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1 Introduction

Carbon Kagome nanotubes—quasi-one-
dimensional nanostructures with flat bands¥

Husan Ming Yu, © 12 Shivam Sharma,® Shivang Agarwal, © ¢ Olivia Liebman?
and Amartya S. Banerjee & *2

In recent years, a number of bulk materials and heterostructures have been explored due their connections
with exotic materials phenomena emanating from flat band physics and strong electronic correlation. The
possibility of realizing such fascinating material properties in simple realistic nanostructures is particularly
exciting, especially as the investigation of exotic states of electronic matter in wire-like geometries is
relatively unexplored in the literature. Motivated by these considerations, we introduce in this work
carbon Kagome nanotubes (CKNTs)—a new allotrope of carbon formed by rolling up Kagome graphene,
and investigate this material using specialized first principles calculations. We identify two principal
varieties of CKNTs—armchair and zigzag, and find both varieties to be stable at room temperature, based
on ab initio molecular dynamics simulations. CKNTs are metallic and feature dispersionless states (i.e.,
flat bands) near the Fermi level throughout their Brillouin zone, along with an associated singular peak in
the electronic density of states. We calculate the mechanical and electronic response of CKNTs to
torsional and axial strains, and show that CKNTs appear to be more mechanically compliant than
conventional carbon nanotubes (CNTs). Additionally, we find that the electronic properties of CKNTs
undergo significant electronic transitions—with emergent partial flat bands and tilted Dirac points—when
twisted. We develop a relatively simple tight-binding model that can explain many of these electronic
features. We also discuss possible routes for the synthesis of CKNTs. Overall, CKNTs appear to be unique
and striking examples of realistic elemental quasi-one-dimensional materials that may display fascinating
material properties due to strong electronic correlation. Distorted CKNTs may provide an interesting
nanomaterial platform where flat band physics and chirality induced anomalous transport effects may be
studied together.

investigated due to the fact that electrons associated with such
states have quenched kinetic energies§ (are spatially localized),

Over the past two decades, the design, discovery and charac-
terization of nanomaterials and nanostructures with special
features in their electronic band structure has gained promi-
nence. Exemplified famously by the case of linear dispersive
relations in graphene (associated with massless Dirac
fermions'?), such features often point to the existence of exotic
electronic states, and the possibility of realizing unconventional
electromagnetic, transport and optical properties in real
systems. In recent years, materials and structures featuring
dispersionless electronic states or flat bands have been heavily
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and interact in the strong correlation regime.** This manner of
interaction leads to a variety of fascinating materials
phenomena, including superconductivity,®” ferromagnetism,*
Wigner crystallization,® and the fractional quantum Hall
effect.”**

Along these lines, moiré superlattices in twisted bilayers®**°
and materials with tailored atomic lattices®*** have received
much attention since they feature flat bands and rich electron
physics. In order to observe and maintain desirable electronic
properties, such systems usually involve some degree of engi-
neering, and more often, a fine control over important system
parameters (e.g. bilayer twists at specific magic angles** or
a critical magnetic field strength in quasi-two-dimensional (2D)
network structures**?¢). Therefore, a strand of recent investi-
gations has focused on the synthesis and characterization of
materials which feature electronic flat bands due to their

§ While linearly dispersive states are associated with extremely high charge carrier
mobilities, flat band electrons are massive and effectively have zero group velocity.
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natural atomic arrangements.>* Exotic electronic states hos-
ted by such materials can be stable with respect to perturba-
tions such as changes in temperature or applied strains, and
they can often display such states without external fields—
features which make them suitable for device applications.
Alongside these experimental studies, computational investi-
gations have also probed elemental versions of such materials,
i.e., stable bulk or 2D nanomaterials made of a single species of
atom that can feature unusual electronic states by virtue of their
atomic arrangements alone.***' The present study extends this
particular line of work to the important case of quasi-one-
dimensional (1D) nanomaterials featuring flat bands, which
have generally received far less attention in the literature.q

The possibility of realizing flat band physics and exotic states
of electronic matter in wire-like geometries is particularly
exciting. While well known theoretical considerations*>*®
appear to preclude the existence of long range order in low
dimensional systems (necessary, e.g. in realizing super-
conducting states), such restrictions do not necessarily apply to
the quasi-one-dimensional structures considered here.*” In fact,
there are reasons to expect that the screw transformation
symmetries and quantum confinement effects often associated
with such systems can actually result in enhancement of
collective or correlated electronic properties,**>° and that such
properties are likely to be manifested in manners that are quite
different from bulk phase materials. In particular, materials
such as the ones considered in this work can be chiral—due to
intrinsic or applied twists—and therefore, feature anomalous
transport (the Chiral Induced Spin Selectivity, or CISS
effect®?). The exploration of simultaneous manifestations of
such effects along with correlated electron physics has begun
fairly recently.®® We posit that the carbon nanostructures
explored here are likely to emerge as a possible material plat-
form for such studies in the future.

Due to its unique allotrope forming features and
versatility,””*® carbon is particularly attractive as a building
block of novel materials. A large number of computational
studies have recently been devoted to 2D and bulk allotropes of
carbon displaying Dirac cones, flat bands and non-trivial
topological states.’”***” On the other hand, although several
1D allotropes of carbon are well known,*®” none of these
systems are usually associated with flat band physics. As far as
we can tell, there have been only a few earlier attempts at
producing and investigating flat bands in realistic 1D nano-
materials of carbon: partially flat bands in zigzag graphene
nanoribbons,* spin polarized flat bands in hydrogenated
carbon nanotubes,** and moiré type flat bands in chiral carbon
nanotubes with collapsed structures®»* or incommensurate
double wall geometries.®* Our contribution aims to address this
particular gap in the literature by studying a family of realistic

9 There has been recent work (see e.g. ref. 6 and 42-44) on quasi-two-dimensional
systems and heterostructures, featuring one-dimensional flat bands, or flat bands
along specific directions of a two-dimensional Brillouin zone. In contrast, the
systems quasi-one-dimensional  (1D)
nanostructures that feature flat bands throughout the entirety of their

studied here are all elemental

(one-dimensional) Brillouin zone.
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1D carbon nanostructures that naturally feature flat bands
throughout their Brillouin zone. The flat bands in the structures
presented here arise out of geometric and orbital frustration
and without the aid of dopant or major structural instability
effects, as employed in the aforementioned studies. Moreover,
as we demonstrate, these dispersionless electronic states show
fascinating transitions as the structures are subjected to strains,
while also proving to be robust and retaining many desirable
characteristics in some respects.

To obtain a 1D carbon nanostructure with flat bands, our
starting point is a planar sheet of Kagome graphene. We then
“roll up” this 2D material along different directions to obtain
Carbon Kagome Nanotubes (CKNTs). Kagome graphene and
related bulk structures have recently received much attention in
the materials literature,>****"%%¢ and also in the physics liter-
ature, where the material is often identified as a “decorated
honeycomb” or “star lattice” structure.**-°> Although Kagome
graphene remains to be experimentally synthesized, successful
synthesis of a variant of this material, i.e., nitrogen-doped gra-
phene on a silver substrate—a 2D material with a Kagome
pattern, has been carried out recently.®»** Moreover, synthesis
of novel complex nanotube structures in general (see e.g. ref. 95)
and through the roll-up of 2D sheets in particular, is fairly
common (see e.g. ref. 96), thus suggesting that CKNTs can be
synthesized in the near future.

In this work, we introduce CKNTSs, and carry out a thorough
and systematic first principles characterization of this material
in terms of its structural, mechanical and electromechanical
properties. Wherever relevant, we provide comparisons of the
properties of CKNTs against those of conventional carbon
nanotubes (CNTs). All CKNTs studied here are metallic and
feature flat bands (throughout their Brillouin zone) near the
Fermi level, along with an associated singular peak in the
electronic density of states. We show in particular that CKNTs
appear to be more mechanically compliant when compared
against CNTs, and that their electronic properties undergo
significant electronic transitions—with emergent partial flat
bands and Dirac points—when subjected to torsional strains.
Our studies are made possible largely due to a suite of recently
developed symmetry adapted electronic structure calculation
techniques,” ' that allow ab initio calculations of 1D materials
and their deformed states to be carried out accurately and
efficiently. We also develop a m-electron based tight binding
model that includes up to next-nearest-neighbor interactions,
which is able to capture many of the electronic properties of
CKNTs, as revealed via first principles data.

The rest of the paper is organized as follows: Section 2
describes the geometry of the materials under study (subsection
2.1), as well as various aspects of the specialized first principles
computational techniques used in this work (subsection 2.2).
Section 3 presents results, touching on structural (subsection
3.1), mechanical (subsection 3.2), electronic (subsection 3.3.1)
and electromechanical (subsection 3.3.2) aspects. We discuss
possible routes to the synthesis of CKNTs in subection 3.4 and
conclude in Section 4. Details of the tight binding model for
CKNTs are presented in Appendix A.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2 Material and methods

In this section, we introduce the geometry of carbon Kagome
nanotubes (CKNTs) and their construction from Kagome gra-
phene through the “roll up” procedure commonly employed in
other similar types of nanomaterials.'**'* We also provide an
outline of the various computational and theoretical methods
used in our study.

2.1 From Kagome graphene to carbon Kagome nanotubes

Several recent studies have explored the structure of Kagome
graphene sheets and related bulk structures.?®?®383%4185 Ag
a starting point, we first consider the geometry of Kagome
graphene. The hexagonal unit cell of this 2D material consists of
6 carbon atoms that form a pair of equilateral triangles, as
shown in Fig. 1. We used the planewave code ABINIT'*'% to
optimize the geometry of this structure. Our calculations
employed norm conserving Troullier-Martins pseudopoten-
tials,* an energy cutoff of 50 Ha, 21 x 21 x 1 k-point sampling
and Fermi-Dirac smearing of 0.001 Ha. These parameters were
sufficient to produce accurate energies, forces and cell stresses
for the pseudopotentials chosen.” We employed both Perdew-
Wang'"° local density approximation (LDA) and Perdew-Burke-
Ernzerhof (PBE)"' generalized gradient approximation (GGA)
exchange correlation functionals. At the end of the relaxation
procedure, the atomic forces were typically of the order of 10~°
Ha bohr™*, while the cell stresses were of the order of 10~% Ha
bohr ™.

Table 1 shows that the optimized structural parameters ob-
tained by us are in very good agreement with the literature. As
expected," the LDA bond lengths are somewhat shorter than
those obtained through functionals involving gradient correc-
tions, although the variations observed are quite minor overall.
Notably, the intertriangle C-C bond length was found to be
slightly smaller than the bond length corresponding to the
triangle sides. Additionally, the calculated bond angles were
found to be 60° (in-triangle) and 150° (inter-triangle) almost
perfectly, consistent with the literature. Next, following the
construction of carbon nanotubes from graphene,*****''* we
rolled up the optimized flat Kagome graphene structures into
seamless cylinders and arrived at carbon Kagome nanotubes

Fig. 1 Unit cell of Kagome graphene with various structural parame-
ters indicated. The angle 6, is 150°, while 6, is 60°. The other param-
eters can be found in Table 1.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimized structural parameters of Kagome graphene.
Superscripts denote parameters obtained using: (a) LDA functional
(this work), (b) GGA functional (this work), (c) SGGA-PBE functional (ref.
39), (d) SGGA-PBE functional with Grimme D3 correction (ref. 39), and
(e) GGA functional using the bulk structure (ref. 40)

Parameters Current work Literature

a (A) 5.1370%(5.1662)" 5.2085°, 5.20879, 4.46°
dy (A) 1.3402%(1.3400)" 1.3559¢, 1.35679, 1.50°
dy (A) 1.4078%(1.4206)° 1.4305¢, 1.42999, 1.53°
D, (&) 5.3090%(5.3331)° 5.3817°, 5.3829¢

(see Fig. 2). Depending on the direction of rolling, the tubes
maybe armchair, zigzag or chiral, with non-negative integers (1,
m) denoting the chirality indices. In this work, we focus exclu-
sively on armchair (i.e., (n, n)) and zigzag (i.e., (n, 0)) nanotubes
(illustrated in Fig. 3). The index n for such achiral tubes indi-
cates the degree of cyclic symmetry about the tube axis. An
investigation of chiral CKNTs is the scope of future work.
Notably, the replacement of hexagons in conventional CNTs, by
dodecagonal rings in CKNTSs, results in a structure with more
porous sidewalls, and suggests the use of this material in
filtration,'® desalination'® and electrochemical storage
applications."*7**

2.2 Computational methods

We outline the computational methods employed in this work
to study CKNTs. These include specialized, real-space symmetry
adapted first principles simulations (using the Helical DFT
code®®*) and periodic plane-wave calculations (based on the
ABINIT,'**** Quantum Espresso*****> and PWDFT"**"**¢ codes),
to augment the Helical DFT results. A tight-binding model
which is able to replicate many of the electronic properties
revealed by the above first principles calculations is detailed
separately in A. In what follows, the atomic unit system with is

Fig. 2 Roll-up construction of CKNTs, starting from a sheet of
Kagome graphene. 6 denotes the direction of roll up, while z denotes
the tube axis direction. The 12 atoms shown in the shaded region are
the representative atoms in the fundamental domain used for Helical
DFT®8%° calculations. The domain size parameters illustrated above
correspond to calculations based on LDA exchange-correlation.

RSC Adv, 2024, 14, 963-981 | 965
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(a) Armchair (6,6) CKNT (b) Zigzag (9,0) CKNT

Fig. 3 Two varieties of CKNTs investigated in this work: (a) Armchair
(n, n) and (b) zigzag (n, 0) tubes. The tube radii are 0.85 nm and
0.74 nm, respectively for the above examples. n is the cyclic symmetry
group order about the tube axis.

used throughout, unless mentioned otherwise. We will denote
the standard orthonormal basis of R® with ey, ey, e,. Lowercase
boldface letters will denote vectors in three dimensions, while
uppercase boldface will denote matrices.

2.2.1 Helical DFT calculations. The majority of the first
principles calculations in this work have been carried out using
Helical DFT***—a symmetry-adapted real-space formulation of
Kohn-Sham Density Functional Theory.”” We now highlight
a few important features and technical details of this special-
ized computational technique. A key advantage of the meth-
odology is its ability to efficiently simulate quasi-one-
dimensional materials by exploiting global structural symme-
tries, which enables it to reduce calculations to just a few
representative atoms within the simulation cell. The nanotubes
of interest to this work, both in pristine or deformed configu-
rations, can be conveniently described using helical and cyclic
symmetries about a common axis.**'*>*** Specifically, for
a nanotube with axis ez, if P = {r;,1,,...,1): ;€ R} are the
coordinates of the representative atoms in the simulation cell
(or fundamental domain), then the collection of coordinates of
the entire structure can be expressed as:

M
S= U U R(zn:aﬂ‘@)l’i + Crez. (1)

CeZ i=1

Thus, the symmetry group of the nanotube consists of the
collection of isometries (i.e., rotations and translations):

G = {reu = (Ronaiuo) [{Te2): @)
(eZ, u=0,1,...,N - 1}.

Here, each symmetry operation Yy, consists of a rotation
operation about e, through the angle 2n{a + u® (denoted via
the action of the rotation matrix Ry zq+ue) above), along with
simultaneous translation by {t about the same axis. The
quantity R is a natural number that captures cyclic symmetries
in the nanotube, with the angle ® = 27t/ (i.e., N is the same as
n in armchair (n, n) and zigzag (n, 0) nanotubes). The scalar « is
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related to the applied or intrinsic twist in the structure, with the
amount of twist per unit length measured as § = 2wa/t. The
parameter 7 is related to the pitch of screw transformation
symmetries in the nanotube, and variations in this quantity
enable extensions and compressions about the tube axis to be
captured.

For the CKNTs considered in this work, we have employed an
orthogonal unit cell with 12 representative atoms, as shown in
Fig. 2. The parameter « takes values between 0 and 1, with a =
0 representing untwisted structures. The value of 7 as suggested
by the roll-up construction'®'* is 5.137 A and 8.897 A for
undeformed armchair and zigzag CKNTSs, respectively.

Helical DFT uses a higher order finite difference discretiza-
tion scheme in helical coordinates®*® to solve the following
symmetry adapted equations of Kohn-Sham DFT over the
fundamental domain:

DY (x5, v) = L(n, v)y;(xsm, v). (3)

The Kohn-Sham Hamiltonian operator:

1
@KS:_§A+ ch+(p+vnl7 [4)

consists of kinetic energy, exchange correlation, electrostatic
contribution (i.e., both electron-electron and electron-nucleus
interactions) and non-local psudopotential** terms. The

11
symmetry-adapted quantum numbers ne (—57 E) , and serve to

label the eigenstates and electronic occupation numbers of the
system (analogous to ‘k-points’ in periodic calculations of
solids), along helical and cyclic symmetry directions, respec-
tively. At the end of self-consistent solution of the above equa-
tions, the system's ground state electronic free energy per unit
fundamental domain may be calculated. We will denote this
quantity as F G.ound (P: D; ) to signify its explicit dependence
State
on the positions of the representative atoms within the funda-
mental domain (P), the fundamental domain itself (D), and the
symmetry group of the structure under consideration (G). By
introducing variations in ¢ and by minimizing
F Ground (P,D,G) with respect to the coordinates of the

State
representative atoms, Helical DFT can be employed for ab initio
exploration of the deformation response of a nanomaterial
under torsional or axial loads.*

In order to facilitate the large number of ground state elec-
tronic structure calculations of various CKNTs as well as their
electromechanical response under applied deformations,
Helical DFT simulations were carried out in three stages. First,
for a given nanotube and applied strain parameters, ab initio
structural relaxation calculations were carried out using a mesh
spacing of & = 0.3 bohr, and by sampling 15 reciprocal space
points in the 7 direction. These discretization choices are
sufficient to produce chemically accurate forces and ground
state energies for the norm conserving pseudopotential®*®***

© 2024 The Author(s). Published by the Royal Society of Chemistry
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used to model the carbon atoms in this work.” Atomic relaxa-
tion was carried using the Fast Inertial Relaxation Engine*** and
calculations were continued until each atomic force component
on every atom in the simulation cell reached 0.001 Ha bohr™* or
lower. Next, for each relaxed structure, we redid a self-consistent
calculation using the finest discretization parameters that could
be reliably employed within computational resource
constraints. This corresponds to a mesh spacing of 7 = 0.25
bohr and 21 reciprocal space points in the 5 direction. This
calculation step enables accurate calculations of energetics and
stiffness parameters to be carried out.”” Finally, using the self
consistent densities and potentials obtained through the above
step, we performed a single Hamiltonian diagonalization step
using 45 reciprocal space points in the 7 direction. The eigen-
states so obtained were used for band diagram and electronic
density of states calculations that are presented in Section 3.

For all Helical DFT calculations, we used the Perdew-Wang
parametrization™® of the LDA."* We did not observe any major
qualitative differences in the electronic properties between the
LDA results presented here and those produced using gradient
corrected functionals."™ We also employed 12th order finite
differences,®®******13% yacuum padding of 10 bohr in the radial
direction and 1 milli-Hartree of smearing using the Fermi-Dirac
distribution. The pseudopotential employed was generated
using the Troullier-Martins scheme,'**** and is identical to the
one used for the flat sheet calculations presented earlier
(Section 2.1).

2.3 Plane-wave DFT calculations

We used plane-wave DFT**'! for carrying out a few additional
first principles calculations of CKNTSs. Specifically, we investi-
gated the dynamic stability of undistorted CKNTs by perform-
ing ab inito molecular dynamics (AIMD) simulations. The highly
scalable PWDFT code'*™*® was used for this purpose. We
investigated two generic CKNTs—one each of the zigzag and
armchair varieties—with radii of 0.75 and 0.85 nm for our
simulations. In order to capture long range deformation modes,
we considered atoms beyond the minimal periodic unit cell and
chose multiple layers of the tubular structures along the axial
direction. This resulted in supercells containing 144 and 216
atoms for the armchair and zigzag variety tubes respectively.
Periodic boundary conditions were enforced along the axial
direction and a large amount of vacuum padding (~35 bohr)
was included in the other two directions to prevent interactions
between periodic images. Optimized Norm Conserving (ONCV)
pseudopotentials,"*'** and LDA exchange correlation were
employed. An energy cutoff of 40 Ha was employed and only the
gamma point of the Brillouin zone was sampled. The structures
were first relaxed using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm'** following which AIMD simulations were
performed at temperatures of 315.77 K, 631.55 K and 947.31 K
using the Nosé-Hoover thermostat.’*>** Time steps of 1.0 fs
were employed for integration and 5.0-7.0 ps of trajectory data
were collected for analysis.

Finally, we used the Quantum Espresso code'*™** for
computing the projected density of states (PDOS) of undistorted

© 2024 The Author(s). Published by the Royal Society of Chemistry
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armchair and zigzag CKNTs. Pseudopotentials from the Stan-
dard Solid State Pseudopotentials (SSSP) library,**”**® along with
an energy cutoff of 40 Ha, LDA exchange correlation and
Gaussian smearing (corresponding to an electronic tempera-
ture of 315.77 K) were employed. Keeping in mind the geometry
of the nanotube, the PDOS were calculated in the local atomic
coordinate frame, ie., the projections were taken on atomic
orbitals that had been rotated to a basis in which the occupation
matrix appears diagonal.

3 Results and discussion

In this section, we discuss the structural, mechanical and
electronic properties of CKNTSs as revealed by our simulations.

3.1 Structural properties: cohesive energy, sheet bending
modulus and dynamic stability

Fig. 4 shows the cohesive energy of armchair and zigzag CKNTs
as the tube radius varies in the range 1 to 3 nm (approximately).
Owing to the contribution from the elastic sheet bending
energy, the cohesive energy of both types of tubes decrease
monotonically as the tube radius increases, i.e., the tubes are
energetically more favorable with decreasing sheet curvature. In
our calculations, the energy of an atom in Kagome graphene, as
calculated in terms of the large radius limit of the energies of
CKNTs, agrees with direct calculations of the sheet to better
than 1 milli-eV, thus ensuring overall consistency of the results.
For a given radius, the zigzag and armchair CKNTs appear
nearly identical energetically, similar to the behavior of
conventional CNTs, also shown in Fig. 4. Assuming a quadratic
dependence of the bending energy on curvature, ie., Euler-
Bernoulli behavior, we evaluated the area-normalized sheet
bending modulus of Kagome graphene to be 0.506 eV and
0.502 eV in the armchair and zigzag directions, respectively
(also see Fig. 2). This is about a third of the sheet bending

—7.704
*_ Cohesive energy of CNTs
.
~7.708 Q y
S -T2
20 * *
[ “ o
ui ‘* "\‘ —8790 * TRy -
-, LY
& —7.716 ‘*‘ \'“\ Radius (nm)
é Ry,
©
*.* O'"G-
** “O--e...
—7720( 0 Fe * R C d
* Zigzag CKNT
O Armchair CKNT
%5 1 L5 2 2.5 3
Radius (nm)

Fig. 4 Cohesive energy of zigzag and armchair CKNTs. Inset: Cohe-
sive energy of conventional zigzag and armchair carbon nanotubes
(CNTSs) presented for comparison.
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modulus of conventional graphene, estimated to be about
1.5 eV through similar first principles calculations.*®

From Fig. 4, it is also evident that for a similar value of the
radius, CNTs are energetically more favorable compared to
CKNTs (i.e., CNTs have larger cohesive energies). We remark
however that this observation in of itself does not preclude the
synthesis of CKNTs. Indeed, fullerenes can be readily produced,
although they have long been known to have cohesive energies
that are somewhat lower than other common allotropes of
carbon.'**'**7131 More recently y-graphyne, which has a signifi-
cantly lower cohesive energy compared to graphene' has also
been chemically synthesized.***** Notably, there has also been
success in synthesis of other unusual quasi-one-dimensional
allotropes of carbon starting from conventional carbon nano-
tubes,” which may be adopted for producing CKNTs.

The phonon stability of Kagome graphene sheets has been
investigated earlier.** Based on band-folding
considerations,"**** such calculations are also likely to be
indicative of the stability of CKNTs at zero temperature. To
investigate the finite temperature structural stability of CKNTs,
we carried out AIMD simulations at three different tempera-
tures—315.77 K, 631.54 K and 947.31 K. The system energy is
observed to be stable throughout each of these simulations
(Fig. 7). We conclude that CKNTs are able to maintain their
overall structural integrity at room temperature, and beyond,
thus making them physically realistic nanostructures. Notably,

(a) (b)

Fig. 5 Snapshot of AIMD simulations at 315.77 K for both types of
CKNTs.

(a) (b)

Fig. 6 Snapshot of AIMD simulations of a zigzag CKNT at an elevated
temperature of 631.554 K. The cross-section shows a propensity for
developing transitory distortions (left image). However, the overall
structural integrity and the 12-fold rings continue to be maintained
(right image).
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Fig. 7 System energy variation over ab initio molecular dynamics
(AIMD) trajectories at three different temperatures for (a) an Armchair
CKNT and (b) a zigzag CKNT. The AIMD simulations reveal that the
nanotubes maintains their overall structural integrity far above room
temperature.

during the course of the simulations, the structures appear to
undergo dynamic distortions similar to conventional
CNTs,'>15%1% and show a propensity for developing transitory
ellipsoidal cross sections, especially at elevated temperature
(Fig. 6a). Nevertheless, the dodecagonal rings which make up
CKNTs and which are crucially related to their fascinating
electronic properties (discussed in Section 3.3), continue to be
maintained (Fig. 6b). Given the relatively low sheet bending
stiffness of Kagome graphene (as compared to conventional
graphene, e.g.), it is quite possible that large diameter CKNTs,
like their CNT counterparts'®'®* have a tendency to collapse.
From this perspective, the distorted cross sections described
above are possible indicators of this kind of structural transi-
tion, and warrant further investigation in the future. Snapshots
of the AIMD simulations is provided in Fig. 5, 6, and the entire
simulation trajectories at 315.77 K are available as ESL.{

3.2 Mechanical properties: torsional and extensional
stiffness

We focus on mechanical properties of CKNTs, namely their
torsional and extensional responses in the linear elastic regime.
As described earlier, Helical DFT allow such calculations to be
carried out by introducing changes in the nanotube symmetry
group parameters. We consider (12,12) armchair (radius 1.7
nm) and (12,0) zigzag (radius 0.98 nm) CKNTSs as representative
examples. For both these tubes, we start from the undistorted,
relaxed configurations.

For simulations involving torsion, we increment the
parameter « in regular intervals, imposing up to about § = 4.5°
of twist per nanometer, the limit of linear response for
conventional CNTs.'” For each twisted configuration, we relax
the atomic forces and compute the twisting energy per unit
length of the nanotubes as the difference in the ground state
free energy (per fundamental domain) of the twisted and
untwisted structures, ie.:

N
? (j:Ground state (P**a Da g'ﬁ)

- }—Ground state (P*y D7 g'ﬁ:()))' (5)

l]twisl (6) =
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In the equation above, G|; and G|;_, denote the symmetry
groups associated with the twisted and untwisted structures,
respectively and (as before) t denotes the cyclic group order.
Additionally, P** and P* denote the collections of relaxed
positions of the atoms in the fundamental domain in each case.
Thereafter, the torsional stiffness is computed as:

62 Utwist (ﬁ)

F | (6)

klwist =

We observed that for the range of torsional deformations
considered here, the behavior of Uys(8) is almost perfectly
quadratic with respect to (, consistent with linear elastic
response (see Fig. 8). Moreover, the value of kiy;s is estimated to
be 3156.1 eV/nm and 979.51 eV/nm for the armchair and zigzag
tubes, respectively. In the linear elastic regime, the torsional
behavior of nanotubes is well approximated by continuum
models which suggest that ks should vary with the tube
radius in a cubic manner.”>'*>'** By use of this scaling law, we
were able to estimate that conventional CNTs with radii
comparable to the CKNTs considered above are expected to be
significantly more rigid with respect to twisting (with kewist
values equal 2.8977 x 10" eV/nm and 5525.0 €V/nm for 1.7 nm
and 0.98 nm radius conventional CNTs, respectively).

Next, for simulations involving axial stretch and compres-
sion, we proceed in a manner similar to the torsion simulations.
For a given value of axial strain ¢, we modify the pitch of the
helical symmetry group as t = 74(1 + ¢), with 7, denoting the
equilibrium, undistorted values. Subsequent to this kinematic
prescription, we relax the atomic forces, and compute the
extensional energy per unit length of the nanotubes as the
difference in the ground state free energy per fundamental
domain, between stretched and unstretched structures, i.e.:

,'O
o7
o *
e ’ 4'*“‘
— a3 L
£ ‘ X
c
; = -
o 100 Q_.' ‘*,
= a4 L
S s
% Zigzag CKNT, Radius = 0.98 nm
=== St. line fit to ansatz: ¢ = 1.978, ¢ = 489.76 eV-nm
QO Armchair CKNT, Radius = 1.70 nm
10~ * --- St. line fit to ansatz: ¢ = 2.017, ¢ = 1578.0 &V-nm
0.02 0.03 0.04 0.05 0.06 0.08

B (radians/nm)

Fig. 8 Twist energy per unit length as a function of angle of twist per
unit length for two representative nanotubes (both axes logarithmic).
Dotted lines indicate straight line fits of the data to an ansatz of the
form Uwist(8) = ¢ x 9. The exponent q is nearly 2 in both cases,
suggesting linear elastic behavior.
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N
Ustreten (€) = a <‘7: Ground (P**’D7 g‘r:m(lﬂ))_

State

7 Ground (P*7D7g‘rzfo>) (7)
State

In the equation above, §|._ ;) and §|_, denote the
symmetry groups associated with the stretched and unstretched
structures, respectively. Additionally, P** and P* denote the
collections of relaxed positions of the atoms in the fundamental
domain in each case. The stretching stiffness of the nanotubes
may be then calculated as:

02 l]stretch (8)
de? 5:0.

(8)

kstrclch =

In our simulations, we restricted ¢ to be between +3.6% and
—3.6%. In this range, Usyetcned(é) is found to depend in
a quadratic manner on ¢, consistent with linear elastic behavior
(see Fig. 9). We also observed a small Poisson effect, which we
have ignored in subsequent analyses. For armchair (12,12) and
zigzag (12,0) CKNTs, we estimated Kgireren to be 5220.9 eV/nm
and 2093.4 eV/nm respectively. Based on scaling laws arising
from continuum theory,*** we also estimated that conventional
armchair CNTs with the same radii as the CKNTs considered
above would be noticeably stiffer to axial deformations (kstretcn
values equal to 1.2213 x 10" eV/nm and 7048.2 eV/nm for
1.7 nm and 0.98 nm radius conventional CNTs, respectively).

Overall, these results suggest that CKNTs are significantly
more pliable with respect to torsional and axial deformations,
as compared to their conventional CNT counterparts. Coupled
with the lower bending stiffness of Kagome graphene as
compared to conventional graphene, they are indicative of the
fact that Kagome graphene has a lower value of in-plane
(thickness normalized) Young's modulus and shear modulus.

519
Y % Zigzag CKNT, Radius = 0.98 nm
\ - Parabolic fit
4 \ O Armchair CKNT, Radius = 1.70 nm
\ ---  Parabolic fit
E
c 3 \
> 5 |
O ®
g %
= 3 O .
...
0 R
:14.00 —3.00 —2.00 —1.00 0.00 1.00 2.00 3.00 4.00

Axial strain (%)

Fig. 9 Extensional energy per unit length as a function of axial strain
for two representative CKNTs. Dotted curves indicate parabolic fits of
the data to an ansatz of the form Usyetcnle) = ¢ x 2.
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3.3 Electronic properties

We discuss the electronic properties of CKNTs as revealed by
first principles simulations. We start from a discussion of the
properties of undistorted tubes, following which we discuss the
electronic response of the tubes when subjected to torsional
and axial strains. In A we describe a symmetry adapted tight-
binding (TB) model that is able to explain these electronic
properties.

3.3.1 Electronic properties of undeformed CKNTs.
Conventional CNTs can be metallic or semiconducting
depending on whether they are armchair (all tubes metallic) or
zigzag (tubes with cyclic group order % divisible by 3 are
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Fig. 10 (a) Complete band diagram and (b) electronic density of states
near the Fermi level of an undistorted zigzag CKNT (radius 0.98 nm). A¢
denotes the Fermi level.
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Fig. 11 Symmetry adapted band diagrams of an undistorted zigzag
CKNT (radius 0.98 nm) obtained using Helical DFT.?8°° )¢ denotes the
Fermi level.
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Fig. 13 Symmetry adapted band diagrams of an undistorted armchair
CKNT (radius 1.70 nm) obtained using Helical DFT.?8%° A denotes the
Fermi level.

|Wavefunction|?

%

(a) VBM wavefunction

(b) Electron density

Fig. 14 Valence Band Maximum (VBM) wavefunction and the electron
density of an undeformed armchair (12,12) CKNT. A slice of the elec-
tronic fields at the average radial coordinate of the atoms in the
computational domain (represented using helical coordinates®) is
shown.

metallic), and the electronic band diagrams of these materials
prominently feature Dirac points near the Fermi
leve].99:100:104:129.165 Ty econtrast, our simulations reveal all CKNTs
to be metallic, with their electronic band diagrams prominently
featuring dispersionless electronic states, or flat bands, close to
the Fermi level. Fig. 10a and 12a show complete band diagrams
of undistorted CKNTs (i.e., all electronic states corresponding to
allowable values of reciprocal space parameters 7, v are plotted),
while Fig. 11 and 13 show symmetry adapted versions of these
plots (i.e.,, band diagrams with chosen reciprocal space
parameters along cyclic or helical directions). Notably, a CKNT
of cyclic group order % is found to feature 2% nearly degenerate
flat bands near the Fermi level. An associated singular peak in
the electronic density of states (Fig. 10b and 12b) is also
observed,|| and both zigzag and armchair tubes are found to
feature quadratic band crossing (QBC) points at n = 0 (corre-
sponding to the gamma point of the flat sheet). These features
make CKNTs striking examples of realistic quasi-one-
dimensional materials that are likely to exhibit strongly corre-
lated electronic states. The detailed investigation of exotic
materials phenomenon in CKNTs resulting from such strong
electronic correlations—including e.g., Wigner crystallization,

|| Our simulations suggest that the singular peak in the DOS of CKNTs occurs very
close to the Fermi level—about 0.006 Ha away for the examples discussed here. In
experimental situations, the peak in the DOS can be brought to the Fermi level
exactly, by application of an external electric field or by doping,** thus making
the associated electronic states more readily accessible.
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Fig. 15 Projected density of states (PDOS) for undistorted armchair

and zigzag CKNTs. The largest contribution to the sharp peak near the
Fermi level is seen to arise from p, orbitals.

flat-band ferromagnetism and the emergence of super-
conducting, nematic or topological phases*"'°*'*”—is the scope
of future work. Considering that such phenomena have been
studied primarily in bulk and two dimensional materials, the
role that the quasi-one-dimensional morphology of CKNTs
might play in them makes these investigations particularly
interesting.

The dispersionless states in CKNTs are caused by destructive
interference, resulting from geometric and orbital frustration,
as has also been shown to occur in other Kagome lattice
systems.'**”° The electron effective mass is arbitrarily large at
the flat band and the diminished electronic kinetic energy
allows the Coulombic interactions to dominate, resulting in
strong electronic correlation. In turn, this causes electron
localization** and the emergence of a sharp peak (i.e., van Hove
singularity'”®) in the electronic density of states (DOS) near the
Fermi level (as shown in Fig. 10b and 12b). The localized states
corresponding to an undistorted armchair CKNT are shown in
Fig. 14a. A plot of the electron density distribution for that
system is also shown (Fig. 14b).

At this point, it is worth mentioning some similarities of the
electronic properties of CKNTs with their conventional coun-
terparts. Like conventional CNTs, the fascinating electronic
properties of CKNTs are largely connected to 7 electrons formed
from radially oriented p, orbitals, while the p, and p, orbitals
form in-plane ¢ bonds and are largely electronically inactive.*
This is supported by projected density of states (PDOS) calcu-
lations for CKNTs (Fig. 15), which show that the singular peak
in the (total) electronic density of states near the Fermi level is
largely attributable to the contributions of the individual
(radially oriented) p, (I = 1, m; = 0) orbitals, while p, and p,
orbital contributions lie well below the Fermi level. Moreover,
the band diagrams of CKNTs have some similarities in
appearance with those of conventional CNTS, e.g., the presence

. . . 1
of Dirac points at n = 0 for zigzag tubes and at n = ig for

armchair ones (Fig. 10aand 12a). However, unlike conventional
CNTs, these Dirac points do not appear at the Fermi level in
undistorted CKNTs, but are prominently featured as a part of
the excited states of the system.

** The localization mechanism described above is different from Anderson

localization, where electronic waves become diffusionless due to

disorder/impurities in the system.'7*'
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(a) Armchair (12, 12) CKNT with 4.5° /nm twist

|Wavefunction|? %1078

%

(b) VBM wavefunction

(c) Electron density

Fig. 16 Atomic configuration, Valence Band Maximum (VBM) wave-
function and the electron density of an armchair (12,12) CKNT with g =
4.5° nm applied twist. A slice of the electronic fields at the average
radial coordinate of the atoms in the computational domain (repre-
sented using helical coordinates®®) is shown.

3.3.2 Electromechanical response of CKNTs: effect of
torsional and axial strains on electronic properties. We discuss
the changes to electronic properties of CKNTs to applied
deformations. First, we discuss the effect of torsional strains.
We use the (12,12) armchair CKNT as a prototypical example;
zigzag CKNTs are found to have similar behavior. As shown in
Fig. 16a, application of twist to the CKNT destroys the in-plane
Ce symmetry of the underlying Kagome graphene lattice struc-
ture, while maintaining its C, symmetry. Consequently,*”**7¢
the quadratic band crossing (QBC) point at n = 0 splits into
a pair of Dirac points (Fig. 17a).1t Furthermore, the degeneracy
in the 2% flat bands at the Fermi level appear to be lifted, and
a number of dispersionless states appear to give way to bands
that are only partially flat. The change of completely flat bands
to ones which have some dispersion near n = 0 is also evidenced
by the electronic density of states plot in Fig. 17b, which shows
that the sharp peak near the Fermi level decays as the rate of
applied twist increases. Despite these twist induced changes,
a number of dispersionless states survive (Fig. 16a) and spatially
localized wavefunctions associated with such states continue to
be hosted by the nanotube (Fig. 16b). Notably, the application of
twist results in energy dispersion relations that feature rather
dramatic changes in the electronic effective mass as the Bril-
louin zone is traversed—from infinitely massive carriers near 7

T1 The “tilted” nature of the linearly dispersive electronic bands near these Dirac
points appears to suggest connections with (quasi-one-dimensional) Weyl
semimetals.'”>"”
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Fig. 17 (a) Complete band diagram and (b) electronic density of states
near the Fermi level for the twisted armchair CKNT (radius 1.70 nm). A¢
denotes the Fermi level.

= 0, to massless ones as the Dirac points are reached, and then
re-appearance of infinitely massive ones as the edge of the

1
Brillouin zone is approached (i.e., closer to n = :I:E). Overall,

these observations suggest that torsional strains provide a way
of controlling correlated electronic states in CKNTs. Moreover,
twisted CKNTSs, being chiral, are likely to show asymmetric
transport properties.”*> Therefore, they provide an interesting,
realistic material platform where the combined manifestations
of anomalous transport phenomena (the Chiral Induced Spin
Selectivity effect'”®) and flat band physics may be realized and
studied.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Next, we discuss the case of axial strains. In general, such
deformations also tend to introduce some degree of dispersion
into the flat bands of CKNTs near n = 0, while lifting their
degeneracies near the Fermi level. However, their influence
appears to be less dramatic than the case of torsional defor-
mations described above. Nevertheless, the axial compression
case deserves particular mention. Considering the zigzag (12,0)
CKNT for example, we observe (see Fig. 18a) that the dispersion
introduced in the flat bands near n = 0 results in curvature of
these states in a manner that is opposite (i.e., convex vs.
concave) of the situation encountered while twist is applied (i.e.,
Fig. 17a). Thus, a scenario akin to the touching of a pair of
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Fig. 18 (a) Complete band diagram and (b) electronic density of states
near the Fermi level for the stretched zigzag CKNT (radius 0.98 nm). A¢
denotes the Fermi level.
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parabolic bands'*'”® emerges. Upon subjecting the tube to
larger values of compression, we observed that the parabolic
bands near n = 0 give way to linear dispersion, i.e., the emer-
gence of Dirac points. Commensurate with these changes, the
sharp peak in electronic the density of states (Fig. 18b) also
diminishes with increasing magnitude of axial strain, although
the decrease appears to be less dramatic than the situation
encountered with torsion (i.e., Fig. 17b).

Overall, the above observations are consistent with literature
that suggests that quadratic band crossing points are unstable
with respect to strains.'®***' It is also worthwhile at this point to
contrast the electromechanical response of CKNTs to conven-
tional CNTS. Zigzag CNTs with cyclic group order divisible by 3
and armchair CKNTs are both metallic,'* and they are known to
be more sensitive to axial and torsional strains respectively. The
effect of such deformations, at least for small strains, is to open
up a gap at the Dirac points of these materials, resulting in
metal-semiconductor transitions.?'¢>*82-185 Ag described above,
CKNTs appear to show more dramatic electronic transitions
when subjected to such strains. At the same time, the simula-
tions above suggest that at least some dispersionless states in
CKNTs are robust and continue to be available when the tube is
subjected to small torsional and axial strains.

3.3.3 Tight binding model. Based on the findings of the
PDOS calculations (Fig. 15), we have developed a symmetry
adapted tight binding (TB) model of the electronic structure of
CKNTs. Our model involves m-electrons and incorporates up to
next-nearest-neighbor interactions. The model is able to
capture salient features of the electronic properties of undis-
torted CKNTs as revealed via first principles calculations.
Additionally, by taking into account the variation in the
hopping parameters with relative changes in bond lengths (eqn
(13) and (15)) the TB model is also able to account for the effects
of strain on the electronic properties. We present details of the
model in A. The TB model also produces results consistent with
a m-orbital based empirical pseudopotential calculations,'***%¢
but has the added advantage of being analytical in nature.
Further analysis of the mathematical properties of the TB model
is the scope of ongoing work."’

3.4 Possible routes to the synthesis of CKNTs

Our calculations suggest that CKNTs are kinetically stable,
which is often taken to be a promising sign of the synthesiz-
ability of carbon allotropes.*>'*® In the past, a wide variety of
metastable carbon allotropes have been fabricated,"® often with
significantly lower cohesive energies than other common stable
counterparts. Examples of successful synthesis of such unusual
carbon allotropes include y-graphyne,'**>*** T-carbon’"° and
nitrogen-doped Kagome graphene.’*** In particular, various
methods of synthesis of conventional carbon nanotubes,
including laser ablation and chemical vapor deposition have
been explored.”'** Some of these techniques have also been
successfully used in manufacturing other 1D carbon allotropes,
e.g. T-carbon nanotubes, which can be created from conven-
tional carbon nanotubes through a picosecond pulsed-laser
irradiation induced first order phase transition. Such
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techniques provide additional routes for synthesizing CKNTs.
Irrespective of the method, we anticipate that the analysis pre-
sented in this paper is likely to be instrumental in realizing
CKNTs experimentally.

Since a variety of routes have been exploited for synthesizing
different allotropes of carbon, multiple avenues also possibly
exists for realizing CKNTs. We suggest two possibilities here,
both based on the organic synthesis of Kagome graphene and
subsequent roll-up of this material to form CKNTs. One possi-
bility is to wuse silver adatoms to transform tetra-
bromobocyclopropene to intermediate organometallic complex
and to then form Kagome graphene on the surface of SiO,
substrate with etchant sensitive gold layer in between ,”* as
represented in left panel of Fig. 19a. The second possibility is
through the use of cyclopropane or bicyclopropane,*-'*®
wherein tailoring of ligand chemistry can be used to form self-
assembled kagome graphene on the surface of gold (111),
deposited on a SiO, substrate (shown in right panel of Fig. 19a).
This latter method is similar to recently demonstrated self-
assembly procedures in metastable carbon nanowiggles.'****

Possible route 1 Possible route 2

L o
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[ Preoursor & % ] [B'\Cyc\opropane 4 >4 ]
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Fig. 19 Possible routes of synthesis of CKNTs. (a) Two possible routes
to synthesis Kagome graphene. (b) Rolling up of a layer of Kagome
graphene by target itching to form CKNTSs.
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After the synthesis of Kagome graphene, targeted etching of the
gold layer**® can result in the curling of the 2D material into
CKNTs, as desired. The lower bending stiffness of kagome
graphene in contrast to conventional graphene (Section 3.1) will
likely assist in this step (Fig. 19b).

4 Conclusion

In summary, we have introduced carbon Kagome nanotubes
(CKNTs)—a new allotrope of carbon formed through a roll-up
construction of Kagome graphene. These nanotubes are unique
in the sense that contemporarily, they are perhaps the only known
example of realistic, elemental, 1D nanostructures that can host
dispersionless electronic states, or flat bands, in the entirety of
their (one-dimensional) Brillouin zone. They also feature Dirac
points in their band diagram, as well as a singular peak in their
electronic density of states. Thus, they provide an attractive
platform for studying and exploiting strongly correlated elec-
tronic phenomena in nanomaterials with wire-like geometries.

To characterize CKNTs, we have carried out an extensive
series of first principles simulations, including specialized
calculations based on symmetry adaptation. We have investi-
gated both zigzag and armchair varieties of CKNTs. Cohesive
energy computations and ab initio molecular dynamics simu-
lations suggest CKNTs should exist as stable structures at room
temperature and beyond. Our simulations reveal that it is easier
to roll Kagome graphene into CKNTs than it is to roll conven-
tional graphene into CNTs. Moreover, CKNTs are found to be
significantly more pliable with respect to torsional and exten-
sional deformation as compared to CNTs of similar radii. Both
zigzag and armchair varieties of CKNTs are found to be metallic,
and are seen to feature multiple degenerate flat bands and
a corresponding singular peak in the electronic density of
states, near the Fermi level. We studied the response of elec-
tronic properties of CKNTs to applied torsional and axial strains
and showed that such deformations are very effective in
inducing large changes in the electronic states of this material.
We also developed a tight binding model which is able to
capture many of the electronic properties of CKNTs observed in
first principles calculations, and also reproduces correctly, the
effect of strains in the material.

Given the relative stability of CKNTs and the fact that there
has been recent successes in experimentally synthesizing
various novel carbon allotropes, it appears likely that CKNTs
can be produced and studied under laboratory conditions in the
near future. Such pursuits, as well as more detailed character-
izations of electronic phenomena in CKNTs at a level beyond
Density Functional Theory, and the exploration of anomalous
transport phenomena in distorted CKNTs, are all attractive
directions of future research.

A Appendix: tight binding model for
CKNTs

We have developed a pr-orbital based tight-binding (TB) model
for understanding the electronic structure of CKNTs. As

© 2024 The Author(s). Published by the Royal Society of Chemistry
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described below, to correctly reproduce the findings of the ab
initio calculations, especially the effects of strain, we found it
necessary to include up to next-nearest-neighbor (NNN) inter-
actions and to make the hopping amplitudes dependent on
relative changes in bond lengths. The TB Hamiltonian in
second quantization framework'*'” is written as:

_ 1 !
H= Zeia{a,‘yai’y + Zztl(z‘wv)amaﬂ
iy v (i)

.
+ZZ’2<M~/)amajy + h.c..
(i)

v (i)

©)

Here, ¢;, denotes the onsite energy of site i and orbital v, ()
and t,(;, jy) are the hopping amplitudes between orbitals v of the
nearest-neighbors (NNs) (7, j) and the next-nearest-neighbors
(NNNs) ((i,)), respectively, and A.c. is the Hermitian conjugate.
The annihilation and creation operators are denoted by a;,, ajy,
respectively. The onsite energy, &, is considered zero for
convenience. To calculate the TB band structure of CKNTs, we
adopt the Dresselhaus method.'® This procedure involves
development of a TB formulation for the flat sheet (i.e., Kagome
graphene), and subsequent mapping of the atoms of the two-
dimensional lattice to a cylinder, so as to invoke boundary
conditions appropriate to the nanotube. Details of these steps
are discussed below.

Results from our TB calculations are presented in Fig. 20 and
21. As can be seen, there is excellent qualitative agreement
between these results and the first principles data presented
earlier.

A.1 Tight binding model for Kagome graphene

The hexagonal unit cell of Kagome graphene consist of two
triangular sublattices A and B (Fig. 22), consisting of a total of
six carbon atoms per unit cell. We consider only p, orbitals in
the TB method which yield a 6 x 6 TB hamiltonian, written in
momentum space for NN interactions as:**

H H
NN AA AB
HKagome graphene = (HBA HBB ) ’ (10)

Axial or torsional strains in CKNTs can be mapped to
appropriate deformations in Kagome graphene. For example,

Energy (Ha)
2
Energy (Ha)

-08 -08
-05 -03 -01 01 03 05 -05 -03 <01 01 03 05
Normalized wave-vector along z-direction Normalized wave-vector along z-direction

(a) Zigzag (12, 0) CKNT. (b) Armchair (12, 12) CKNT.

Fig. 20 Band diagram of undistorted CKNTs obtained from the tight
binding model: (a) Armchair and (b) zigzag cases shown. Ar denotes the
Fermi level.
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nergy (Ha)
Znergy (Ha)

s 03 01 01 03 05 s -03 01 01 03 05
Normalized wave-vector along z-direction Normalized wave-vector along z-direction

(a) Zigzag (12, 0) CKNT (b) Armchair (12, 12) CKNT

Fig. 21 Band diagram of twisted CKNTs obtained from the tight
binding method, with about 4.8° nm~ of applied twist. A denotes the
Fermi level.

Fig. 22 Kagome graphene structure with two sublattices A and B
consisting of total six carbon atoms in the unit cell.

torsional strains in CKNTs have the effect of inducing a shear
strain in the underlying Kagome graphene lattice. Generally,
such distortions transform the sublattices in Kagome graphene
from being perfect equilateral triangles to scalene triangles, so
that the hopping matrix of sublattices B will no longer be the
Hermitian conjugate of that of sublattices A. The NN hopping
matrix Ha, of the sublattice A can be written as (refer to Fig. 22):

O ta beixzubal -k tlm_eixz”caz k
Hpa = | fpe™en® 0 112tk (11)
tlaceﬂxzwaz-k t]bceﬂxzmayk 0

while the inter-triangular hopping matrix Hag can be written
as:
H,p = Diag [[’laeeixm('«nJrilz)‘k7 t’ltdeﬂ'xw(az*as)'k7 t’1[7j,e4xlizf(alJrax)'k]7

(12)

The matrices Hgg and Hp, can be written in the similar
manner, and are not shown here for brevity. Consistent with the
geometry of Kagome graphene and the mapping of strains from
CKNTs to the Kagome graphene lattice, we choose a; =[1, 0, 0],
a, =[cos(f, + 27a), sin(f, + 27a), 0] and a; = a; — a, as the unit

. T
vectors in real space, and we further set 6, = 3 We denote k =

[k, k] as the unit vector in reciprocal space.
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The hopping amplitudes depend on the structure of the
lattice and the applied deformations, and can be written as the
function of relative change in bond length:**

n
Xy — Xy
faw = 18 (exp (M)) and
X2
/ 0 X1 — X1y "
Uiy = t] eXp| —— .
X1

Here t) = -5 eV, t; = —7 eV are the NN hopping parameters,
and x,; and x, are inter- and intra-triangular bond lengths in the
undeformed structure (Fig. 1). The bond lengths x,,, and x4,
are in the deformed system, and u, v run over the NN atoms as
shown in Fig. 22. The parameter n controls the magnitude of the
hopping parameter upon deformation of the lattice and
parameterizes the “flatness” of the dispersionless states. Here,
« is the nanotube's applied twist parameter, as explained earlier
in section 2.2.1. Following literature,'® we use n = 8 for getting
both relatively flat bands and smooth evolution of band struc-
ture upon deformation.

The NNN interactions in our TB Hamiltonian take the
following form:

(13)

199

0 H
Hg?g]jmc graphene = H‘r I\(I)NN ’ (14)
NNN
here, hopping matrix Hyxn(2, 1) = 0 and Hynn(14,9) = taine™ ™,
for u # v. The NNN hopping parameter is given as:
n
X3 — X3
Lo = 1) (exp ($> ) . (15)
X3

Here x; is the distance between the NNN in the original struc-
ture and x5, is the same distance in the deformed nanotube; u,
v denote the NNN atoms; and 3 = —0.0125 eV.

A2 (n, m) nanotube and boundary conditions

To adapt the TB model of Kagome graphene described above to
CKNTs, we follow the method developed by Dresselhaus.'* The
general procedure starts by considering a semi-infinite two-
dimensional sheet, whereby the two opposite edge sides are
glued together to form an infinite tube, with the axis of the tube
chosen to be the e direction. The periodicity along the circum-
ferential direction naturally imposes periodic boundary condi-
tions on the circumferential wave vector, denoted k, below. In
what follows, we briefly describe the procedure for imposing such
periodic boundary conditions on a nanotube constructed from an
arbitrary two-dimensional lattice. Axial and torsional deforma-
tions in the nanotube can be naturally incorporated by consid-
ering the effect of applied strains to the two-dimensional lattice.

We first describe the construction of an (n, m) nanotube by
rolling up a flat sheet along the direction of a chiral vector. The
flat sheet is assumed to be generated using a 2D hexagonal
lattice, with lattice vectors a; and a,, each of length a, (the
lattice vectors for Kagome graphene are given in A.1 above). The
chiral vector for a nanotube with chirality (n, m) is then C;, = na,
+ ma,, where n, m are non-negative integers. The translation
vector which is parallel to the axis of the nanotube is expressed
as T = Tya, + T,a,. Furthermore, ged(Ty, T,) = 1, Ty, T, €Z,and:
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_2m+n
T d

2n+m
d;

T, Y ,d, = ged(2m + n,2n + m).

The translation vector determines the axial periodicity of the
nanotube, such that in real space, the unit cell of the nanotube
is described by a rectangle generated by C;, x T. The reciprocal
lattice vectors corresponding to C, and T are k, and ki,
respectively. Since, C, and T}, are orthogonal vectors, this gives
Cyr'k, = 2m, Ch'kH =0, Tk, = 0, and T'kH = 27. By
substituting k, and k; into the orthogonality constraints, we
get:

1
kJ_ = _(_szl -i-lez)7

7 (16)

kH = %(mbl *}’lbz),
where, b; = 2—Tc(az xz) and b, = 2—W(z x a;) are the unit
vectors of the r%%iprocal lattice of the twd-dimensional lattice, a,
is the lattice parameter, and z is perpendicular to both a, and a,.
Furthermore, N is the number of primitive unit cells per
nanotube unit cell, and can be expressed as:

_ |C/1 X T‘
|a; x a,]

(17)

(18)

Note that, for the zigzag and armchair tubes considered
here, N is related to the cyclic group order as N = 2.

The energy dispersion relations (ie., electronic band
diagrams) can be obtained'* by first writing the TB Hamilto-
nian of the flat sheet, and then applying the periodic boundary
condition along the direction of chiral vector, Cy, i.e., y(x + Cj) =
Y(x). This leads to the condition exp(ik-C;) = 1 and quantizes
the wave vector k| , thus giving rise to N discrete wavevectors
parallel to k , , in the direction of C,. The wavevector kj, which is
parallel to the axis of the nanotube, remains continuous,
however. Since the two-dimensional sheet is being rolled-up to
form a quasi-one-dimensional nanotube, the Brillouin zone
(BZ) is one-dimensional, and the condition T-k; = 27 implies
that the length of the Brillouin zone is 27t/T. Thus, the A one-
dimensional energy dispersion relations for the nanotube can

k
be parametrized as e(skL + }k—H|k), with s =0,...,A' — 1 and
[
T T

Note that this construction immediately implies that a zigzag
or armchair CKNT of cyclic group order % will feature 29 flat
bands, since the starting point is the Kagome graphene TB
Hamiltonian (A.1) featuring a single flat band across its Bril-
louin zone. This is consistent with the observations made from
first principles calculations (Section 3.3).
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