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f phenolic compounds in water
using a multivariate statistical analysis method
combined with three-dimensional fluorescence
spectroscopy

Wei Zhu, ab Ruifang Yang, *b Nanjing Zhao,*b Gaofang Yinb and Jianguo Liub

Phenolic compounds are toxic chemical pollutants present in water. Three-dimensional fluorescence

spectroscopy analysis is an effective and rapid method for real-time phenol monitoring in aquatic

environments. However, similar chemical structures of phenols result in highly overlapping three-

dimensional fluorescence spectra. Therefore, it is extremely difficult to analyze and quantify the

concentration of components in a mixture system that includes two or more phenolic compounds. In

this article, we study the mixed phenol system containing phenol, o-cresol, p-cresol, m-cresol, catechol,

and resorcinol combined with excitation-emission matrix (EEM) fluorescence data. A multivariate

statistical method called best linear unbiased prediction (BLUP) is proposed to analyze the spectra with

the aim to achieve quantitative results and a trilinear decomposition algorithm called parallel factor

analysis (PARAFAC) was used for comparison. Two experiments with different calibration samples were

set to validate the effectiveness of BLUP through recovery, ARecovery (Average Recovery), AREP

(Average Relative Error of Prediction), and RMSE (Root Mean Square Error). Overall, the average recovery

of each component in experiment 1 and experiment 2 ranged from 95.91% to 111.62% and 82.91% to

129.02%, respectively. Based on the results of the experiments, the concentration of phenolic

compounds in water can be quantitatively determined by combining three-dimensional fluorescence

spectroscopy with the BLUP method.
1. Introduction

Water is necessary for humans, but with industrial develop-
ment, water pollution has become a serious problem.1 Phenolic
compounds are toxic pollutants widely distributed in industrial
wastewater and have adverse effects on the ecological environ-
ment and human health.2,3 Therefore, it is crucial to develop
and improve methods for monitoring and identifying them in
natural and urban water systems.

Chemical analysis, gas chromatography (GC), gas
chromatography-mass spectrometry (GC-MS), and high-
performance liquid chromatography (HPLC) are some of the
classical methods that can be used to determine phenolic
compounds.4–8 However, because of the time-consuming
process of handling chemical reagents and pretreatment of
the experiment, these techniques do not perform very well in
terms of real-time monitoring. To solve this issue, three-way
uorescence spectra are used, along with excitation-
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emission matrix (EEM) uorescence data. Spectral informa-
tion, high sensitivity, and low detection limits make it an
effective technique for monitoring water pollutants.9–12

In recent years, many mathematical algorithms have been
applied and improved to process three-dimensional uores-
cence spectra.13–15 The trilinear decomposition algorithm is
one type of these algorithms. A typical algorithm called
parallel factor analysis (PARAFAC) has been used most
commonly for dealing with EEM uorescence data.16,17 On
the premise that the signal-to-noise ratio is appropriate and
the number of components is estimated correctly, PARAFAC
usually performs well in the separation and reduction of the
three-dimensional uorescence spectra of each component
in a mixture system.18,19 The largest advantage of PARAFAC is
the uniqueness of decomposition under the condition that
the dataset is linear in three directions. However, PARAFAC
may not be able to obtain accurate concentrations for each
compound when the three-dimensional uorescence spectra
overlap seriously, as in the case of the six phenolic
compounds quantitatively studied in this article. It is there-
fore important to explore various methods to estimate
concentrations more precisely in such situations.
RSC Adv., 2024, 14, 2235–2242 | 2235
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Multivariate statistical analysis is a comprehensive analysis
method developed from classical statistical analysis. It can be
used to analyze the statistical patterns of multiple objects and
indicators when they are interrelated. Multivariate statistical
analysis includes multiple regression analyses, cluster analysis,
factor analysis, and Canonical correlation analysis. Best linear
unbiased prediction (BLUP) is a prediction analysis method in
multivariate statistical analysis. It is a valuable method for
analyzing prediction since the corresponding predictor is the
most optimal among the classes of linear and unbiased
predictors. BLUP has been widely used in various elds, such as
life testing and genetic connectedness in genetic statistics .20,21

It is useful for simplifying prediction calculations in some cases
and constructing large-sample approximate predictors for scale
and location–scale parameter distributions.22,23

In this study, we apply BLUP to the EEM data. In two
different experiments, BLUP quantitative identication is used
to identify 5/6 phenols directly from uorescence excitation-
emission matrices (EEMs). The results show that BLUP can
provide accurate results for phenols with severe spectral overlap
at different calibration set ratios.

2. Theory
2.1 PARAFAC algorithm

The trilinear model, also known as the PARAFAC model, was rst
developed by Carroll, Chang,24 and Harshman25 in 1970, and
named CANDECOMP and PARAFA. Subsequently, the PARAFAC
model attracted increasing attention. It is useful to deal with
excitation-emission matrix (EEM) uorescence data with the
PARAFAC algorithm. The structural model is as follows:26

Xijk ¼
XN
n¼1

ainbjnckn þ eijk

Here i= 1, 2., I; j= 1, 2., J; k= 1, 2., K; Nmeans the number
of components. Ain and bjn represent the (I,n) and (j,n) elements
of excitation matrix A (I × N) and emission matrix B (J × N),
respectively. ckn is the (k,n) element of relative concentration
matrix C (K × N). eijk is the element of a three-dimensional
residual matrix E.

2.2 Best linear unbiased prediction

In the statistical regression analysis, suppose that X and Y are p-
dimensional and q-dimensional random variables. Here, X
represents the EEFM (Excitation Emission Fluorescence Matrix)
data and Y represents the concentration of each component, both
X and Ymatrices are stretched into a vector before processing the
data. If we want to predict Y based on X, then a good predictor is
E(YjX), that is, the conditional expectation of Y given X. In
particular, if the joint distribution of X and Y is normal, i.e., 

X

Y

!
� N

  
m1

m2

!
;

 
S11 S12

S21 S22

!!
; (1)

where m1 and m2 are the expectations of X and Y, respectively, S11

and S22 represent the corresponding variances, while
S11 and S21 denote the covariances between X and Y, which
2236 | RSC Adv., 2024, 14, 2235–2242
measure their dependency. In particular, if S12 = 0, then X is
considered independent of Y, in which case the prediction of Y
is based on X is of course meaningless.

For model (1), the conditional expectation of Y is given by:27

EðY jX Þ ¼ m2 þ
X
21

X�1
11

ðX � m1Þ:

In fact, this predictor is the best linear unbiased predictor
(BLUP) under the normality assumption.

Note that m1, m2, S11, and S21 are all unknown in practice, so
it is necessary to estimate them based on the sample data.

Suppose that the sample

 
xi
yi

!
, i = 1,2,.,n are drawn from the

population

 
X
Y

!
, then the maximum likelihood estimators of

the parameters are,

bm1 ¼ x ¼ 1

n

Xn
i¼1

xi;

bm2 ¼ y ¼ 1

n

Xn
i¼1

yi;

bS11 ¼ 1

n� 1

Xn
i¼1

ðxi � xÞT ;

bS21 ¼ 1

n� 1

Xn
i¼1

ðyi � yÞðxi � xÞT :

Thus, we can use the following to predict Y, that is,

ÊðY jX Þ ¼ bm2 þ bS21
bS11

�1ðX � bm1Þ:

3. Experimental and measurements

The phenol, o-cresol,m-cresol, p-cresol, catechol, and resorcinol
used in these experiments were analytically pure (AR) and
purchased from Aladdin. Each stocking solution was prepared
by dissolving 500mg of the corresponding phenolic compounds
in deionized water in 500 mL brown volumetric asks at low
temperatures and protected from light. The working solutions
are made by diluting the stock solutions proportionally when
carrying out the experiments. Excitation-emission matrix uo-
rescence data were collected using a Hitachi F-7000 three-
dimensional uorescence spectrometer.

In this work, we prepared two experiments to determine the
calculation accuracy of the BLUP compared with PARAFAC. In
experiment 1, the calibration set comprised 9 samples which
were mixed with phenol, o-cresol, p-cresol, catechol, and
resorcinol in deionized water. Similar to the calibration set, the
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra06917f


Table 1 5 Phenols concentrations of calibration and test samples used in experiment 1 (mg L−1)

Calibration set Test set

Phenol o-Cresol p-Cresol Catechol Resorcinol Phenol o-Cresol p-Cresol Catechol Resorcinol

1 0.08 0.16 0.40 0.56 0.64 1 0.10 0.64 0.10 0.30 0.20
2 0.16 0.32 0.08 0.40 0.56 2 0.50 0.30 0.38 0.44 0.30
3 0.24 0.48 0.48 0.24 0.48 3 0.32 0.70 0.40 0.70 0.40
4 0.32 0.64 0.16 0.08 0.40 4 0.72 0.60 0.18 0.62 0.70
5 0.40 0.08 0.56 0.64 0.32 5 0.08 0.56 0.56 0.10 0.60
6 0.48 0.24 0.24 0.48 0.24 6 0.20 0.26 0.70 0.08 0.50
7 0.56 0.40 0.64 0.32 0.16 7 0.60 0.10 0.22 0.50 0.10
8 0.64 0.56 0.32 0.16 0.08 8 0.64 0.50 0.44 0.60 0.46
9 0.72 0.72 0.72 0.72 0.72 9 0.48 0.48 0.30 0.72 0.68

10 0.24 0.36 0.60 0.20 0.34

Table 2 The 6 phenols concentrations of calibration samples in experiment 2 (mg L−1)

Calibration set

Phenol o-Cresol m-Cresol p-Cresol Catechol Resorcinol Phenol o-Cresol m-Cresol p-Cresol Catechol Resorcinol

1 0.8 1.5 0 0 0 0 12 0 1 0.7 0.5 0 0
2 0 0.6 1.1 0 0 0 13 0.5 0.4 0.6 0.4 0.24 0
3 0 0 1.6 0.8 0 0 14 0.7 0 0 0.7 0.4 2.2
4 0 0 0 1.2 2 0 15 0 0.8 0.5 0 0 0.7
5 0 0 0 0 1.8 2.4 16 0 0.6 0 1.5 1 0
6 1.5 0 0 0 0 1.8 17 0.16 0.7 0.16 0.3 1.2 0
7 1 1.2 0.4 0 0 0 18 0.9 0 1.1 0.9 0.9 0.16
8 0 0.5 0.8 0.6 0 0 19 1.1 0.5 0 0.16 0.5 0.9
9 0 0 1 1 1.5 0 20 0.3 0.3 0.8 0 0.7 0.3
10 0.6 0 0 0 2.6 2 21 0.8 0.9 0.3 0.6 0 0.6
11 0.4 1 0.7 0.5 0 0
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test set contained different concentration ratios of 5 phenols.
All the concentration ratios of 5 phenols in the calibration and
test sets are shown in Table 1.

In experiment 2, a calibration set of 21 samples was built
from six 2-component mixed samples, four 3-component mixed
samples, six 4-component mixed samples, and ve 5-compo-
nent mixed samples. The test set is also a mixed system, but all
ten samples contain 6 phenols. The purpose of conducting
Table 3 The 6 phenols concentrations of test samples in experiment 2
(mg L−1)

Test set

Phenol o-Cresol m-Cresol p-Cresol Catechol Resorcinol

1 0.64 0.64 0.66 0.24 0.6 0.4
2 0.5 0.3 0.32 0.38 1 1
3 0.44 0.7 0.4 0.4 0.7 1.2
4 0.72 0.6 0.48 0.2 0.9 0.7
5 0.4 0.56 0.72 0.56 0.5 0.6
6 0.2 0.26 0.44 0.7 1.4 0.5
7 0.6 0.2 0.2 0.5 1.2 1.1
8 0.36 0.5 0.7 0.44 0.66 1.3
9 0.48 0.48 0.36 0.3 0.84 1.5
10 0.26 0.36 0.52 0.6 1.6 0.8

© 2024 The Author(s). Published by the Royal Society of Chemistry
experiment 2 was to test the situation in which more similar
component was added and fewer components were mixed in the
calibration set. Table 2 and Table 3 list the concentration values
of 6 phenols in the calibration and test samples.
4. Results and discussion

Phenol, o-cresol, m-cresol, p-cresol, catechol, and resorcinol
have similar chemical structures, as shown in Fig. 1. Although
the positions of the phenolic hydroxyl and methyl groups con-
nected to the benzene ring are different, the conjugated struc-
ture of the benzene ring leads to similar uorescence peaks.
Therefore, their three-dimensional uorescence spectra overlap
signicantly (Fig. 2). Taking the similarity into account, the
similarity factors were calculated using the following formula:
Fig. 1 Chemical structures of phenol, o-cresol, m-cresol, p-cresol,
catechol, and resorcinol.

RSC Adv., 2024, 14, 2235–2242 | 2237
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Fig. 2 Three-dimensional fluorescence spectra combined with contour plots of six phenolic compounds.
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s ¼

PI
i¼1

PJ
j¼1

xi;jyi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1

PJ
j¼1

xi;j
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1

PJ
j¼1

yi;j2

s ; xi;j˛X ; yi;j˛Y
2238 | RSC Adv., 2024, 14, 2235–2242
Here, X and Y are the EEM data of the two phenolic
components, xij, yij are the elements of the matrix X, Y cor-
responding to the intensity in i-th excitation and j-th emis-
sion. The similarity factors obtained from the 6 phenolic
components EEM data ranged from 0.7417 to 0.9851 listed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Similarity factors of the 6 phenolic components

Phenol o-Cresol p-Cresol Catechol Resorcinol m-Cresol

Phenol 1 0.9728 0.8027 0.7417 0.8761 0.9512
o-Cresol — 1 0.8633 0.8302 0.9517 0.9851
p-Cresol — — 1 0.9288 0.9127 0.8404
Catechol — — — 1 0.9133 0.7882
Resorcinol — — — — 1 0.9485
m-Cresol — — — — — 1
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in Table 4. So, it is difficult to analyze serious-overlap EEM
data and quantitatively determine the concentration of each
component.

In these experiments, CORCONDIA (core consistency diag-
nostic) was used as an efficient and useful method to calculate
the component numbers. It can determine the number of
factors through the value of the core consistency coefficient:

CORCONDIA ¼ 100�

26664
PN
i¼1

PN
j¼1

PN
k¼1

�
gijk � tijk

�2
PN
i¼1

PN
j¼1

PN
k¼1

Tijk
2

37775
Here tijk represents the elements of the hyperdiagonal matrix,
and gijk represents the data matrix processed using the
trilinear decomposition method. When the assumed compo-
nent number is smaller than the actual component number,
the value of the core consistency coefficient is equal to or
close to 1. On the contrary, when the assumed component
number is larger than the actual component number, the
value of the core consistency coefficient is equal to or close to
0.

In experiment 1, the value of the core consistency coeffi-
cient is above 50%, corresponding to ve components, and
drops to 5.24% when the number is increased from 5 to 6.
Therefore, ve components are suggested to be the correct
estimation constituents in experiment 1. In the same way, 6
is determined as the suitable component number in experi-
ment 2.

Aer the number of components is determined, the next step
is to use algorithms with appropriate parameters to calculate
the concentrations of each component in test samples. Two sets
of twenty test samples containing ve phenolic compounds in
experiment 1 and six phenolic compounds in experiment 2 are
quantitatively calculated by BLUP and PARAFAC. ARecovery
(Average Recovery), AREP (Average Relative Error of Prediction),
and RMSE (Root Mean Square Error) are the four indicators of
the calculation results.

ARecovery ¼
Pn
i¼1

Xi

Yi

n
� 100%

AREP ¼
Pn
i¼1

jXi � Yij
Yi

n
� 100%
© 2024 The Author(s). Published by the Royal Society of Chemistry
RMSE ¼
ffiffiffi
1

n

r Xn
i¼1

ðXi � YiÞ2

Here Xi means the calculated concentration of the i-th sample,
Yi means the actual concentration of the i-th sample, n means
the total number of all test samples.

Considering the different construction of the calibration
sets, two experiments are discussed separately.
4.1 Experiment 1

For a more intuitive comparison between the calculated and
actual concentrations, we created 5 line-symbol plots (Fig. 3)
corresponding to ve phenolic compounds to show the results
obtained by BLUP and PARAFAC. The distance from the calcu-
lated symbols to the actual ones represents the accuracy of the
results, and the uctuation degree of the line chart represents
the stability of the results.

As for the quantitative results of phenol, BLUP performed
better than PARAFAC inmost test samples except samples 4 and
8. Although the recovery rates calculated by BLUP for samples 4
and 8 are not as accurate as those obtained by PARAFAC, they
could still reach 96.42% for sample 4 and 110.92% for sample 8.
Similar to phenol, there were no more than two samples in
which the PARAFAC algorithm was superior to BLUP for
calculating o-cresol, p-cresol, and resorcinol. These test samples
are sample 6 in o-cresol, sample 5 in p-cresol, and sample 7, 8 in
resorcinol, and their corresponding recovery rates were
126.19%, 102.89%, 135.7%, and 118.91%, respectively. The
calculation results for catechol were relatively poorer than those
for the other 4 phenolic compounds using the BLUP in experi-
ment 1. There were three samples: sample 2, sample 3, and
sample 8. Quantitative analysis revealed that BLUP is worse
than PARAFAC. The respective recovery rates were 117.79%,
87.61%, and 74.52%, but the calculated concentration was not
too far from the actual one.

As can be seen in Fig. 3, overall, BLUP performs better than
PARAFAC, irrespective of the accuracy or the stability of results
according to the tness degree between the calculation lines
and the actual lines in these plots. This conclusion can also be
supported by the data in Table 5, in which average recovery and
AREP represent the accuracy of the overall calculation results
and RMSE represents the degree of discretization of data. It can
be seen in Table 5, that the average recovery rates of all 5
phenolic compounds were closer to 100%, and the values of the
average AREP and RMSE were also smaller when using the BLUP
algorithm.
RSC Adv., 2024, 14, 2235–2242 | 2239
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Fig. 3 The calculated concentration using BLUP, PARAFAC algorithm,
and the actual concentration of 5 phenolic components in all test
samples in experiment 1.

Table 5 Average recovery and errors using BLUP and PARAFAC of
typical test samples from experiment 1

BLUP PARAFAC BLUP PARAFAC

Phenol p-Cresol
ARecovery/% 111.31 176.14 108.22 117.31
AREP/% 18.38 93.06 16.14 24.12
RMSE/mgL−1 0.0512 0.1856 0.0668 0.1040

o-Cresol Catechol
ARecovery/% 110.11 127.28 95.91 141.96
AREP/% 13.33 53.32 10.88 57.31
RMSE/mgL−1 0.0401 0.2052 0.0656 0.1119

BLUP PARAFAC

Resorcinol
ARecovery/% 111.62 165.14
AREP/% 17.69 83.52
RMSE/mgL−1 0.0708 0.4184

2240 | RSC Adv., 2024, 14, 2235–2242
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4.2 Experiment 2

In experiment 2, another phenolic compound called m-cresol
was added. Including the 5 components in experiment 1, the
three-dimensional uorescence spectra of 6 phenolic
compounds overlap in a more serious manner, leading to
a much more complex mixture system. Different from experi-
ment 1, the composition of the calibration samples in experi-
ment 2 changes from complete mixing to partial mixing, such as
2-components mixing, 3-components mixing, etc. With the
addition of m-cresol and the different composition forms for
constructing the calibration set, we aimed to test the prediction
performance of BLUP in such a situation.

As can be seen in Fig. 4, there are only 3 dots that are closer
to the actual dots using PARAFAC than using BLUP out of the
total 60 dots, and sample 7 of phenol, sample 6 of o-cresol and
sample 4 of m-cresol correspond to these three dots. Based on
BLUP, their recovery rates were 101.62%, 72.62%, and 75.5%,
within the acceptable ranges. The uctuation range of the
recovery rates of each component was also calculated to show
the prediction performance of BLUP in experiment 2. For
phenol, the recovery ranged from 101.62% to 157.77%; for o-
cresol, the recovery ranged from 72.62% to 121.9%%; for m-
cresol, recovery ranged from 72.25% to 92.72%; for p-cresol,
recovery ranged from 98.02% to 121.9%; for catechol, recovery
ranged from 80.71% to 111.8%; for resorcinol, recovery ranged
from 95.55% to 120.7%.

As can be seen in Table 6, BLUP quantitatively calculates
better than PARAFAC in terms of average recovery, average REP,
and RMSE. Combined with Table 6, the difference between
these three indicators the above between BLUP and PARAFAC
increases rapidly as the component of the mixture system and
composition of the calibration set change from experiment 1 to
experiment 2. Meanwhile, it is noteworthy that the accuracy of
quantitative calculation results using BLUP in experiment 2 is
not signicantly affected in such an environment according to
the values of average recovery, average REP, and RMSE.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Calculated concentrations using BLUP, PARAFAC algorithm,
and actual concentration of 6 phenolic components in all the test
samples from experiment 2.

Table 6 Average recovery and error using BLUP and PARAFAC of
typical test samples in experiment 2

BLUP PARAFAC BLUP PARAFAC

Phenol o-Cresol
ARecovery/% 129.02 180.62 85.65 200.94
AREP/% 29.03 77.13 18.73 103.88
RMSE/mgL−1 0.1308 0.3989 0.0899 0.4672

m-Cresol p-Cresol
ARecovery/% 82.91 57.67 106.47 244.45
AREP/% 17.09 45.22 7.70 149.89
RMSE/mgL−1 0.0920 0.2562 0.0287 0.5747

Catechol Resorcinol
ARecovery/% 97.75 280.90 110.64 248.28
AREP/% 6.31 190.49 11.59 139.63
RMSE/mgL−1 0.0799 1.5195 0.1176 1.1577

© 2024 The Author(s). Published by the Royal Society of Chemistry
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View Article Online
5. Conclusions

In this work, the BLUPmethod was applied to analyze the three-
dimensional uorescence spectra with a severe overlap of
phenols in a water environment and quantitatively calculate the
concentration of each component. The PARAFAC algorithm was
also used for comparison. Two experiments were set with
a different construction of the calibration set and a different
number of phenolic components. In experiment 1, the average
recovery rates of 5 phenols ranged from 95.91% to 111.62% with
BLUP and 117.31% to 176.14% utilizing PARAFAC. In experi-
ment 2, the average recovery rates of 6 phenols ranged from
82.91% to 129.02% with BLUP and 57.67% to 280.90% using
PARAFAC. The calculation results conrmed that BLUP
performs well in quantitatively predicting the concentration of
each phenolic component. Furthermore, with less-mixed
compositions and similar components added to the calibra-
tion samples, BLUP was still calculated precisely, showing
prediction accuracy and stability.
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