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f sulphur-doped carbon dots (S-
CDs) using a hydrothermal method for the selective
sensing of Cr6+ and Fe3+ ions: application to
environmental water sample analysis
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Gavisiddappa S. Gokavid and Vishalkumar R. More*b

In this work, we used a one-step hydrothermal method to synthesize blue-emission sulfur-doped carbon

dots (S-CDs) using jaggery as a carbon precursor. The synthesized carbon quantum dots showed low

toxicity, good water solubility, anti-interference properties, and stable fluorescence. When excited at

310 nm, the S-CDs produced bright emission with a quantum yield of 7.15% at 397 nm. The S-CDs

exhibited selective and sensitive quenching responses with limits of detection (LODs) of 4.25 mg mL−1

and 3.15 mg mL−1 for variable concentrations of Cr6+ and Fe3+, respectively, accompanied by

a consistent linear relationship between fluorescence intensity and these concentrations. Fluorescence

lifetime measurements were used to investigate the fluorescence quenching mechanism, which

supports the static type of quenching. Outstanding benefits of the developed S-CD based fluorescence

probe include its low cost, excellent sensitivity and selectivity, and ease of use for the detection of Cr6+

and Fe3+ ions. The developed carbon dot based fluorescent probe was successfully used to detect Cr6+

and Fe3+ ions in real water samples with an excellent recovery ratio.
Introduction

Pollution of heavy metals is a critical concern owing to its
harmful effects on the environment and human beings. Heavy
metals such as cobalt, iron, mercury, chromium, and lead have
a high chemical toxicity toward biological organisms.1,2 Among
them, iron (Fe3+) and chromium (Cr6+) are the most common
metal pollutants detected in environmental water bodies.3,4

Chromium exists in two oxidation states: Cr3+ and Cr6+.5 Cr3+ is
an essential nutrient for organisms as it exhibits little toxicity
and no harm; however, owing to its high oxidation potential,
high levels of Cr6+ have mutagenic and carcinogenic effects on
the human body.6,7 The United States Environmental Protection
Agency recommends that the concentration of Cr6+ in potable
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water should be lower than 100 mg L−1.8 Therefore, it is neces-
sary to monitor the concentration of Cr6+ in real water samples.
Fe3+ is one of the heavy metals and a main source of water
pollution. Therefore, it causes big problems for human health.
In cell functioning and biological metabolism, a trace amount
of iron (Fe3+) plays an important role in the human body but an
excessive amount can put pressure on the liver and subse-
quently lead to a series of liver diseases.9 Additionally, the
accumulation of Fe3+ ions in the environment will cause a great
threat to living organisms.

Several approaches have been developed for the accurate and
precise detection of Cr6+ and Fe3+, including colorimetry,10,11

electrochemical methods,12,13 atomic absorption spectrometry,
inductively coupled plasma-mass spectrometry,14–16 chroma-
tography,17,18 and organic molecular probes.19,20 However, most
of these methods require special instrumentation, hazardous
chemicals, and complicated synthesis as well as exhibit water
dispersibility of organic molecular probes, low selectivity, and
high detection limits. On the contrary, the uorescence based
detection method has many advantages, such as high selec-
tivity, wide linear dynamic range, small interference, low
detection limit, and simple sample pretreatment.20–22

Carbon dots (CDs) are environment friendly uorescent
nanomaterials exhibiting low toxicity, good water solubility, and
RSC Adv., 2024, 14, 3473–3479 | 3473
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excellent optical properties compared to traditional quantumdots,
which are the best alternative to uorescent probes in biosensors
and biological imaging.23,24 Various raw materials can be used for
CD synthesis; these usually include inorganic materials,25,26 bio-
logical materials,27–29 and waste materials,30,31 and CDs are mainly
synthesized via hydrothermal or microwave treatments. However,
there are few reports on the use of cheap, easily available, envi-
ronment friendly Chinese herbal medicine and monomers or
extracts of Chinese herbal medicine as a source material for CD
synthesis. Currently, there are many studies on using CDs as
sensors for metal ion detection, whose main detection principle is
the quenching effect caused by the varying affinity between the
surface functional groups of the CD and the target. Sun et al.
synthesized uorescent carbon quantum dots with Fructus lycii as
the raw material.32 Abundant hydroxyl groups on the surface
formed a complex with Fe3+ through coordination, exhibiting an
internal ltering effect, which could quench the uorescence of
CDs. Wu et al. synthesized low-cost and environment-friendly
photoluminescence carbon quantum dots with giant knotweed
rhizome as the carbon source and utilized the interaction between
carboxyl and Hg2+ on the surface of CDs to form chelates, which
were detected through electron or energy transfer.33

In this study, sulphur-doped carbon dots (S-CDs) were
synthesized by a one-step hydrothermal method using jaggery
as a carbon precursor. The S-CDs have bright emission at
397 nm when excited at 310 nm and have good quantum yield.
The sulphur-doped CDs were then used for indirect determi-
nation of Cr6+ and Fe3+ in aqueous solution by uorescence
measurement (Scheme 1). The S-CDs exhibit selective and
sensitive quenching responses to Cr6+ and Fe3+ ions with
a reliable linear relationship between uorescence intensity and
Cr6+ and Fe3+ concentrations. Moreover, the developed S-CDs-
based uorescence probe was successfully applied to real
water samples with satisfactory results and showed high
potential for selective recognition and accurate estimation of
Cr6+ and Fe3+ in a complex matrix.
Experimental
Chemicals and reagents

A jaggery sample was purchased from a local market in Kolha-
pur, India. All necessary chemicals of analytical reagent grade
Scheme 1 Schematic representation of the synthesis of S-CDs and thei

3474 | RSC Adv., 2024, 14, 3473–3479
were procured from SD Fine-Chem, Mumbai, and used as
received. All the solutions for measurements were prepared in
double distilled water.
Synthesis of uorescent S-CDs

Sulphur-doped carbon dots (S-CDs) were synthesized by
a single-step hydrothermal method using jaggery as a carbon
source. Briey, an appropriate quantity of jaggery and sulphuric
acids (H2SO4) was taken in a Teon-lined autoclave having
a 50 mL capacity and heated at 180 °C for 8 hours. Aer
completion of the reaction the autoclave was allowed to cool to
room temperature and a dark brown solution was obtained.
Aer that, the resultant solution was centrifuged at 10 000 rpm
for 15 minutes and ltered by using a 0.22 mm syringe lter to
remove large particles and impurities. The resultant solution
was subjected to dialysis (molecular weight cut-off was 1000 Da)
for 24 hours at room temperature. The synthesized S-CDs
solution has an acidic pH (pH = 3) while aer the dialysis
treatment the obtained S-CDs had a near-neutral pH (pH= 6.0).
Finally, the S-CDs were stored in the refrigerator for further use.
Quantum yield measurements (QY)

Quinine sulfate in 0.1 M H2SO4 (QY is 0.54 at 360 nm, h = 1.33)
was used as the standard substance to determine the uores-
cence QY of synthetic S-CDs,34 which was determined according
to the following formula:

QYð%Þ ¼ QYR

�
Is

IR

��
AR

AS

��
hS

2

hR
2

�
(1)

The quantum yields of S-CDs and quinine sulfate are
expressed by QY and QYR, respectively. ‘I’ represents the inte-
grated uorescence intensity at the same excitation wavelength.
‘A’ is the absorbance measured with a UV-vis spectrophotom-
eter. The symbols hS and hR represent the solvent refractive
index of S-CDs and quinine sulfate, respectively.
Characterization

The morphology and microstructure of the sample were inves-
tigated using a JEOL, JEM-2100 Plus transmission electron
microscope (TEM). Fluorescence and ultraviolet-visible (UV-vis)
r sensing application for the detection Cr6+ and Fe3+ ions.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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absorption studies on the synthesized S-CDs were performed
using a JASCO Spectrouorometer FP-8300 and SPECORD 210
Plus Analytic Jena Spectrometer, respectively. Time-correlated
single photon counting (TCSPC) spectrophotometer HORIBA
Jobin Yvon IBH employing a nanosecond diode laser (IBH, nano
LED-07) was used to measure uorescence emission decay
curves. The crystallinity of S-CDs was characterized using
a powder X-ray diffractometer (XRD) (Bruker D8 advance, X-ray
diffractometer) with CuKa (l = 1.5406 Å) radiation with
a voltage of 45 kV and current of 40 mÅ. X-ray photoelectron
spectroscopy (XPS) was performed to estimate the elemental
composition of S-CDs. A Fourier transform infrared (FT-IR)
spectroscopic study was performed using a Fourier transform
infrared spectrophotometer (Bruker alpha).
Fluorescence behavior of S-CDs at different pH

For the study of uorescence behavior at different pH values,
the as-synthesized S-CDs solution was used. In a typical proce-
dure, the xed volume of the probe solution and buffers of
different pH were diluted to 10 mL and the uorescence of all
the solutions having pH 1 to 11 were obtained at the excitation
wavelength 310 nm.
Metal ion detection

The metal ion sensing ability of S-CDs was investigated for
different metal ions under identical conditions. One mL of
100 ppm solution of each metal ion and one mL of the
synthesized S-CDs solution was diluted to 10 mL and allowed to
react for 5 minutes at room temperature. The uorescence
measurements of all these solutions were obtained at an exci-
tation wavelength of 310 nm. To study the Cr6+ and Fe3+ sensing
capacity of S-CDs, different concentrations of Cr6+ and Fe3+ were
diluted to a xed volume and analyzed similarly.
Fig. 2 XRD pattern of the synthesized S-CDs.
Real sample analysis

To employ the developed S-CDs-based uorescent probe for real
water analysis, different water samples were collected from the
University Campus, Rajaram Lake, and Panchganga River. The
collected samples were boiled and ltered to remove the
impurities. Filtered samples were spiked with various known
concentrations of Cr6+ and Fe3+ and then mixed with S-CDs
Fig. 1 (a) High resolution TEM image, (b) particle size distribution, and
(c) SAED pattern of the synthesized S-CDs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
solution. The uorescence study of each sample was recorded
aer 5 minutes of incubation time at room temperature.

Results and discussion
Characterization of S-CDs

TEM measurements were performed to investigate the
morphology and size distribution of the S-CDs (Fig. 1). For the
TEM measurement, the sample was prepared by placing the S-
CDs solution on a copper grid. The histogram shows that the
particle size distribution of S-CDs ranged between 5 nm and
9 nm and the average diameter was 7 nm. The SAED pattern
shows circular faded rings, indicating the amorphous nature of
S-CDs. The XRD pattern of S-CDs, as shown in Fig. 2, shows
a broad peak at 2q z 26.3°, which can be assigned to highly
disordered carbon supporting the amorphous nature.35 Addi-
tionally, the peak around 2qz 26.4° indicates that there may be
doping of sulphur in carbon dots (JCPDS card number 00-001-
0478).36

Elemental composition and speciation within the S-CDs
were determined by XPS. The XPS survey spectrum (Fig. 3)
indicates that the S-CDs are mainly composed of carbon,
oxygen, and sulphur elements, suggestive of the incorporation
of all reagents into the particles. The XPS spectrum show that
the prominent peaks around 284 eV and 531 eV are due to
carbon and oxygen. Moreover, the peak around 164 eV conrms
Fig. 3 (a) XPS survey spectrum of the synthesized S-CDs and high-
resolution deconvoluted spectra of (b) C 1s, (c) O 1s, and (d) S 2p.

RSC Adv., 2024, 14, 3473–3479 | 3475
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Fig. 6 Effect of pH on the fluorescence intensity of S-CDs.

Fig. 4 FT-IR spectrum of the synthesized S-CDs.
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the presence of sulphur dopant in the carbon core.37,38 The high-
resolution XPS spectra of C 1s deconvoluted into three peaks
correspond to C–C/C]C, C–S, and C]O groups at binding
energies of 284.86 eV, 285.97 eV, and 288.94 eV, respectively
(Fig. 3b). Fig. 3c depicts the deconvoluted spectra of O 1s con-
taining two peaks at 532.82 eV and 534.03 eV belonging to C–O/
O–H and C]O groups, respectively. The S 2p spectra contain
two deconvoluted peaks of R–(O]) S(]O)–R and C–SO2− at
169.51 eV and 170.35 eV, respectively (Fig. 3d).39 The presence of
C-, O-, and S-containing surface functionalities makes S-CDs
more interactive with metal ions.

The FT-IR spectrum (Fig. 4) showed different characteristic
peaks of S-CDs for different functional groups. In the spectrum,
a broad peak around 3300 cm−1 is of O–H stretching vibrations
since S-CDs are well dispersed in water. The peaks at 1680 cm−1

are due to C]O. In addition to the carbonyl group, the peak at
1198 cm−1 can be assigned to the C–S bond, whereas the peak at
1059 cm−1 can be consigned to the C–O bond. FT-IR study
concluded that there could be a number of hydrophilic func-
tional groups on the surface of S-CDs, which caused excellent
water solubility and helped in complex formation.35–40
Optical properties

The optical properties of synthesized S-CDs were studied by UV-
vis and uorescence spectroscopy (Fig. 5). Absorption at 287 nm
Fig. 5 UV-vis absorption and fluorescence emission spectra of the
synthesized S-CDs.

3476 | RSC Adv., 2024, 14, 3473–3479
was observed in UV-vis, which is assigned to p / p* transition
due to the sp2 domains of C]C from the carbon core. Similarly,
emission behavior of S–C-dots at different excitation wave-
lengths were also studied. The excitation wavelength of 310 nm
resulted in maximum emission intensity. Therefore, using an
excitation wavelength of 310 nm, the emission behavior of S-
CDs was studied at different pH. The result showed that there
was not much change in the uorescence intensity of S-CDs as
the pH of the solution increased (Fig. 6). Also, the quantum
yield of the as-synthesized S-CDs was determined to be 7.15%.

Effect of pH on uorescence properties

The effect of pH on the uorescence properties of S-CDs was
investigated at different pH values from 2 to 12. Fig. 6 shows the
uorescence behavior of S-CDs at different pH values. Almost
no change in the emission intensity of CDs with pH was
observed, which indicated a pH-independent emission nature
of S-CDs. The results revealed that the synthesized S-CDs are
highly stable with changes in pH.

Selectivity study

To explore the selectivity of the sensor system and the inuence
of different ions on the uorescence intensity of S-CDs, each
metal ion of 10 mg mL−1 was added to the S-CDs solution under
optimal experimental conditions. As shown in Fig. 7, S-CDs
showed a signicant uorescence reduction in Cr6+ and Fe3+

in the presence of various metal ions, indicating that S-CDs
have good selectivity and a unique effect on Cr6+ and Fe3+.
Fig. 7 Fluorescence spectra of S-CDs in the presence of various metal
ions.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Linear plots of F/F0 versus the concentration of Fe3+ in the
range 5 mg mL−1 to 70 mg mL−1 (F0 and F represent the fluorescence
intensity of the initial and added Fe6+, respectively).

Fig. 12 Plot of the fluorescence decay of S-CDs in the presence of
different concentrations of Cr6+ (T0 mg mL−1 = 2.80 ns, T30 mg mL−1 = 2.40

−1

Fig. 8 Fluorescence spectra of S-CDs in the presence of different
concentrations of Cr6+ (5 mg mL−1 to 100 mg mL−1).

Fig. 9 Fluorescence spectra of S-CDs in the presence of different
concentrations of Fe3+ (5 mg mL−1 to 100 mg mL−1).
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To further study the sensitivity of Cr6+ and Fe3, the uores-
cence spectra of S-CDs aer adding different concentrations of
Cr6+ and Fe3+ were recorded+, as shown in Fig. 8 and 9. When
the concentration of Cr6+ and Fe3+ was increased, the uores-
cence intensity of S-CDs decreased continuously, conrming
the applicability of Cr6+ and Fe3+ as a “turn-off” uorescent
probe. Fig. 10 and 11 suggest a good linear relationship between
Cr6+ and Fe3+ concentration and the uorescence intensity of S-
CDs in the range of 5 mg mL−1 to 30 mg mL−1, and 5 mg mL−1 to
70 mg mL−1, respectively. The coefficient of determination (R2)
Fig. 10 Linear plots of F/F0 versus the concentration of Cr6+ in the
range 5 mg mL−1 to 30 mg mL−1 (F0 and F represent the fluorescence
intensity of the initial and added Cr6+, respectively).

© 2024 The Author(s). Published by the Royal Society of Chemistry
values were 0.995 and 0.988, respectively. The detection limits
of Cr6+ and Fe3+ were 4.25 mg mL−1 and 3.15 mg mL−1, respec-
tively, calculated using the formula 3s/k (s is the standard
deviation and k is the slope of the calibration curve).

Fig. 10 and 11 suggest a good linear relationship between
Cr6+ and Fe3+ concentrations and the uorescence intensity of S-
CDs in the range of 5 mg mL−1 to 30 mg mL−1 and 5 mg mL−1 to
70 mg mL−1, respectively. The coefficients of determination (R2)
were 0.995 and 0.988, respectively. The detection limits of Cr6+

and Fe3+ were 4.25 mg mL−1 and 3.15 mg mL−1, respectively,
ns and T50 mg mL = 2.03 ns).

Fig. 13 Plot of the fluorescence decay of S-CDs in the presence of
different concentrations of Fe3+ (T0 mg mL−1 = 2.99 ns, T30 mg mL−1 = 2.94
ns and T50 mg mL−1 = 2.90 ns).

RSC Adv., 2024, 14, 3473–3479 | 3477
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calculated using the formula 3s/k (s is the standard deviation
and k is the slope of the calibration curve).

Mechanism for detecting Cr6+ and Fe3+ by S-CDs

To explore the uorescence quenching mechanism of S-CDs by
Cr6+ and Fe3+, a uorescence lifetime study was performed. As
shown in Fig. 12 and 13, no obvious changes in the lifetime
indicated that the uorescence quenching of CDs by Cr6+ and
Fe3+ is attributed to the static type of quenching effect, i.e., the
ground state complex formation takes place between the
surface groups of S-CDs and Cr6+ and Fe3+ ions. The uores-
cence quenching of S-CDs by Cr6+ and Fe3+ could be due to the
electrostatic interaction as well as ionic interactions between
the negative surface groups of S-CDs and Cr6+ and Fe3+ ions,
which lead to the complexation between them.35,40

Cr6+ and Fe3+ detection in real samples

Standard recovery experiments were performed using tap water,
lake water, and river water samples to determine whether the S-
CD uorescence method could be used to determine Cr6+ and
Fe3+ concentrations in real samples, and the results are
summarized in Tables 1 and 2, respectively. Each water sample
was ltered and then centrifuged at 10 000 rpm for 10 min
before analysis. As shown in Tables 1 and 2, the experimental
results showed that recoveries of Cr6+ and Fe3+ reached 97.20–
99.25% and 99.87–101.48%, respectively, with the relative
Table 1 Determination of Cr6+ in real water samples

Samples
Spiked
(mg mL−1)

Founda

(mg mL−1)
Recovery
(%)

RSD (%)
(n = 3)

Tap water 5 4.94 98.80 1.17
10 9.78 97.80 1.21
20 19.7 98.50 1.30

Lake water 5 4.86 97.20 1.57
10 9.82 98.20 1.62
20 19.76 98.80 1.43

River water 5 4.9 98.00 1.33
10 9.87 98.70 1.26
20 19.85 99.25 1.35

a Mean of three measurements.

Table 2 Determination of Fe3+ in real water samples

Samples
Spiked
(mg mL−1)

Founda

(mg mL−1)
Recovery
(%)

RSD (%)
(n = 3)

Tap water 20 20.12 100.60 0.97
30 29.96 99.87 0.56
40 40.59 101.48 0.82

Lake water 20 20.29 101.45 0.51
30 30.1 100.33 0.88
40 40.33 100.83 0.66

River water 20 20.2 101.00 0.36
30 30.28 100.93 0.55
40 40.44 101.10 0.26

a Mean of three measurements.

3478 | RSC Adv., 2024, 14, 3473–3479
standard deviation (RSD) values of 1.17–1.62% and 0.26–0.97%,
respectively, all of which were less than 2%.
Conclusions

In summary, a simple one-step hydrothermal method for the
synthesis of carbon quantum dots, with jaggery as the
precursor, showing blue uorescence emission was established.
The Cr6+ and Fe3+ ion quenches the uorescence intensity of S-
CDs due to electrostatic interaction between negatively charged
surface groups of S-CDs and positive ions and it was supported
by uorescence life time study. Therefore, uorescence analysis
platform for the detection of Cr6+ and Fe3+ was established,
which can be used for the sensitive and selective detection of
Cr6+ and Fe3+ in real water samples with limit of detections
(LOD) of 4.25 mg mL−1 and 3.15 mg mL−1, respectively, with
satisfactory results and broad application prospects in envi-
ronmentally and biologically related elds.
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