
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
1/

15
/2

02
5 

2:
22

:3
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Augmenting a tra
aReceptor.AI Inc., 20-22 Wenlock Road, Lond
bInstitute of Molecular Biology and Genetics

Ukraine, 150 Zabolotnogo Str., Kyiv 03143,
cInstitute of Organic Chemistry and Biochem

CZ-166 10, Czech Republic
dDepartment of Physics of Biological Syste

Academy of Sciences of Ukraine, 46 Nauky A
eDepartment of Biophysics and Medical Infor

“Institute of Biology and Medicine”, Taras

Volodymyrska Str., Kyiv 01601, Ukraine
fDepartment of Physical Chemistry, Faculty o

listopadu 12, Olomouc 771 46, Czech Repub

† Electronic supplementary informa
https://doi.org/10.1039/d3ra08147h

Cite this: RSC Adv., 2024, 14, 1341

Received 28th November 2023
Accepted 21st December 2023

DOI: 10.1039/d3ra08147h

rsc.li/rsc-advances

© 2024 The Author(s). Published by
ining dataset of the generative
diffusion model for molecular docking with
artificial binding pockets†

Taras Voitsitskyi, *ad Volodymyr Bdzhola, b Roman Stratiichuk,ae Ihor Koleiev,ad

Zakhar Ostrovsky,a Volodymyr Vozniak,a Ivan Khropachov,a Pavlo Henitsoi,a

Leonid Popryho,a Roman Zhytar,a Semen Yesylevskyy, acdf Alan Nafiieva

and Serhii Starosyla a

This study introduces the PocketCFDM generative diffusion model, aimed at improving the prediction of

small molecule poses in the protein binding pockets. The model utilizes a novel data augmentation

technique, involving the creation of numerous artificial binding pockets that mimic the statistical patterns

of non-bond interactions found in actual protein–ligand complexes. An algorithmic method was

developed to assess and replicate these interaction patterns in the artificial binding pockets built around

small molecule conformers. It is shown that the integration of artificial binding pockets into the training

process significantly enhanced the model's performance. Notably, PocketCFDM surpassed DiffDock in

terms of non-bond interaction and steric clash numbers, and the inference speed. Future developments

and optimizations of the model are discussed. The inference code and final model weights of

PocketCFDM are accessible publicly via the GitHub repository: https://github.com/vtarasv/pocket-

cfdm.git.
Introduction

Molecular docking plays a central role in modern computa-
tional drug discovery. Until recently docking was the only
available method of predicting the poses of small molecules in
the binding pockets of target proteins fast enough to be useful
in large-throughput virtual screening projects. Despite its ulti-
mate importance, there is a notable stagnation in improving the
docking versatility, accuracy, computing cost, and predictive
power.1,2 Being based on inevitably simplied empirical
potentials of intermolecular interactions and lacking explicit
solvent, the docking scoring functions have arguably reached
a plateau of practical accuracy. Despite a number of recent
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f Science, Palacký University Olomouc, 17

lic

tion (ESI) available. See DOI:

the Royal Society of Chemistry
developments in the eld, all of them are incremental
improvements and domain-specic tuning rather than tech-
nological breakthroughs.

However, recent advancements in deep learning methodol-
ogies for predicting ligand poses in the protein binding pockets
provide a promising alternative to docking algorithms. These
techniques can be categorized into two primary groups.

The models from the rst group utilize a one-shot inference
regression-based approach.3,4 They are developed with the aim
of very fast inference, which is superior to traditional docking
simulations. The geometric vector perceptrons (GVP) and
equivariant graph neural networks (EGNN) are the most
popular architectures for those types of models.5–7 Such tech-
niques as EquiBind4 and TANKBind3 demonstrated efficacy in
predicting protein–ligand binding structure without prior
knowledge about the binding pocket (also known as blind
docking) while being faster than traditional docking techniques
by several orders of magnitude. However, they still suffer from
unrealistic ligand conformations and numerous sterical clashes
in predicted complexes, which puts them behind the docking
approaches in terms of structure quality and reliability. A
possible reason for this is a mismatch between the objectives of
molecular docking and the regression paradigm. Particularly,
the accuracy metrics in molecular docking are based on struc-
tural similarity, rather than a regression loss.

The second and currently state-of-the-art approach uses
generative AI models, which aim to be on par or better than
RSC Adv., 2024, 14, 1341–1353 | 1341
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classic docking techniques in terms of accuracy and structure
quality. The DiffDock,8 a current leader in the eld, demon-
strates superior performance in comparison to some conven-
tional docking techniques and the previous ML models in the
blind docking scenarios. It produces much less steric clashes
than its rivals and generates realistic ligand conformations.
However, the enhanced precision of DiffDock comes at the cost
of a substantial computational burden, which is on par with
that of traditional docking methods. Since there is a signicant
potential for improvement in terms of inference speed, it makes
generative models the most promising in the eld at the
moment of writing.

The major bottleneck, which hampers further improvement
of the generative ligand pose prediction models, is the inher-
ently limited amount of the training data. The overall number of
experimentally determined protein–ligand complexes resolved
by X-ray, Cryo-EM, or NMR techniques is now below 20 000. The
PDBbind database,9,10 which is a primary dataset for machine
learning in protein binding site prediction11,12 and ligand pose
prediction,3,4,8 contains 19 443 distinct protein–ligand
complexes with the binding activity annotations (version 2020).
Out of this, 2709 entries involve peptide ligands or multiple
molecules in a single binding pocket; 3827 have an insufficient
resolution (2.5 angstroms and more); 3523 contain weak
binders (Kd/Ki/IC50 > 10 mM) and 216 lack condent activity
measurements. Thus there are only 10 270 high-quality
complexes, which could be used for model training

Another issue of the experimental complexes is ligand data
sparsity. There are 12 815 distinct small molecule ligands in
PDBbind, of which only 1655 appear in two or more entries
(Fig. 1). It indicates that ML-based approaches are mostly pre-
sented with a particular ligand bound to a single protein
without any information about the possible variability of its
binding modes. This might lead to overtting to a single ligand
pose, which wouldn't be the case when working with more
dense data as was demonstrated for the affinity prediction
models.13
Fig. 1 The cumulative sums of entries in the PDBbind database
assigned to a unique ligand, unique protein, or unique protein family.
Note that the count of proteins and families may exceed the total
number of complexes in PDBbind because a single PDB structure may
be assigned to multiple entries.

1342 | RSC Adv., 2024, 14, 1341–1353
In addition, the proteins are represented very unevenly in
available data. The protein data bank (PDB) identiers of 19 443
protein–ligand complexes are associated with 4749 unique
UniProt14 identiers, but 1.500 most frequently occurring
identiers accounting for ∼80% of the total number of
complexes (Fig. 1). The same is true for the protein families:
a total of 1646 distinct protein families and superfamilies are
present but the top 100 families account for almost 60% of
complexes (Fig. 1). Thus, despite a signicant overall variety of
proteins, there is an obvious overrepresentation of some
proteins and protein families, which may lead to model over-
tting and imbalance.

There is little doubt that an insufficient overall number of
samples, limited ligand diversity, and protein representation
imbalance in the available data for model training are impair-
ing the accuracy of ML-based approaches to the ligand pose
prediction. These limitations are especially noticeable when
comparing the amount and quality of the training data with
a requirement for the model to operate on arbitrary protein
targets and arbitrary ligands from an immense chemical
space.15

It is clear that the dataset of experimentally resolved struc-
tures will not grow fast enough to satisfy the demands of the
exploding eld of ML ligand–protein binding prediction thus
other approaches are needed for overcoming the lack of training
data.

In this study, we develop an approach of augmenting the
training set of the protein–ligand complexes with articial data,
which mimics real protein binding pockets in a number of
structural characteristics. The statistical distributions of arti-
cial pockets' parameters are tted to the respective distributions
of real protein–ligand structures so that both types of data could
be used together seamlessly.

The idea of our approach is based on the assumption that
the number of favorable interaction geometries between the
protein amino acids and the chemical groups of the ligands is
nite and is represented sufficiently well in the available
experimental data. What is presumably lacking, is the sampling
of all possible combinations of such interactions within the
binding pocket. In other words, we assume that available
experimental structures provide decent statistics about the
preferable chemical identity of interacting atom pairs, distances
between the atoms, and orientations of the corresponding
chemical groups. However, only a very small fraction of all
possible combinations of such pairs is observed in real
proteins.

If one generates a large number of “articial binding
pockets”, which follow the same statistical distribution of the
interacting atom pairs as the real ones, but sample a much
larger variety of their combinations, it might be possible to
overcome the undersampling and to train the model on a more
complete set of data.

Although we do not have a strong independent proof of our
hypothesis, we decided to validate it experimentally by devel-
oping an algorithm for generating articial pockets, compiling
a dataset consisting of articial and real pockets, and
measuring the performance of the diffusion generative model,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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which is inspired by DiffDock, and is trained on such
augmented data – PocketCFDM (Pocket Conformation Fitting
Diffusion Model). We show that PocketCFDM outperforms
DiffDock, which is a recent breakthrough technology in the eld
of ML-based docking, in terms of generated ligand poses
correctness (less steric clashes and more favorable non-covalent
interactions). We also discuss future prospects of our method-
ology in terms of improving its predictive power and the speed
of inference.
Table 1 Non-bonded interactions taken into account during artificial
pocket construction

# Pocket feature Ligand feature Interaction type
Methods
Protein and ligand preprocessing

The Python API of the RDKit v. 2021.03 was utilized for loading,
processing, and feature generation of small molecules. A
custom protein processing module was developed to extract
protein data from the PDB les and to generate the necessary
features for model training. This module utilizes the PDB atom
names to obtain atom-level graph features, rather than relying
on a third-party soware to infer them. This approach decreases
the exclusion rate for processed proteins due to inevitable
inconsistencies in the PDB les.

In order to assess the protein–ligand interactions, we
employed the SMILES arbitrary target specication (SMARTS)
substructure search to classify the ligand atoms or chemical
groups into the following categories: hydrophobic, aromatic,
amide, donor, acceptor, cation, anion, or halogen. The protein
atom assignment was conducted using a predenedmapping of
the standard PDB atom names (Table S1†).

Prior to the assessment of non-covalent interactions,
proteins and ligands were protonated (including any implicit
hydrogens). The protein protonation was performed in a similar
manner to EquiBind and DiffDock by using the reduce soware
in order to account for hydrogen bonding correctly. Addition-
ally, we considered possible alternative positions of hydrogens,
such as within hydroxyl or amine groups. In this work, we
considered only amino acids as the entities interacting with the
ligands, while the water molecules, ions and metal atoms,
which are present in the experimental structures, are dis-
regarded. This limitation could be addressed in the next
versions of our technique as detailed in the Discussion. The
source code of the preprocessing module is available: https://
github.com/vtarasv/rai-chem.git.
1 Aromatic ring Aromatic ring Pi stacking
2 Amide group Aromatic ring Amide–pi
3 Aromatic ring Amide group Amide–pi
4 Aromatic ring Cationic atom Cation–pi
5 Hydrogen bond donor Hydrogen bond

acceptor
Hydrogen bond

6 Hydrogen bond
acceptor

Hydrogen bond donor Hydrogen bond

7 Hydrogen bond
acceptor

Halogen atom Halogen bond

8 Cationic atom Anionic atom Electrostatic
9 Anionic atom Cationic atom Electrostatic
10 Cationic atom Aromatic ring Cation–pi
11 C or S atom F atom Hydrophobic
12 C or S atom Cl, Br or I atom Hydrophobic
13 C or S atom C or S atom Hydrophobic
The choice of non-bond interactions

The hydrophobic and electrostatic interactions as well as the
hydrogen bonding (favorable non-bond interactions) were
assessed between the protein and the ligand. We also accounted
for unfavorable interactions, such as donor–donor atom pairs
in close proximity, to improve the overall quality of articial
binding pockets by omitting such interactions. The summary of
all used non-bond interactions is shown in Table S4.† The
choice of included interactions is based on a compromise
between the multiple approaches in the literature,16–19

commonly used cheminformatics soware20–22 and widely-used
molecular modeling tool BIOVIA Discovery Studio Visualizer.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Ligand–protein interaction statistics

The protein–ligand complexes with known 3D structures were
taken from the PDBbind dataset.9,10 Only the entries that satisfy
the following criteria were used: the presence of a single small
molecule ligand, resolution below 2.5 Å, and an activity/affinity
less than 10 mM. A total of 10 270 protein–ligand complexes
were selected. Among them 1805 ligand les were found to be
unreadable, resulting in a nal count of 8465 complexes that
were used in this work.

The following statistical information was extracted:
� The probability of a specic ligand substructure (particular

atom type, aromatic ring, or amide group) to participate in
a protein–ligand interaction.

� The distribution of the number of the binding pocket
substructures that are connected to ligand substructures
through a specic interaction type.

� The distribution of amino acids involved in particular
interaction types.

� The distributions of distances and angles involved in
particular interaction types.

Articial pockets generation

We utilized the PeptideBuilder package23 to produce a collection
of 20 amino acids in the PDB format, as well as 400 dipeptides
representing each possible permutation of two amino acids.
The amino acids and dipeptides were anked by GLY residues
on both sides and served as the basic building blocks for arti-
cial pockets. The inclusion of anking GLY residues helps in
the generation of the correct peptide conformers, which are
restrained by the peptide bonds on each side of the building
blocks.

Articial pocket generation is an iterative process of placing
the building blocks around a small molecule in order to form
a realistic network of non-covalent interactions. A total of 13
potential interactions, both directed and undirected, were taken
into account during the pocket construction (Table 1).
RSC Adv., 2024, 14, 1341–1353 | 1343
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The pocket construction starts from the particular small
molecule conformer (referred as ligand hereaer). For each of
the 13 interactions listed in Table 1, the following steps are
performed:

1. Find all the features of ligand L, which are compatible with
the current interaction type i. Each such feature is denoted as FLi.

2. Given experimental probability P of nding FLi among all
interactions of type i and the random number p, determine
whether the new interaction should be added if p < P.

3. Select the peptide building block B to be placed by taking
all building blocks with the features compatible with i and
randomly selecting one of them according to the experimentally
determined probability of the corresponding residue to partic-
ipate in the interaction i.

4. For the chosen building block B, generate a random
conformer taking into account the peptide bonds to anking
GLY residues. Then delete the anking GLY residues.

5. Randomly sample the distance d between the FLi and the
matching feature of B from experimentally determined distri-
butions and place the building block at a determined location.

6. Repeat the following steps until no steric clashes or
unfavorable interactions are found between the building block
and the ligand and between the building blocks:

a. Randomly rotate and translate the building block B
preserving the distance d.

b. Determine whether the angular criteria of interaction i are
met, if applicable.

c. If the maximal number of tries (2000 by default) is
reached, the building block is skipped.

Using this algorithm 8465 articial pockets were generated
(one for each ligand from the PDBbind database). The distri-
butions of the non-bond interactions of the generated pockets
were computed and compared to the experimental distribu-
tions. Due to a good match of the distributions, no further
tuning of the algorithm was required.

The examples of randomly selected articial pockets can be
found in the ESI (Fig. S1†).
Model training and testing datasets

In order to cover the maximal diversity of the ligands we
employed the ZINC20 database of commercially available
chemicals widely used for virtual screening.24,25 The “In-Stock”
category of chemicals was chosen, resulting in a collection of 13
million molecules represented by SMILES. The compounds
were standardized using the ChEMBL Structure Pipeline26

(https://github.com/chembl/ChEMBL_Structure_Pipeline).
Particularly, we eliminated duplicates, compounds with less
than seven heavy atoms, and large molecules with a molecular
weight exceeding 750 g mol−1. This resulted in 9 041 707
compounds. A subset of compounds (size depends on the
model training settings) was randomly selected and used for
articial pockets generation. The pocket generation was
repeated for each model training epoch.

In addition to the articial pockets, the real binding pockets
from the PDBbind database were added to the training set.
These were dened as the residues with at least one heavy atom
1344 | RSC Adv., 2024, 14, 1341–1353
within a 5 Å from any heavy atom of the ligand. We compared
the model training results achieved with the articial pockets
only, experimental pockets only, and a combination of both.

A subset of PDBbind complexes, which had been previously
used in the analysis of DiffDock technique,8 was used for model
testing. We additionally removed all complexes containing the
ligands with more than 100 heavy atoms in order to concentrate
on the drug-like molecules.

Model performance metrics

In a manner consistent with the EquiBind,4 TANKBind,3 and
DiffDock8 we used 25th, 50th, and 75th percentiles of symmetry-
corrected27 root mean square deviation (RMSD) between ex-
pected and predicted ligand pose, together with the percentage
of predictions below 5 Å or 2 Å RMSD. The centroid distances
between the expected and predicted positions of the ligands
were tracked using the same metrics.

The following additional metrics of the non-bond interac-
tions were used:

� The fraction of favorable contacts (Ffav) – total number of
favorable interactions normalised by the number of ligand
heavy atoms. The contribution of the hydrophobic interactions
was accounted for with a weight of 1/6 due to their high relative
abundance.

� The fraction of atoms involved in favorable contacts (Ffav-
atoms) – a fraction of the heavy ligand atoms participating in at
least one non-bond interaction.

� The fraction of unfavorable contacts (Funfav) – total number
of unfavorable interactions normalised by the number of ligand
heavy atoms.

In order to evaluate the quality of predicted ligand poses, we
determined the frequency of steric clashes between the ligand
and protein atoms. The clash was dened as the distance
between the atoms smaller than 70% of the sum of their
respective van der Waals radii.

Model training and inference

The core architecture utilized in this study was the diffusion
generative score model, which was adapted from DiffDock. This
model is based on SE(3)-equivariant convolutional networks
that operate on point clouds.28,29 The model utilizes pocket and
ligand graph representations and takes into account the spatial
arrangement of the atoms. It produces SE(3)-equivariant vectors
that describe the ligand's translations and rotations, along with
SE(3)-invariant scalars per each compound's rotatable bond.
The input position of a ligand is subsequently altered based on
the model's output resulting in the nal conformation of the
molecule within a binding site. The torsion angles of the ligand
are optimized as well as translations and rotations of the whole
molecule. During the training phase, the position of each input
ligand in a complex undergoes modications caused by trans-
lational, rotational, and torsional noise, which can be referred
to as forward diffusion. The model then learns how to reverse
the diffusion process. This method enables the generation of
numerous alternative ligand poses during the inference
process.8
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Probability distribution of the non-bond protein–ligand inter-
actions in the PDBbind complexes. Every bar is labeled with the total
number of interactions and its fraction. Note the log scale of the X-
axis.
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We adjust the DiffDock model inputs and architecture as
follows:

� The atomic-level pocket graph is used instead of the
residue-level graph of the whole protein.

� The categorical feature space of the ligand nodes was
decreased signicantly by narrowing down the number of atom
types, number of neighbor heavy atoms, and atomic charges to
those expected in the typical screening databases of small
molecules.

The learning rate was set to 0.0125 based on initial tuning.
During each epoch, the model is trained for 10 000 iterations
with a batch size of 4. In our experimental conditions, the batch
always consists of identical pocket and ligand components,
whereas the level of diffusion noise varies between individual
samples.

The models were trained for 25 epochs. During the training
based on articial data, 10 000 ligands are randomly sampled
from the preprocessed ZINC dataset at each epoch. Aer that,
the articial pockets are created for each ligand. Thus, 250 000
unique articial complexes were generated for the model
training. Each epoch of training on experimental protein–
ligand complexes is performed with 10 000 randomly sampled
PDBbind entries (out of 16 379 complexes in the train split). The
training on a combined dataset was performed with a 4 : 1 ratio
of articial and experimental data with 200 000 unique articial
complexes. The nal production model was trained for 80
epochs using a combined dataset with 640 000 unique articial
complexes. The model training, which is a GPU-intensive task,
and pocket generation, which is a CPU-intensive task, were
separated into distinct parallel workows.

Given the generative nature of the model, it is possible to
produce an innite number of alternate ligand poses. The real-
world model performance is thus sensitive to the scoring
function, which is used for the pose ranking and selection. The
developers of DiffDock employed a condence model that takes
into account all protein atoms and produces a condence score
of the ligand pose. In contrast, we employed a non-covalent
interaction score in the binding pocket, which reduces the
inference cost signicantly. Our scoring function S is computed
as follows:

S = Ffav + Ffav-atoms − 2Funfav − 2Funfav-atoms − 10Dclash

where Funfav-atoms is a fraction of the ligand heavy atoms
participating in at least one unfavorable interaction, Dclash is
a sum of all distances, which are below the steric clashes
threshold. The coefficients of the scoring function were
adjusted empirically by visual inspection of the predicted
protein–ligand complexes.
Results and discussion
Statistics of non-bond interactions in experimental and
articial protein–ligand complexes

Analysis of the high-quality PDBbind protein–ligand dataset
revealed a total of 343 784 intermolecular non-covalent inter-
actions. As anticipated, the hydrophobic contacts were the
© 2024 The Author(s). Published by the Royal Society of Chemistry
predominant kind of interaction, with a total of 267 774 atom
pairs observed. The overwhelming majority of these interac-
tions occurred between hydrophobic carbon or sulfur atoms.
The hydrogen bonds were the second most prevalent form of
interaction, occurring around once for every ve hydrophobic
pairs. The remaining contacts constituted less than 3% of the
overall count (Fig. 2 and Table S2†).

The total number of non-bond interaction entries in the
articial pockets involving the same ligands amounted to 453
593. This signicantly larger amount, in comparison to the real
ones, is caused by formations of “unintended” interactions
(mainly hydrophobic) during the placement of the pocket
building blocks in the close proximity to the ligand. The pocket
generation algorithm underestimates the solvent exposure
contribution to the experimental interaction statistics because
the ligand–water interactions are not taken into account during
the pocket generation. This is also likely to produce additional
interactions with the protein, which partially substitute the
ligand–solvent interactions.

We compared the distributions of the parameters for each
type of interaction between real and articial pockets. For each
interaction type, we also computed the probability of the
involvement of particular amino acids in the binding pocket.

Fig. 3 shows the statistics of hydrophobic interactions in real
and articial binding pockets.

There is a reasonably good correspondence between the
distributions, but the distributions of distances are systemati-
cally smoother and more monotonous for articial pockets in
comparison to real ones. This is an artifact caused by the
frequent formation of “unintended” hydrophobic contacts
while generating other types of interactions due to the abun-
dance of hydrophobe atoms in both amino acids and small
molecules. The distributions of interactions among amino
acids are very similar except the notably increased involvement
of PHE and TRP in articial pockets. This is explained by the
overlap between hydrophobic and pi stacking interactions,
which is not checked in the algorithm for the sake of compu-
tational efficiency.
RSC Adv., 2024, 14, 1341–1353 | 1345
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Fig. 3 Statistics of hydrophobic interactions in the PDBbind and artificial pockets involving (A) C or S atoms of the protein and the ligand (B) Br, Cl
or I atoms of the ligand (C) F atoms of the ligand. The distance distributions are shown in the left columns and the pocket residues occurrence
ratio is shown in the right column.
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Fig. 4 shows the statistics of pi stacking interactions. There
are two types of these interactions: parallel (true pi stacking)
and T-shaped (aromatic–pi interactions). The distance distri-
butions of both types of interactions are remarkably similar in
real and articial pockets as well as the involvements of
different aromatic amino acids. However, the theta angle
distributions of parallel interactions for articial pockets are
shied toward 90° by 10–15° in comparison to experimental
ones since the generation algorithm only checks if the aromatic
ring has an angle within a given range.
1346 | RSC Adv., 2024, 14, 1341–1353
Fig. 5 shows the statistics of amide–pi interactions, which
could also be classied into parallel and T-shaped.

Similarly to pi stacking interactions, the distance distribu-
tions are very similar between real and articial pockets, while
the theta angles in articial pockets are somewhat shied
towards 90°. The primary residues serving as donors of the
amide group were found to be glycine, which exposes the
peptide bond due to the lack of a side chain, as well as aspar-
agine and glutamine, which possess an amide group at the
terminus of their side chains. The predominant residue bearing
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Pi stacking: the distance distribution (left), theta angle distribution (middle), and pocket residues frequency (right) in the PDBbind and
artificial pockets.

Fig. 5 Amide–pi interactions: the distance distribution (left), theta angle distribution (middle), and pocket residues frequency (right) in the
PDBbind and artificial pockets for the ligand aromatic ring – pocket amide contacts (A) and pocket aromatic ring – ligand amide contacts (B).
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an aromatic ring in the amide–pi linkages is HIS, which
accounts for the majority of experimentally observed T-shaped
interactions. There are signicantly less HIS contacts in arti-
cial pockets because unfavorable donor–donor contacts
between the nitrogens of the HIS ring and amide group were
omitted during the pocket generation.

The distributions of the hydrogen bonds are shown in Fig. 6.
Hydrogen bonding imposes the biggest challenge in terms of
articial pocket generation. It is clearly seen there are the
biggest discrepancies between real and articial pockets in
terms of the hydrogen bonds' parameters, which are especially
visible for the angle distributions. In general, our algorithm
tends to underestimate the D–H–A angles (the signicance of
the angle distribution was deliberately reduced to speed up the
algorithm) and doesn't capture the distance peak at 2.8–2.9 Å,
which is observed in real pockets, while generating signicantly
more long h-bonds (short h-bonds tend to be discarded more
oen during the generation as they oen lead to steric clashes
© 2024 The Author(s). Published by the Royal Society of Chemistry
between the atoms not participating in the interaction). These
compromises allow us to keep the algorithm fast enough for
routine practical usage. At the same time, the involvement of
different amino acids is reproduced remarkably well in articial
pockets.

The halogen bonds are the least frequent type of interaction
in real binding pockets. Their distributions are shown in Fig. 7.
Taking into account the small number of observed interactions
of this kind, the experimental and articial distributions are
sufficiently similar to each other.

The electrostatic interactions were analyzed separately for
the “ligand anion – pocket cation” and “pocket anion – ligand
cation” pairs (Fig. 8).

The experimentally observed involvement of charged amino
acids is reproduced almost ideally in articial pockets, while the
distance distributions are somewhat different in real and arti-
cial pockets. Articial pockets possess more iterating pairs at
larger distances than real ones, which could be explained by the
RSC Adv., 2024, 14, 1341–1353 | 1347
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Fig. 6 Hydrogen bonds: the distance distribution (left), D–H–A/H–A–Y angles distribution (middle), and pocket residues frequency (right) in the
PDBbind and artificial pockets for the ligand acceptor– pocket donor contacts (A) and pocket acceptor– ligand donor contacts (B). In the D–H–
A/H–A–Y angles, D is the donor atom covalently bound to the hydrogen; H is a hydrogen atom; A is an acceptor atom; Y is a heavy covalently
bound neighbor of the acceptor atom.

Fig. 7 Halogen bonds: the distance distribution (left), D–X–A/X–A–Y angles distribution (middle), and pocket residue frequencies (right) in the
PDBbind and artificial pockets. In the D–X–A/X–A–Y angles, D is the donor atom covalently bound to the halogen; X is a halogen atom; A is the
halogen bond acceptor atom; Y is a heavy covalently bound neighbor of the acceptor atom.
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increased complexity of tting pocket residues in the close
proximity of a small molecule. Such placement oen leads to
steric clashes and thus is oen discarded by the algorithm.

The last type of interaction is cation–pi pairs (Fig. 9). They
are rather minor and the distributions of their parameters are
very similar in real and articial pockets without any signicant
feature worth commenting on.

Impact of articial data on model performance

To evaluate the potential inuence of data augmentation using
articial protein–ligand complexes on model performance, we
compared three models. The rst model was exclusively trained
on experimental protein–ligand complexes, the second model
was trained on the articially generated pockets with corre-
sponding small molecules, and the third model was trained on
the combination of both. The metrics are reported for the top-1
1348 | RSC Adv., 2024, 14, 1341–1353
predicted complex and the best of the top-5 predicted
complexes based on custom scoring function S (see the
Methods section).

Table 2 illustrates that the inclusion of articial or combined
data in the training process led to enhancements in both the
RMSD and centroid distance metrics, as compared to the model
trained exclusively on experimental complexes. Unexpectedly,
the training of the articial dataset is superior to the combined
dataset in certain metrics, particularly when the generation of
40 poses for each pocket was used. We hypothesize that this
might be caused by ignoring the solvent exposure contribution
in the pocket generation algorithm, which results in an exag-
gerated number of the protein–ligand interactions and the
tighter spatial constraints in the nal ligand pose. In addition,
we noticed multiple experimental complexes with the steric
clashes (e.g. 1gj4, 5yr6) or even covalent bonds (e.g. 3s3q, 6eyz)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Electrostatic interactions: the distance distribution (left) and pocket residues frequency (right) in the PDBbind and artificial pockets for the
ligand anion – pocket cation (A) and pocket anion – ligand cation (B).

Fig. 9 Cation–pi interactions: the distance distribution (left), theta angle distribution (middle), and pocket residues frequency (right) in the
PDBbind and artificial pockets for the ligand aromatic ring – pocket cation (A) and pocket aromatic ring – ligand cation (B).
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between the protein and the ligand. Such artifacts constitute
nearly 5% of the PDBBind training data, which may contribute
to confusing the model concerning valid physical distance
constraints.
© 2024 The Author(s). Published by the Royal Society of Chemistry
The combined dataset of protein–ligand complexes exhibi-
ted superior performance compared to the other two datasets in
terms of both favorable and unfavorable non-covalent interac-
tions, as illustrated in Table 3. Additionally, it was observed that
RSC Adv., 2024, 14, 1341–1353 | 1349
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Table 2 The symmetry-corrected root mean square deviation (RMSD) and centroid distance metrics between predicted and real ligand posi-
tions in the PDBbind test complexes. The models generated either 10 or 40 ligand poses. The best of top 5 poses is picked based on the lowest
RMSD. [ – means the higher the better; Y – means the lower the better

RMSD Centroid distance

Percentiles Y
% Below
threshold [ Percentiles Y

% Below
threshold [

Dataset 25th 50th 75th 5 Å 2 Å 25th 50th 75th 5 Å 2 Å

10 samples, top 1
Experimental 4.08 5.51 7.45 40.93 5.02 1.02 1.75 2.7 94.59 57.92
Articial 3.69 5.75 7.39 40.15 5.02 1 1.46 2.19 97.68 69.88
Combined 3.76 5.13 7.12 45.95 7.34 1.05 1.69 2.33 98.07 63.32

10 samples, top 5
Experimental 2.68 3.72 4.64 82.24 11.2 0.95 1.37 1.97 99.61 75.29
Articial 2.49 3.47 4.6 81.08 16.99 0.78 1.24 1.86 98.84 80.31
Combined 2.4 3.31 4.55 85.33 17.37 0.81 1.29 1.88 99.23 77.99

40 samples, top 1
Experimental 3.89 5.54 7.36 40.93 4.63 1.01 1.73 2.48 96.14 57.92
Articial 3.47 5.46 7.25 47.1 7.72 1 1.39 2.09 97.68 72.59
Combined 3.86 5.2 7.16 45.95 6.18 1.05 1.57 2.42 97.68 64.09

40 samples, top 5
Experimental 2.37 3.35 4.6 82.24 15.06 0.85 1.19 1.69 99.61 81.08
Articial 1.99 3.08 4.3 85.33 25.1 0.73 1.11 1.69 99.61 82.63
Combined 2.09 3.3 4.6 82.24 23.94 0.8 1.26 1.99 98.84 75.29

Table 3 The favorable rate, favorable rate uniq, and unfavorable rate
for the predicted PDBbind test complexes. The models generated
either 10 or 40 samples. The best of the top 5 candidates are picked
based on the lowest RMSD. [ – means the higher the better; Y –
means the lower the better

Favorable ratea
Favorable rate
uniqb Unfavorable ratec

Percentiles [ Percentiles [ Percentiles Y

Dataset 25th 50th 75th 25th 50th 75th 25th 50th 75th

10 samples, top 1
Experimental 0.27 0.37 0.51 0.38 0.53 0.67 0 0.08 0.17
Articial 0.27 0.39 0.53 0.38 0.53 0.67 0 0.07 0.15
Combined 0.27 0.38 0.54 0.41 0.54 0.68 0 0.07 0.15

10 samples, top 5
Experimental 0.28 0.38 0.52 0.35 0.53 0.66 0.04 0.1 0.23
Articial 0.3 0.39 0.52 0.38 0.52 0.68 0.04 0.1 0.21
Combined 0.3 0.4 0.56 0.39 0.55 0.67 0.03 0.09 0.18

40 samples, top 1
Experimental 0.29 0.37 0.54 0.4 0.54 0.71 0 0.06 0.14
Articial 0.29 0.41 0.58 0.42 0.58 0.71 0 0.04 0.12
Combined 0.31 0.43 0.59 0.42 0.58 0.71 0 0.05 0.12

40 samples, top 5
Experimental 0.26 0.4 0.54 0.39 0.53 0.69 0.03 0.09 0.18
Articial 0.29 0.41 0.55 0.39 0.54 0.7 0 0.07 0.14
Combined 0.32 0.43 0.55 0.41 0.56 0.71 0 0.06 0.14

a Total number of favorable interactions normalized by the number of
ligand heavy atoms. b A fraction of the heavy ligand atoms
participating in at least one non-bond interaction. c Total number of
unfavorable interactions normalized by the number of ligand heavy
atoms.

1350 | RSC Adv., 2024, 14, 1341–1353
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the integration of the combined data for training purposes led
to a decrease in the proportion of samples exhibiting steric
clashes, as shown in Table 4.

A positive correlation was identied between the amount of
small molecule heavy atoms and the metrics such as RMSD and
steric clashes. Additionally, a negative correlation was found
between the count of atoms and favorable non-bond interaction
rates, as depicted in Fig. S2.† This indicates that the model
performance decreases with the increase of ligand size.

The nal production PocketCFDM model was trained for 80
epochs using high-quality experimental data (used for the non-
bond interactions statistics retrieval) and articial samples,
similar to the aforementioned combined dataset settings. A
signicant reduction in the occurrence of protein–ligand steric
clashes was observed, with percentages of 19.31% and 13.90%
for the top-1 and best of top-5 samples, respectively. This is
a nearly 10% decrease compared to the most optimal model
trained for 25 epochs (Table 4). There has been no substantial
improvement in other metrics.
Table 4 The percentage of samples within the predicted PDBbind test
complexes exhibiting at least one steric clash. The models generated
40 ligand poses. The best of top-5 candidates are picked based on the
lowest number of clashes

Steric clashes

Dataset Top 1 Top 5

Experimental 33.59% 30.12%
Articial 30.50% 26.64%
Combined 28.19% 23.94%

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08147h


Table 5 Comparison between the DiffDock and PocketCFDM on the test PDBbind dataset

Metric PocketCFDM DiffDock

Avg. inference time (s); 40 samples 49 90
RMSD; median; 40 samples; top-1 5.14 2.8
RMSD; median; 40 samples; top-5 3.02 2.17
Centroid distance; median; 40 samples; top-1 1.4 1.01
Centroid distance; median; 40 samples; top-5 1.08 0.81
Favourable rate; median; 40 samples; top-1 0.43 0.37
Favourable rate; median; 40 samples; top-5 0.42 0.39
Favourable rate uniq; median; 40 samples; top-1 0.58 0.47
Favourable rate uniq; median; 40 samples; top-5 0.56 0.5
Unfavourable rate; median; 40 samples; top-1 0.02 0.07
Unfavourable rate; median; 40 samples; top-5 0.07 0.08
Steric clashes; 40 samples; top-1 19.31% 46.51%
Steric clashes; 40 samples; top-5 13.90% 25.97%
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Comparison with other methods

We also performed a detailed comparison between Pock-
etCFDM and DiffDock, which is currently considered as the
most accurate AI technique for predicting ligand binding poses
(Table 5).

DiffDock exhibited superior accuracy in terms of RMSD and
centroid distance. In contrast, PocketCFDM exhibited superior
outcomes in terms of favorable and unfavorable non-covalent
interactions, as well as a notably lower incidence of steric
clashes. It was expected due to the divergence in the scoring
algorithms employed to evaluate and rank the generated
samples. The DiffDock approach utilized a condence model
that was trained to prioritize samples with lower RMSD to the
actual ligand pose. However, in our context, the scoring
approach was more focused on the number of non-covalent
contacts and the absence of steric clashes, without consid-
ering the specic conformation of the ligand pose. Another
notable difference pertaining to the disparity in scoring func-
tions is the diversity observed within anticipated poses. The
median RMSD values between the alternative top-5 samples in
the PocketCFDM and DiffDock methods were 2.59 and 1.29
Table 6 Comparison between the PocketCFDM, DiffDock, and convent
method results are reported for the best of the top 5 pose candidates am
the lower the better

RMSD

Percentiles Y
% Belo
thresh

Method 25th 50th 75th 5 Å

Autodock Vina (top-1) 5.7 10.7 21.4 21.2
QuickVina-W (top-1) 2.5 7.7 23.7 40.2
GNINA (top-1) 2.4 7.7 17.9 40.8
SMINA (top-1) 3.1 7.1 17.9 38
GLIDE (top-1) 2.6 9.3 28.1 33.6
GNINA (top-5) 1.6 4.5 11.8 52.8
SMINA (top-5) 1.7 4.6 9.7 53.1
DiffDock 1.2 2.4 5 75.5
PocketCFDM 2.1 3.3 4.6 82.2

© 2024 The Author(s). Published by the Royal Society of Chemistry
respectively. Additionally, it was noted that the mean inference
time for the PocketCFDM was approximately 1.8 times quicker.
This is attributedmostly to the reduced size of the protein graph
and the decrease in the graph's node feature space.

PocketCFDM differs from DiffDock in both the scoring
function and the training dataset. DiffDock is trained on the
residue-level full protein graphs, while PocketCFDM utilizes the
atomic-level graphs limited to the binding pockets (real or
articial, see the “Model training and inference” section above).
The training dataset for PocketCFDM is augmented by arti-
cially generated pockets, while DiffDock is trained on the
experimentally resolved protein–ligand complexes only. Thus
observed better performance of PocketCFDM originates from
both of these factors.

Additionally, we compared PocketCFDM performance to
conventional molecular docking methods such as Autodock
Vina,30 QuickVina-W,31 GNINA,32 SMINA,33 and GLIDE.34 The
results of traditional docking programs on the PDBbind dataset
were reported by the DiffDock authors.8 According to Table 6,
PocketCFDM performs comparably to the conventional docking
methods. It is worth mentioning that the ML-based methods
don't guarantee the absence of inter-/intramolecular clashes in
ional docking techniques on the test PDBbind dataset. The ML-based
ong 40 predicted samples. [ –means the higher the better; Y –means

Centroid distance

w
old [ Percentiles Y

% Below
threshold [

2 Å 25th 50th 75th 5 Å 2 Å

5.5 1.9 6.2 20.1 47.1 26.5
20.9 0.9 3.7 22.9 54.6 41
22.9 0.8 3.7 23.1 53.6 40.2
18.7 1 2.6 16.1 59.8 41.6
21.8 0.8 5.6 26.9 48.7 36.1
29.3 0.6 2 8.2 66.8 49.7
29.3 0.6 1.85 6.2 72.9 50.8
44.7 0.4 0.9 1.9 88 76.7
23.9 0.8 1.3 2.0 98.8 75.3

RSC Adv., 2024, 14, 1341–1353 | 1351
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the docked complexes while the traditional approaches mostly
provide physically valid poses.
Limitations and perspectives

The primary area of enhancement of the PocketCFDM model
lies in inference time, which is currently still too large for effi-
cient practical deployment. The mean time required to predict
40 ligand poses is around∼50 seconds at 24 GB NVIDIA L4 GPU.
The inference time could be improved signicantly by replacing
computationally intensive EGNN blocks with more efficient
alternatives like GVP. The inclusion of the articial pockets into
the training of even simpler regression-based techniques, such
as EquiBind and TANKBind, could also be benecial since these
architectures are generally more sensitive to the number of
distinct training samples. It is possible to explore the usage of
multiple augmentations of the same input instead of directly
including specic symmetries and equivariances into graph
neural network (GNN) designs. The utilization of such
augmentation is popular in convolutional neural networks
(CNNs). Moreover, it demonstrated promising outcomes in the
domain of geometric graph learning.35 This strategy may
potentially increase the model training time while resulting in
reduced inference time.

Another notable drawback of the present proof-of-the-
principle implementation is the possibility of ligand self-
intersections (intramolecular clashes), which have to be
ltered out during the post-processing steps. Incorporating
intramolecular and intermolecular clashes into the loss func-
tion during the training process could potentially address this
problem.

Also, we believe that incorporating larger ligands into the
training process will address the challenges encountered with
relatively large compounds. The ZINC20 dataset, which was
utilized in this work, has only 2.5% of molecules larger than 40
heavy atoms, which makes them underrepresented during the
model training. Although the median size of the ligands in this
dataset is 25 heavy atoms, which is quite common for the
datasets of drug-like molecules, a higher percentage of large
ligands may enhance the inference capabilities for larger
compounds while maintaining the same level of performance
for smaller molecules.

It should be pointed out that the current iteration of the
pocket generation algorithm doesn't consider water molecules,
ions, and metal atoms, which are known to be important
mediators of interactions in a signicant amount of protein–
ligand complexes. Thus currently our technique should be used
with caution in the cases when the involvement of water, ions,
and the metal atoms in the ligand binding is anticipated. We
assume that the inclusion of these components into the arti-
cial pockets in the next iterations of our technique should
further improve the model performance and universality.

Another shortcoming of the current pocket generation
algorithm is the frequent formation of “unintended” contacts
(mainly hydrophobic) while generating other types of interac-
tions, which is evident from the disbalance between the number
of non-bond interactions found in the experimental and
1352 | RSC Adv., 2024, 14, 1341–1353
articial pockets. When the pocket building block is added,
additional interactions could be formed accidently apart from
the intended contact pair. Additional checks could be added in
future versions of the algorithm to minimize the amount of
such unwanted random interactions.

Although the present work concentrates on predicting the
ligand poses, it is necessary to note that the pose prediction is
only a part of the accurate prediction of the protein–ligand
binding. Two other important components are the accurate
scoring of the binding poses in terms of affinity or activity and
the accounting for protein exibility and dynamics. The former
is currently being addressed not only by traditional docking
force elds but also by ML-based pose rescoring techniques.36

The latter problem could be tackled by multiple approaches
including exible and ensemble docking. Accounting for the
protein exibility and the ensembles of protein conformations
are among the future directions of improvement for our data
augmentation technique.
Conclusions

In this work, we introduced the PocketCFDM generative diffu-
sion model for predicting the poses of small molecules in the
protein binding pockets. The model is trained using an inno-
vative approach of data augmentation, which involves the
construction of a large number of articial binding pockets that
follow the same statistical patterns of non-bond interactions as
the real ones. In order to construct such articial pockets we
thoroughly evaluated the statistical characteristics of non-bond
interactions in the real protein–ligand complexes and designed
an algorithmic approach that reproduces them in articial
pockets, which are built around given small molecule
conformers. The performance of the models trained on exper-
imental data only, articial data only, and a combination of
both was evaluated and compared to the currently most prom-
ising ML model for binding pose prediction DiffDock. It is
shown that the inclusion of articial binding pockets into the
model training resulted in a signicant increase of model
performance. Particularly, PocketCFDM outperforms DiffDock
in terms of the non-bond interaction counts, the number of
steric clashes, and the inference speed. The prospects of further
improvements of PocketCFDM are discussed. The inference
code, nal model weights, and model prediction examples are
publicly available in the GitHub repository (https://github.com/
vtarasv/pocket-cfdm.git).
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