UVE-SPA, decision-level fusion with MLR in
Fig. 5a–d, respectively. The UVE-SPA-PLS model based on the
fusion of the dual-band features of NIR and MIR spectra ach-
ieves high-precision quantitative detection, with R2 of 0.99816.
Compared with previous studies using spectral fusion strategy,
this study further expands the research scope of spectral fusion
strategy in addressing the safety issues of Panax notoginseng.
RSC Adv., 2024, 14, 12428–12437 | 12433
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Fig. 5 Fitting results between predicted values and actual values of Atenolol: (a) PLS-NIR, (b) PLS-NIR–MIR, (c) UVE-SPA-PLS and (d) MLR-PLS
best algorithm for different data fusion strategies.
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3.3 Calibration transfer based on NIR and MIR spectral data
fusion

The reduced mesh numbers can effectively avoid the loss of
precious medicinal materials during the experiment. However,
the larger particle size of Panax notoginseng powder will enhance
the scattering effect of NIR transmission spectra in the sample.
Wemeasure spectral data for particle sizes of 80 (0.18–0.25 mm),
100 (0.154–0.18mm), and 120 (0.125–0.154 mm)mesh, as shown
in Fig. 6a–d, respectively. With the increased particle size, the
NIR absorption spectra of the Panax notoginseng mixtures have
been signicantly affected at the same concentration, especially
in the range of 4000–5000 cm−1 wavelength range. The signal-to-
noise ratio of spectral data will directly affect the accuracy and
stability of the prediction model. In the wavelength range of
5000–9000 cm−1, although the NIR absorption spectrum line
uctuates slightly, the overall absorption intensity shis upward
with the increased particle size, which directly leads to the
overlap with low-concentration spectral data. An effective
method that can avoid the interference caused by the particle
size has become an indispensable and important factor in opti-
mizing the quality detectionmodel. Consequently, it is necessary
to further utilize chemometrics methods to reduce the effect of
granularity on the NIR spectral model and enhance the robust-
ness of the quantitative analysis model.

To quantify the effect of particle size on the NIR model, the
PLS algorithm is used to model the NIR spectral data of the 80-
mesh and 100-mesh samples. To further explore the impact of
12434 | RSC Adv., 2024, 14, 12428–12437
particle size on the prediction results, the spectral data at 80-
mesh, 100-mesh, and 120-mesh have been used for modeling
comparison. As shown in Table 1, the predictive performance of
the 80-mesh model is signicantly lower than that of the 120-
mesh sample under the same spectral scanning conditions. The
R2 and RMSE of the 120-mesh model can reach 0.8409 and
1.7480, while the RMSE of 80-mesh and 100-mesh single NIR
models can only reach 1.9445, 1.8921, and the R2 can reach
0.8313, 0.8362, respectively.

Considering the robustness and applicability quantitative
analysis model, we use a PDS transfer model to eliminate the
effect of particle size in the NIR spectra. In the PDS method used
formodel transfer, two important parameters (calibration window
width and number of standard samples) need to be selected and
optimized. During transmission, a small calibration window
width will hinder adequate characterization of spectral informa-
tion between different particle sizes. On the contrary, if the width
of the calibration window is too large, it will be necessary to
increase the number of standard samples with different particle
sizes, thereby increasing the loss of precious medicinal materials.
Furthermore, as another important parameter, an insufficient
number of standard samples may result in the inability of the
transmission matrix to characterize the master and slave spectra
accordingly. In the transfer learning process of Panax notoginseng
powder particle size, a reasonable selection of standard samples
that can effectively reect the instrumental differences is the key
to obtaining the best calibration transfer results.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 NIR spectra of mixtures of different Atenolol concentrations: (a) 20%, (b) 15%, (c) 5%, and (d) 1% at different particle sizes.

Table 1 Results for single and fusion models for different meshes pre- and post-PDS

Mesh Method Standard samples Window width R2 RMSE

120-Mesh NIR — — 0.8409 1.7480
NIR–MIR — — 0.9906 0.139

100-Mesh NIR — — 0.8362 1.8921
PDS–NIR 3 7 0.8379 1.7563
NIR–MIR — — 0.9879 0.8021
PDS–NIR–MIR 3 7 0.9861 0.1545

80-Mesh NIR — — 0.8313 1.9445
PDS–NIR 5 9 0.8336 1.7714
NIR–MIR — — 0.9783 0.9013
PDS–NIR–MIR 4 9 0.9823 0.2045
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As shown in Fig. 7a and b, window sizes of 3, 5, 7, 9, and 11
are selected, and 1 to 17 standard samples are chosen from the
80-mesh and 100-mesh calibration sets. By comparing the
RMSE, a window width of 9 with 4 standard sample-model
yields the minimum RMSE for the 80-mesh NIR spectra data,
which are considered the optimal parameters. Similarly,
a window width of 7 with 3 standard sample-model yields the
minimum RMSE for the 100-mesh NIR spectra data. With the
introduced UVE-SPA-PLS model, the prediction accuracies R2 of
the illegally added Atenolol's concentration can be improved by
0.147, 0.1517, and the RMSE can be reduced by 1.0432, 1.09,
respectively. Based on the PDS algorithm, the model fusion
strategy shows excellent performance when migrating the NIR
spectra data of 80-mesh and 100-mesh to 120-mesh. It also
© 2024 The Author(s). Published by the Royal Society of Chemistry
improves the prediction accuracy of illegally added Atenolol in
Panax notoginseng. The RMSE of the PDS-UVE-SPA-PLS model
can be reduced to 0.2045 and 0.1545. The R2 can reach 0.9823
and 0.9861, respectively. These results conrm that the model
transfer combined with the spectral fusion strategy can reduce
the interference of the particle size on the NIR spectra, and
enable 80-mesh and 100-mesh to achieve high accuracy close to
120-mesh. With the method mentioned above, we can appro-
priately reduce the particle size requirements in subsequent
measurements to reduce the loss of precious herbs. Further-
more, this method can achieve further improvement of the
accuracy without the need to repeat the modeling and measure
the MIR data of 80-mesh and 100-mesh, ultimately simplifying
experimental procedures.
RSC Adv., 2024, 14, 12428–12437 | 12435
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Fig. 7 Parameters selection of standard samples and window widths of PDS via UVE-SPA-PLS model at different meshes: (a) 80-mesh and (b)
100-mesh.
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4. Conclusions

In this study, for the illegal addition of Atenolol in Panax
notoginseng, highly accurate quantitative analysis based on
different particle sizes has been realized based on NIR and
MIR feature-level fusion strategy combined with PDS calibra-
tion transfer. The qualities of infrared spectra have been
signicantly improved aer pre-processed by SNV + SG, and
MSC, respectively, which lays the foundation for an accurate
analysis. The NIR and MIR spectroscopies are used separately
and in combination to estimate the concentration of Atenolol.
Three model fusion strategies (full-spectrum fusion with PLS,
feature-level fusion with the selected spectral parameters by
UVE and SPA, and decision-level fusion with the predicted
results by MLR) are discussed. The UVE-SPA-PLS model shows
the best performance, achieving the highest R2 of 0.9906 and
the lowest RMSE of 0.139. To reduce the effect of particle size
on the NIR model, we use PDS to migrate 80-mesh and 100-
mesh into the 120-mesh UVE-SPA-PLS model, while the 120-
mesh MIR spectra remain unchanged in fusion model. It
effectively improves the prediction accuracy at 80-mesh and
100-mesh particle sizes, respectively. The RMSE of the PDS-
UVE-SPA-PLS model can be reduced to 0.2045 and 0.1545,
and the R2 can reach 0.9823 and 0.9861. This study proves that
the fusion strategy combined with calibration transfer is
a promising method to reduce the interference of the particle
size on the NIR spectra and enable 80-mesh and 100-mesh to
achieve high accuracy close to 120-mesh. In the subsequent
measurement, the requirement for particle size can be
appropriately reduced to minimize the loss of valuable
medicinal herbs and reduce interference in the detection of
other spectra or substances.
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Automatica, 2021, 133, 109865.

30 J. P. M. Andries, Y. Vander Heyden and L. M. C. Buydens,
Anal. Chim. Acta, 2017, 982, 37–47.

31 X. Y. Gao, Z. S. Y. Zhang, C. C. Lu, Y. J. Meng, H. M. Cao,
D. Y. Zheng, L. Zhang and Q. L. Xie, Spectrosc. Spectral
Anal., 2023, 43, 50–56.

32 X. D. Yang, G. L. Li, J. Song, M. J. Gao and S. L. Zhou,
Spectrochim. Acta, Part A, 2018, 205, 457–464.

33 Q. Y. Meng, C. L. Zhang, T. Song and N. L. Li, presented in
part at the Sustainable Environment And Transportation,
PTS, 2012, pp. 1–4.

34 J. X. Lin, presented in part at the Electronic Information and
Electrical Engineering, 2012.

35 M. Sohn, D. S. Himmelsbach, F. E. Barton and J. A. de
Haseth, Appl. Spectrosc., 2009, 63, 1190–1196.

36 J. X. Wang, Z. N. Xing and J. Qu, Spectroscopy, 2013, 28, 36–
41.
RSC Adv., 2024, 14, 12428–12437 | 12437

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3ra08183d

	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer

	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer

	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer
	Quantitative analysis of the illegal addition of Atenolol in Panax notoginseng based on NIRtnqh_x2013MIR spectral data fusion and calibration transfer


