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Pyrrolylsulfonium salts: stable, accessible and
versatile pseudohalides for Stille couplings†
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Simon E. Lewis *a,d

Pyrrolyl halides can be difficult to synthesise in a regioselective manner and are often unstable, which has

hampered their application in cross-coupling. Here we introduce pyrrolylsulfonium salts as advantageous

pseudohalide coupling partners and showcase their applicability in Stille couplings. Benefits of these salts

include their straightforward synthesis via an “interrupted Pummerer” process, their high stability, and the

ability to selectively introduce the sulfonium group at either the pyrrole α- or β- position as required. The

Stille coupling has been demonstrated for aryl, heteroaryl and alkynylstannanes, and the effect of the

pyrrole substituents on the regioselectivity of S–C bond activation has been investigated. Conditions to

effect N-desulfonylation of N-trisyl coupling products have been identified.

Introduction

The pyrrole ring system is commonly found in organic
materials,1 as well as in natural products2 and drug sub-
stances3 (Fig. 1). For example, GS70 is a pyrrole-based electron
acceptor which has been used to fabricate organic solar cells
that can achieve high power conversion efficiencies,4

P(DKPP-TPTH) is a pyrrole-containing polymer which has been
used to construct organic field-effect transistors,5 and OCF3-
BnPyV is a viologen-substituted pyrrole which has been used
in electrochromic devices.6 The natural products cycloprodi-
giosin7 and heronapyrrole A8 have immunosuppressant and
antibiotic properties, respectively. The licensed drug vonopra-
zan9 is a potassium-competitive acid blocker indicated for gas-
troduodenal ulcers and the investigational drug resminostat is
in trials for oncology indications.10

Many synthetic strategies to access pyrrole-containing
targets have been reported. These may be divided into de novo
pyrrole syntheses11 (where the pyrrole ring is formed with sub-
stituents already in place) and pyrrole functionalization
approaches (where substituents are introduced onto a pre-
existing pyrrole ring). In this latter category, SEAr and pyrrole

metalation protocols are well developed.12 Transition metal-
catalysed cross-couplings have also been studied for pyrrole
functionalization,13 although some shortcomings remain to be
overcome. For example, the use of pyrrolyl halides as classical
electrophilic cross-coupling partners may be hindered by
difficulties of synthetic access and/or instability. Thus, halo-
genation of N-H pyrrole or simple N-alkyl/N-aryl derivatives
with a variety of electrophilic halogen sources reportedly often
leads to complex mixtures of mono- and polyhalopyrroles.
Moreover, the parent N-H-2-halopyrroles are markedly
unstable, decomposing upon attempted isolation
(Scheme 1a).14,15 Selectivity for halogenation at C2 vs. C3 can
also vary depending on the substrate and synthetic method,
and separation is usually challenging. Whilst
N-halosuccinmides can exhibit good selectivity for halogena-
tion at C2 over C3, overreaction to the 2,4-dihalopyrrole can
occur.14 To access 3-halopyrroles, an acid-mediated isomeriza-
tion (“halogen dance”) of the 2-halo isomer can sometimes be
employed, but this can also induce a degree of disproportiona-
tion (Scheme 1b).14,16 Halopyrroles substituted with electron-
withdrawing groups can be more stable in some cases. For
example, pyrroles bearing a carbonyl at C2 generally undergo
electrophilic halogenation to give stable products, but regio-
selectivity between C4 and C5 depends on the halogenating
agent and on the nature of the carbonyl (Scheme 1c).15,16a,17

Alternatively, use of an electron-withdrawing protecting group
on nitrogen can sometimes increase stability. For example,
considering bromopyrroles specifically, N-Boc-2-bromopyr-
role18 can reportedly be stored as a solution in hexane at
−10 °C,19 and N-tosyl-2-bromopyrrole20 is stable in pure form.
N-Tosyl-3-bromopyrrole may be synthesized by treating N-tosyl-
pyrrole with Br2 under acidic conditions,

21 and N-Boc-3-bromo-
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pyrrole is synthesized from N-TIPS-3-bromopyrrole by protect-
ing group exchange22 (Scheme 1d). However, all of these
examples have in common that the yields reported for their
preparation (by the same procedure) vary appreciably.

Whilst some cross-couplings of halopyrroles such as those
in Scheme 1 have been reported,23 their more widespread util-
isation has been hampered by the issues described above. An
alternative approach is the use of a pyrrole pseudohalide for
cross-coupling. Thus far, there are some examples of pyrrole
triflates being used as pseudohalides in cross-couplings,24 pri-
marily in natural product total synthesis, but the preparation
of the substrates has not been generalised. Pyrrole C–H func-
tionalisation approaches have also been developed, each with
varying scope in substrate, coupling partner, catalyst, etc.25

Sulfonium salts have become established as pseudohalides
that can have advantages over classical halide coupling part-
ners. Cross-coupling of sulfonium salts was first reported by
Liebeskind et al.,26 who demonstrated Stille, Suzuki–Miyaura
and Negishi couplings with aryl, heteroaryl, alkenyl and benzyl
sulfonium salts. Since then the scope of sulfonium salt cross-
coupling has been expanded to include various other nucleo-
philic coupling partners, carbonylative couplings, reductive
cross-electrophile couplings, etc., employing both Pd and Ni
(Scheme 2a).27,28 Sulfonium salts are also synthetically useful
in other contexts, and their chemistry has been reviewed.29 We
previously reported the synthesis of azulenesulfonium salts
and their use in cross-coupling.30 These salts proved superior
to azulene halides in terms of their stability and ease of syn-

Scheme 1 Stability and selectivity problems in the formation of
halopyrroles.

Scheme 2 Sulfonium salts are competent pseudohalides in cross-
coupling.

Fig. 1 A selection of pyrrole-containing molecules.
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thesis. Synthesis of azulene halides by SEAr reaction on the
electron-rich five-membered ring typically leads to overhalo-
genation, and the products are unstable (unless electron-with-
drawing groups are also present). In contrast azulenesulfo-
nium salts may be synthesised in good yield, as the sole pro-
ducts, and are stable without any special handling/storage pre-
cautions (Scheme 2b). The cationic sulfonium substituent
serves to reduce the electron density of the aromatic system,
thereby imparting stability. We recognised that many of the
drawbacks of azulene halides (instability, difficulty of syn-
thesis/purification) were shared with pyrrolyl halides, which
also comprise an electron-rich five-membered aromatic ring.
Therefore we sought to develop pyrrolylsulfonium salts for use
in cross-coupling, anticipating that they would share the
advantages of azulenesulfonium salts. The results of these
studies are reported here (Scheme 2c). Pyrrolylsulfonium salts
are known,31 but to date they have been primarily used as
radical precursors, in sigmatropic rearrangements or as sub-
strates for dealkylation to give pyrrolyl thioethers.

Results and discussion

Aryl sulfonium salts can be synthesised by various approaches,
including reaction of aryl thiols/thioethers with electrophiles,
or activation of sulfoxides and attack by nucleophiles.29j For
the synthesis of pyrrolylsulfonium salts we opted to employ an
“interrupted Pummerer” reaction,32 wherein a sulfoxide is acti-
vated by an acid anhydride, followed by attack at sulfur by a
nucleophilic (i.e. electron-rich) arene, loss of an oxygen leaving
group and rearomatisation (Scheme 3a). In Pummerer reac-

tions the sulfoxide is most commonly activated with a car-
boxylic acid anhydride, but in this case we employed a sulfonic
acid anhydride (specifically triflic anhydride). This was due to
our previous findings that use of a carboxylic acid anhydride
can promote an alternative reaction pathway affording Δ3-
pyrrol-2-one products.33

A key advantage of pyrrolylsulfonium salts as reagents for
cross-coupling is easy access to both the 2-pyrrolyl and 3-pyrro-
lyl regioisomers. The interrupted Pummerer process typically
installs the sulfonium salt at the 2-position, in keeping with
the established SEAr reactivity of pyrrole. This product may
then be isomerised to the 3-pyrrolylsulfonium salt via a
Brønsted acid-catalysed [1,5]-sigmatropic rearrangement
(Scheme 3b).31b–d Analogous migrations of various other func-
tional groups on the pyrrole ring have been reported,34

although stability of the substrates to the highly acidic reaction
conditions varies. In contrast, pyrrolylsulfonium salts are
robust under these conditions and may be isomerised in high
yield. Furthermore the interrupted Pummerer/rearrangement
reaction cascade may be performed as a one-pot process. We
prepared and screened multiple pyrrolylsulfonium salts to
identify optimal reagents for cross-coupling that (a) are easily
prepared in good yield on gram scale; (b) exhibit good stability;
(c) have good solubility in the solvents to be used for cross-
coupling; and (d) undergo oxidative addition into the correct
C–S bond. From this screening we identified the novel salt
diphenyl (N-(p-toluenesulfonyl)-1H-pyrrol-2-yl)sulfonium tri-
flate 2·OTf as an ideal reagent for the preparation of 2-substi-
tuted pyrroles, which was prepared on a gram scale
(Scheme 3c). Reaction workup involved straightforward parti-
tioning between MeCN and hexane,35 followed by recrystallisa-
tion from methanol. The reaction generates an equivalent of
triflic acid as a byproduct, which might be expected to catalyse
the [1,5]-sigmatropic rearrangement shown in Scheme 3b.
However, we found the specific combination of N-tosyl and
diphenyl sulfonium substituents disfavoured the rearrange-
ment under these reaction conditions, and hence 2-pyrrolyl
(non-rearranged) salt 2·OTf could be isolated in 85% yield. In
contrast, we found that thianthrenium salts underwent the
rearrangement more readily and that additional triflic acid
facilitated the process. Formation of the 3-pyrrolylthianthre-
nium salt with an N-tosyl protecting group occurred in variable
yield and the product was only sparingly soluble. Switching to
a more sterically demanding N-trisyl group improved product
solubility and rendered the synthesis reproducible and also
scalable to gram scale. We thus identified the novel 5-(N-(2,4,6-
triisopropylphenylsulfonyl)-1H-pyrrol-3-yl)-5H-thianthrenium
triflate 4·OTf as an ideal reagent for the preparation of 3-sub-
stituted pyrroles (Scheme 3c). Amongst the various sulfonium
groups used as synthetic handles in the literature, the thian-
threnium group has been extensively exploited due to its par-
ticular properties.36–38 For example, its introduction onto an
aromatic ring typically proceeds in an exceptionally regio-
selective manner.28,39 In the case of N-trisyl pyrrole, NMR
studies indicate that the initial thianthrenation affords a
mixture of 4·OTf and its 2-pyrrolyl regioisomer. This then

Scheme 3 Synthesis of sulfonium salts by “interrupted Pummerer”
reaction and their isomerisation by [1,5]-sigmatropic rearrangement.
TTSO = thianthrene-S-oxide.
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undergoes rearrangement to 4·OTf, such that after 3 hours
4·OTf is the only product present.31m,o Introduction of a bulky
group at nitrogen is known to favour 3-substituted products in
pyrrole SEAr reactions.

22

To establish the applicability of pyrrolylsulfonium salts
2·OTf and 4·OTf in cross-coupling, we employed them as pseu-
dohalides in the Migita–Kosugi–Stille coupling.40,41 Examples
of pyrrolyl halide Stille couplings are known,42 although com-
peting dehalogenation can reportedly be significant in some
cases.23p Organostannanes are advantageous coupling partners
due to their stability to air and moisture, as well as their avail-
ability from commercial sources or through straightforward
syntheses.43 The robust nature of the Stille coupling and its
efficiency under mild reaction conditions mean it has proven
successful in many instances where other cross-coupling meth-
odologies have failed.44 Whilst the (variable) toxicity of orga-
nostannanes45 necessitates the thorough removal of tin resi-
dues from active pharmaceutical ingredients prepared through
Stille coupling, methods to achieve this are well developed.46

We selected phenyltributylstannane as an archetypal aryl
stannane reagent for reaction optimisation. Reaction para-
meters were varied as shown in Scheme 4 and Table 1. Initial
attempts using Pd(PPh3)4 and 1.3 equivalents of stannane
showed the coupling was viable in DMF, toluene and t-butanol
(entries 1–3). Desired product 5a formed in each case, with the

highest conversion in DMF. Formation of byproducts was also
observed, either as a result of N-sulfonyl group cleavage (giving
6) or reductive cleavage of the thianthrenium group (giving 3).
This latter process is analogous to the dehalogenation some-
times observed with classical halide substrates. The beneficial
effects of copper salt additives on Stille couplings are well
documented,47 so we evaluated the effect of CuI as an additive
in DMF and toluene (entries 4 and 5), but no improvement in
conversion was observed. Fluoride salts are also known to
promote Stille couplings,48 and synergistic effects arising from
the presence of both copper and fluoride salts have been
reported.49 Multiple conditions including caesium fluoride as
an additive were evaluated (entry 6), but formation of desired
product 5a was negligible in each case, with N-sulfonyl clea-
vage dominating instead to give 6. Use of an alternative Cu(I)
source did not increase conversion to 5a (entries 7–10). Use of
triphenylarsine as ligand50 in conjunction with Pd2(dba)3 as
palladium source in DMF gave greater conversion to 5a
(entries 11–15). Reaction temperature could be lowered to
50 °C without a reduction in conversion, and 2 mol% loading
of Pd2(dba)3 (i.e. 4 mol% of Pd) was identified as optimal.
Finally, a change in reaction stoichiometry to 2.2 equivalents
of stannane increased conversion to 84% of 5a and suppressed
formation of byproducts 3 and 6 (entry 15).

An analogous reaction optimisation was carried out for the
coupling of phenyltributylstannane with 2-pyrrolyl sulfonium
salt 2·OTf. Reaction parameters were varied as shown in
Scheme 5 and Table 2. An initial attempt using Pd(PPh3)4 in
DMF showed the coupling to be viable, with desired 2-phenyl-
pyrrole 7a forming in moderate yield (entry 1). Three bypro-
ducts were also identified, namely the N-sulfonyl cleavage
product 8, the sulfonium reductive cleavage product 1 and the
parent pyrrole 9. This latter byproduct (which was not
observed in the coupling of 4·OTf ) presumably arises from
N-sulfonyl cleavage from 1, highlighting the greater stability of

Scheme 4 Stille coupling of 4·OTf to form desired 3-phenylpyrrole 5a
and byproducts 6 and 3.

Table 1 Optimisation of Stille coupling of 3-pyrrolyl thianthrenium salt 4·OTf

Entry Pd(0) source
PhSnBu3
(equiv.) Additive Ligand Solvent

Conc.
(M)

Temp.
(°C)

Conv.%
5a

Conv.%
6

Conv.%
3

1 Pd(PPh3)4 (4 mol%) 1.3 — — DMF 0.12 110 64 <5 7
2 Pd(PPh3)4 (4 mol%) 1.3 — — Toluene 0.12 110 58 23 10
3a Pd(PPh3)4 (4 mol%) 1.3 — — tBuOH 0.12 80 38 — 6
4 Pd(PPh3)4 (4 mol%) 1.3 CuI (16 mol%) — DMF 0.12 110 38 <5 8
5 Pd(PPh3)4 (4 mol%) 1.3 CuI (16 mol%) — Toluene 0.12 110 50 — 6
6 Pd(PPh3)4 (4 mol%) 1.3 CsF (2.2 eq.)

with/without CuI
— DMF/

toluene
0.12 80–110 <5 10–50 <5

7 Pd(PPh3)4 (4 mol%) 1.3 Cu(OTf)·Tol (16 mol%) — Toluene 0.12 110 46 <5 5
8 Pd(PPh3)4 (8 mol%) 1.3 Cu(OTf)·Tol (16 mol%) — Toluene 0.12 85 24 8 5
9 Pd(PPh3)4 (4 mol%) 1.3 Cu(OTf)·Tol (16 mol%) — Toluene 0.12 80 44 16 6
10 Pd(PPh3)4 (4 mol%) 1.3 Cu(OTf)·Tol (16 mol%) — Toluene 0.07 110 47 16 10
11 Pd2(dba)3 (2 mol%) 1.3 — AsPh3 (16 mol%) DMF 0.12 80 71 6 5
12 Pd2(dba)3 (2 mol%) 1.3 — AsPh3 (16 mol%) DMF 0.12 50 70 3 6
13 Pd2(dba)3 (1 mol%) 1.3 — AsPh3 (16 mol%) DMF 0.12 50 57 — 21
14 Pd2(dba)3 (4 mol%) 1.3 — AsPh3 (16 mol%) DMF 0.12 50 69 5 10
15 Pd2(dba)3 (2 mol%) 2.2 — AsPh3 (16 mol%) DMF 0.12 50 84 — —

Conversions obtained from crude 1H-NMR spectra by comparison to an internal standard (mesitylene). Cu(OTf)·Tol = copper(I) trifluoromethane-
sulfonate–toluene complex. a 13% of starting material 4 remained.

Research Article Organic Chemistry Frontiers
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the N-trisyl group compared to N-tosyl.‡ Use of a fluoride additive
with a copper(I) source was once again unproductive (entry 2).
Use of AsPh3/Pd2(dba)3 in DMF proved superior to the Pd(PPh3)4
system, and no increase in conversion was observed when the
loading of Pd2(dba)3 was increased beyond 2 mol% or the temp-
erature was increased beyond 50 °C (entries 3–5). With this palla-
dium/ligand combination, copper(I) additives again proved dele-
terious (entries 6 and 7). However, a change in reaction stoichio-
metry to 2.2 equivalents of stannane was beneficial (as was the
case for the coupling of 4·OTf), increasing conversion to 74% of
7a and minimising byproduct formation.

With optimised conditions in hand for the coupling of
both salts, substrate scope for the couplings was examined
using a range of commercially available stannanes. For the
coupling of 4·OTf (Scheme 6), both (substituted) phenyl (5a–
5e) and heteroaryl (5f–5g) products were isolated in good yield.
In the formation of chlorophenyl pyrrole 5d, no evidence was
seen of unwanted C–Cl bond activation in the product.51

Alkynyl stannanes were also competent coupling partners (5h–
5i). Use of a bis(stannyl)thiophene effected a double coupling
to give 5j. To the best of our knowledge, the heteroaryl triad in
5j with this particular connectivity (2,5-bis(3-pyrrolyl)thio-
phene) is a previously unknown structural motif outside the
field of porphyrin chemistry.52

For the coupling of 2·OTf (Scheme 7), here also (substi-
tuted) phenyl (7a–7c), heteroaryl (7d–7e) and alkynyl (7f ) pro-
ducts were accessible in good to moderate yield.

Table 2 Optimisation of Stille coupling of 2-pyrrolyl sulfonium salt 2·OTf

Entry Pd(0) source
PhSnBu3
(equiv.) Additive Ligand Solvent

Temp.
(°C)

Conv%
7a

Conv%
8

Conv%
1

Conv%
9

1 Pd(PPh3)4 (4 mol%) 1.3 — — DMF 80 31 6 23 7
2 Pd(PPh3)4 (4 mol%) 1.3 CsF (2.2 eq.)

Cu(OTf)·Tol (16 mol%)
— DMF/

toluene
50–110 Trace 20–60 Trace —

3 Pd2(dba)3 (2 mol%) 1.3 — AsPh3 (16 mol%) DMF 50 64 14 15 —
4 Pd2(dba)3 (4 mol%) 1.3 — AsPh3 (16 mol%) DMF 50 58 6 16 —
5 Pd2(dba)3 (2 mol%) 1.3 — AsPh3 (16 mol%) DMF 80 53 10 18 —
6 Pd2(dba)3 (2 mol%) 1.3 CuI (16 mol%) AsPh3 (16 mol%) DMF 50 24 16 25 6
7 Pd2(dba)3 (2 mol%) 1.3 CuI (16 mol%) AsPh3 (16 mol%) DMF 25 7 — 12 3
8 Pd2(dba)3 (2 mol%) 2.2 — AsPh3 (16 mol%) DMF 50 74 4 3 —

Conversions obtained from crude 1H-NMR spectra by comparison to an internal standard (mesitylene). Cu(OTf)·Tol = copper(I) trifluoromethane-
sulfonate–toluene complex.

Scheme 6 Coupling of 4·OTf with a range of stannanes. Yields in par-
entheses are isolated yields.

Scheme 5 Stille coupling of 2·OTf to form desired 2-phenylpyrrole 7a
and byproducts 8, 1 and 9.

Scheme 7 Coupling of 2·OTf with a range of stannanes. Yields in par-
entheses are isolated yields.

‡An alternative explanation for the formation of 9 would be by reductive clea-
vage of the sulfonium group from 8. However, this appears less likely since if the
reductive cleavage occurs by Pd-mediated S–C bond activation in the first step,
then in 8 this would be expected to favour the S–Ph bond over the S–pyrrole
bond, on the basis of the results shown in Scheme 9.
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Preparation of sulfonium salts from C-substituted pyrroles
was next attempted (Scheme 8). An N-tosyl pyrrole bearing a
methyl ketone formed diphenylsulfonium salt 10·OTf in low
yield, along with byproducts potentially arising from enol tri-
flate formation, although 10·OTf was nevertheless isolable in
pure form after chromatography. In contrast, a similar ketone-
bearing substrate formed thianthrenium salt 11·OTf in a much
better yield. Here, the presence of electron-withdrawing groups
at both N1 and C3 seemingly disfavours the migration of the
sulfonium group. Pyrrole substrates lacking N-sulfonyl protec-
tion were also examined, with salts 12·OTf and 13·OTf forming
from the corresponding N-methyl pyrroles. Salt 13·OTf is the
only regioisomer that can form from the corresponding sub-
strate (1,2,5-trimethylpyrrole). However, 12·OTf forms from
2-formyl-N-methylpyrrole, which has 3 potential sites of attach-
ment. As such, the exclusive isolation of the product with the
thianthrenium group at C4 is noteworthy, given that the regio-
selectivity of SEAr reactions on 2-pyrrolyl carbonyls can vary
(see Scheme 1c).

The successful cross-coupling of salts 2·OTf and 4·OTf
requires that the initial oxidative addition step of the catalytic
cycle is selective for the correct S–C bond. That is to say, palla-
dium must insert into the bond between sulfur and the pyrrole
ring, and not into a bond between sulfur and a phenyl ring (of
the diphenyl sulfonium or thianthrenium group). During
optimisation of the coupling conditions and during prepa-
ration of the products in Schemes 6 and 7, only products
arising from activation of the correct S–C bond were isolated,
and no products from coupling at the “wrong” S–C bond were
ever detected. To determine the structural motif(s) responsible
for regioselectivity in S–C bond activation, sulfonium salts
from Scheme 8 were cross-coupled under the established con-
ditions. Results with 2·OTf and 4·OTf indicate that with a
sulfonium group at either C2 or C3, when the only other sub-
stituent is an electron-withdrawing (sulfonyl) group at N1, the
desired regioselectivity is observed. Salts 10·OTf and 11·OTf
are both substrates with a sulfonium handle at C2 as well as
electron-withdrawing groups at N1 and C4. Coupling of 10·OTf
with PhSnBu3 led to isolation of 14 and coupling of 11·OTf
with 2-furyl-SnBu3 led to isolation of 15 as the sole product in
each case (Scheme 9), illustrating that the desired regio-
selectivity is observed in this scenario also. In contrast, salt
12·OTf possesses a sulfonium handle at C4 and an electron-

withdrawing group at C2, but lacks an electron-withdrawing
group at N1. This salt underwent the coupling to give two pro-
ducts in approximately equal conversion, namely the desired
product 16 and the product arising from ring cleavage of the
thianthrenium motif, 17. Under the same reaction conditions,
salt 13·OTf (lacking any electron-withdrawing groups) formed
only the thianthrene ring cleavage product 18, in high
conversion.

Formation of the products depicted in Scheme 9 highlights
the role of the N-sulfonyl group in ensuring that the desired
regioselectivity in the S–C bond activation step is achieved.
Therefore, since pyrrolylsulfonium couplings of the type
reported here are likely to be carried out on N-sulfonyl sub-
strates specifically, we investigated removal of the N-sulfonyl
group from selected coupling products. For N-tosyl pyrroles of
the type shown in Scheme 7, conditions for N-deprotection are
widely reported in the literature using, for example, sodium
hydroxide in ethanol.20a–c However for N-trisyl pyrroles of the
type shown in Scheme 6, the additional steric bulk renders the
N-sulfonyl group much more resistant to removal. Attempted
deprotection of thienylpyrrole 5f under basic hydrolysis con-
ditions (NaOH/MeOH/Δ) led to recovery of starting material. A
reported procedure for N-sulfonyl cleavage using triflic acid
led to decomposition.53 Attempts at reductive S–N bond clea-
vage using SmI2 or complexes thereof also returned starting
material.54 However, use of Mg in MeOH at 50 °C under soni-
cation55 was successful at removing the N-trisyl group to give
3-(2-thienyl)pyrrole 19. Instability of this substance in air or
upon attempted purification hampered quantitation of its for-
mation. Therefore a less electron-rich N-trisylpyrrole was
selected for deprotection (p-fluorophenyl product 5b). The
resultant deprotection product 20 exhibited greater stability

Scheme 8 Synthesis of sulfonium salts from substituted pyrroles. TTSO
= thianthrene-S-oxide. Yields in parentheses are isolated yields.

Scheme 9 Coupling of C-substituted pyrrolylsulfonium salts. aIsolated
yield. bConversion by 1H-NMR.
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than 19, and it was determined to have formed in 73% conver-
sion (Scheme 10).

A possible mechanism for a representative pyrrolylsulfo-
nium Stille coupling is depicted in Scheme 11. The Pd0 active
catalyst 21 will engage in oxidative addition into the C–S bond
of a pyrrolylsulfonium salt such as 22 to give PdII complex 23.
Whereas oxidative addition with a classical halide coupling
partner would form a neutral PdII complex with a Pd–X bond,
we propose that use of pyrrolylsulfonium pseudohalide 22 may
instead lead to a cationic tricoordinate complex of type 23. In
the specific case of thianthrenium salts, Ritter et al. have pre-
sented evidence that thianthrene (“TT”) is notably non-coordi-
nating towards PdII complexes (less coordinating than tri-
flate),56 although this may not necessarily apply for other
sulfonium salts such as the diphenylsulfonium salts 2·OTf and
10·OTf. Transmetallation with the stannane reagent would
afford tetracoordinate 24, which after isomerisation could
undergo reductive elimination to give product 26. DMF is
reportedly a non-innocent solvent in Stille couplings, and
transmetallation can occur from a PdII complex in which DMF
occupies a coordination site (i.e. L = DMF).50b Accordingly we
do not speculate as to the specific identity of the “L” substitu-
ents in each of the complexes in Scheme 11. The mechanism
shown is most likely a simplification of the true process,
which may vary depending on the nature of the pyrrolylsulfo-
nium salt and stannane used.40b,57 Accordingly the mecha-
nism of this process merits further study.

Conclusions

We have described the straightforward synthesis of multiple
pyrrolylsulfonium salts and demonstrated their applicability as
pseudohalides in Stille couplings. The approach used for the
synthesis of these salts allows for their regioselective installa-
tion at either the pyrrole α- or β-position, through the choice
of appropriate sulfonium substituents and reaction conditions
for the pyrrole in question. The salts are formed in good yield
and exhibit good stability, and the synthesis is not prone to
overfunctionalisation; these are all significant advantages over
the classical pyrrolyl halide coupling partners. Additionally, we
have identified reaction conditions that are able to effect the
Stille coupling of the pyrrolylsulfonium salts with a range of
(hetero)aryl- and alkynyl-stannanes. When the pyrrolylsulfo-
nium salt possesses an N-sulfonyl substituent, cross-coupling
occurs at the desired S–C bond only. The sulfide byproduct is
therefore recoverable and could be recycled for the synthesis of
additional pyrrolylsulfonium salt, if required. Both the N-tosyl
and N-trisyl groups have been shown to be removable sub-
sequent to the coupling step. Furthermore, variants of this
methodology may be applicable to other heterocycles. For
example, while Stille couplings of other arylthianthrenium
salts are unknown so far, we note that indolyl thianthrenium
salts have been reported.§ For the reasons listed above we
anticipate that the methodology described here may find appli-
cations in various synthetic contexts.
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