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δ-Amination of alkyl alcohols via energy transfer
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Amino alcohols play a crucial role in the realm of biologically active compounds due to their functional

diversity. In this study, we introduce a metal-free energy transfer photocatalytic method for the prepa-

ration of 1,4-aminoalcohols from readily available alcohol feedstocks. The key feature of this transform-

ation is the simultaneous generation of a persistent iminyl radical and a transient carbon-centered radical

through σ-homolytic cleavage of the O–N bond via energy transfer (EnT). The process involves fragmen-

tation/decarboxylation/1,5-HAT (hydrogen atom transfer), leading to the formation of a C(sp3)-hybridized

radical, which undergoes selective radical–radical cross-coupling or a radical chain event to yield the

desired products. In addition, the protocol was also found to be suitable for N-tosyl amines, giving rise to

1,4-diamines. Our approach combines experimental mechanistic investigations with detailed compu-

tational studies using density functional theory (DFT) to provide insights into the reaction mechanism.

This innovative method provides a new approach for preparing δ-amino alkyl alcohols and amines.

Introduction

The generation of radicals under mild visible light photocata-
lyzed conditions has emerged as a powerful tool that has
expanded the repertoire of synthetic transformations, enabling
new ways to access complex molecules.1 For instance, the
functionalization of a carbon centered radical generated by
1,5-hydrogen atom transfer (HAT) from a heteroatom radical is
exceptionally interesting since it allows remote selective
functionalization of inert C–H bonds.2 Consequently, diverse
approaches have been developed for this remote functionali-
zation (Scheme 1A).3

The most common strategy involves the preactivation
of the O–H bond using a redox auxiliary (Scheme 1A, O-RP,
RP = radical precursor) such as N-alkoxyphthalimides,4

N-alkoxypyridinium salts5 or α-oxime acids or esters,6 among
others. These radical precursors are easy to prepare and
produce the desired alkoxy radical, and consequently the δ-C

(sp3)-centered radical, under photoredox conditions. Strategies
for the formation of alkoxy radicals from free alcohols have
also been recently developed using stoichiometric amounts
of organohypervalent iodine7a–c or sulfoxide reagents7d

(Scheme 1A, O–[A]), coordination of the alcohol with metals by
ligand-to-metal charge transfer (LMCT, Ce or Fe catalyst)8 or
direct hydrogen atom transfer of the O–H bond by proton
coupled electron transfer (PCET).9 However, to the best of our
knowledge, methods to functionalize δ-C(sp3)–H bonds of ali-
phatic alcohols via energy transfer (EnT) mechanism have not
yet been reported.

Recently, different research groups have described the sim-
ultaneous generation of a persistent iminyl radical and a tran-
sient O-centered radical via σ-homolytic bond cleavage
through EnT activation (Scheme 1B).10 In 2021, the groups of
Glorius11 and Han12 independently reported the generation of
both alkoxycarbonyloxyl radicals from oxime carbonates to
synthesize 1,2-amino carbonates (Scheme 1B, R = OR). Huo’s
group described the synthesis of 1,2-amino alkoxycarbonyl
compounds via the formation of an alkoxycarbonyl radical
intermediate from oxime esters.13 Recently, Glorius et al.
reported the generation of an alkoxy radical to prepare 1,3-
amino alcohols via N–O bond homolysis, followed by a radical
Brook rearrangement (Scheme 1B).14

Amino alcohols are valuable compounds in organic syn-
thesis, medicinal chemistry, and materials science. In particu-
lar, 1,4-amino alcohol subunits are present in many biologi-
cally active compounds, act as flexible building blocks in syn-
thetic chemistry and have been used as ligands in asymmetric
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catalysis.15 Due to the great importance of this motif, and
inspired by the inherent reactivity of the alkoxy radical and the
advantages that the energy transfer presents, we envisaged a
δ-imination reaction of alkyl alcohols via EnT photocatalysis
(Scheme 1C). The selective insertion of the protected amino
group at this remote position of an alkyl alcohol will be
achieved by the use of a novel bifunctional reagent. This new
reagent has to carry both the iminyl and the alkoxy fragments
in its structure, must be bench stable and easy to handle, and
produce minimal waste after its activation.

Results and discussion

To investigate the feasibility of the proposed δ-amination pro-
tocol from alcohols, the bifunctional reagent 1a was used as
the model substrate.16 This starting material is bench stable
and easily accessible from the corresponding alcohol after
three synthetic steps. After screening several reaction con-
ditions (different photocatalyst, solvent, catalyst loading, con-
centration and sources of light), the best results were obtained
using 5CzBn (1 mol%) as the organo photocatalyst in acetone
(0.1 M) under blue light irradiation (λmax = 427 nm), yielding
the δ-amino alcohol 2a in 50% isolated yield (Scheme 2).16

Additionally, as part of the structural design of the new bifunc-
tional reagent, different iminyl fragments were evaluated. The

derivative from thioxanthone afforded the corresponding
desired product 2b in a similar yield. However, the 9-fluore-
none derivative was unreactive, with only a trace amount of 2c
detected by 1H NMR analysis (Scheme 2). Given the advantages
offered by reagent 1a, the synthesis of its oxime is well
described and it is easy to prepare and cost effective (benzo-
phenone ∼€0.02 per g vs. thioxanthone ∼ €0.80 per g),17 benzo-
phenone was chosen as the optimal iminyl precursor. Control
experiments performed in the absence of light or the photo-
catalyst confirmed that both conditions are essential to enable
the δ-imination of aliphatic alcohols (Scheme 2).16 The reac-
tions can be performed under open air conditions with similar
yields being obtained.

With the structure of the optimal bifunctional reagent
established and the best reaction conditions in hand, the
scope of this amination reaction was explored (Scheme 3A.1).
The desired δ-imination product from primary alkyl alcohols,
both non-functionalized (2d–g) and functionalized (2h–q), was
achieved. Hence, the products resulting from a secondary
C-centered radical intermediate (2e–f, 2q–s) and a non-stabil-
ized primary C-centered radical (2d) were obtained, whereas
product 2g derived from a stabilized tertiary C-centered radical
intermediate was obtained in 6% yield. We hypothesized that
the low yields observed in certain examples may be attributed
to unfavourable pathways involving the iminyl and alkoxy rad-
icals, as the starting alcohol was detected in most cases.18

Terminal alkyne (2h), chlorine (2k) and azide (2l) functional
groups were tolerated under the standard reaction conditions.
This protocol also allowed the synthesis of α- and β-amino
esters (2i and 2j) containing a free alcohol in moderate yields.
The phenolic ether 2m (from thymol), electron-poor and elec-
tron-rich heterocycles (2n and 2o) and the δ-lactam moiety 2p
were also suitable for this transformation (Scheme 3A.1).
Using secondary alcohols, no β-fragmentation product was
detected and the corresponding product 2r was obtained in
21% yield.

Interestingly, the reaction using the 4-pentenyloxy derivative
1t afforded the iminated tetrahydrofuran product 2t after an
intramolecular 5-exo-trig cyclization event19 followed by imine
insertion. In certain cases (2a, 2h, 2j and 2l), the reactions

Scheme 2 Structure optimization of 1 and control experiments. a Std
conditions: 1 (0.10 mmol), 5CzBN (1 mol%), in dry degassed acetone
(0.1 M) under blue Kessil irradiation (λmax = 427 nm) for 2 h at rt, inert
atmosphere. b Starting material 1a. cOpen-to-air conditions.
Abbreviation: std, standard; nr, no reaction.

Scheme 1 (A) Different visible-light-assisted strategies to generate δ-
C-centered radical from alkyl alcohols. (B) Bifunctional reagents to
achieve O-centered radicals by energy transfer photocatalysis. (C)
Merging of alkoxy radical reactivity with energy transfer activation.
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were conducted under open-to-air conditions, resulting in a
decrease in yields, indicating that while an inert atmosphere is
not strictly necessary, it is beneficial for achieving better
yields. Additionally, some bifunctional reagents failed to yield
the desired product 2 due to their rigid structure or the pres-
ence of bulky groups.16

Next, we investigated a Hoffman–Löffler–Freytag-type (HLF)
reaction using alkyl N-tosyl amines 1 (X = NTos).20,21 The syn-
thesis of these reagents was inspired by Yu’s seminal work on
the δ-halogenation of alkyl N-tosyl amines from hydrazonyl
carboxylic acid precursors.22 To our delight, the desired
5-iminyl alkylamines (2u–y) were obtained under the standard

conditions (Scheme 3A.2). Remarkably, the 1,6-HAT product
2w was obtained instead of the expected 1,5-HAT product. This
is likely due to the easy activation of the benzylic C–H bond
and the higher stability of the preceding benzylic radical inter-
mediate. Additionally, the corresponding β- and α-amino
esters 2x and 2y, bearing a pendant N-tosyl amine, were suc-
cessfully prepared.

Furthermore, the scale-up of this transformation was
achieved using a continuous-flow photoreactor.23 This techno-
logy enabled the complete conversion of 1.0 gram of 1a to the
desired product 2a after only 5 h of irradiation (tR = 15 min),
yielding 50% of the isolated product (Scheme 3A.3). This con-

Scheme 3 Substrate scope. Reactions were performed using 1 (0.20 mmol), 5CzBN (1 mol%), in dry degassed acetone (2.0 mL, 0.1 M) under blue
Kessil irradiation (λmax = 427 nm) for 2 h at rt under an inert atmosphere. aOpen-to-air conditions. b 35% 1H NMR yield calculated using trimethoxy-
benzene as internal standard. Diversification reactions.16 Conditions A: NaBH4 (25 equiv.). Conditions B: BnBr (1.1 equiv.) and NaH (1.5 equiv.).
Conditions C: PPTS (1.2 equiv.). Conditions D: carboxylic acid (1.5 equiv.).
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tinuous flow process was optimized using 2a as the model sub-
strate at 0.25 mmol scale, and the yield obtained under batch
conditions was not improved.16

Some diversification reactions were performed using pro-
ducts 2a and 2h (Scheme 3B). The treatment of 2a with NaBH4

afforded the 1,4-amino alcohol 3 in good yield by reduction of
the imine moiety. The 1,4-amino ether 4 was obtained via
Williamson etherification followed by the hydrolysis of the
imine group, while an esterification and deprotection reaction
with PPTS yielded 1,4-amino esters 5 and 6 from biotin and
indomethacin, respectively. These transformations showed the
synthetic utility of the 1,4-imino alcohol motifs 2 in the con-
struction of more complex molecules.

Some mechanistic investigations were carried out to shed
light on the reaction mechanism. The addition of TEMPO
(2,2,6,6-tetramethyl-1-piperidinyloxy) under the standard con-
ditions completely inhibited the reaction, resulting in the com-
plete recovery of the starting material 1a. Furthermore, the
direct excitation of 1a in the absence of the photocatalyst,
using a purple Kessil lamp (λmax = 390 nm), yielded the
desired product 2a in 30% yield. Both results ruled out the
possibility of a redox process and indicated that this trans-

formation proceeded through an energy transfer event
between the photocatalyst and substrate 1a.16

In addition, dispersion corrected density functional theory
(DFT) calculations were performed. Fig. 1 shows the mechanis-
tic energetic profile of 2a from 1a. The excited state 1a*
(44.9 kcal mol−1) can be accessed by the triple-triplet state
5CzBn* (58.2 kcal mol−1). Then, the N–O homolytic cleavage
happens from 1a* to TS1* with a small energy barrier
(ΔΔG‡

rel = 4.8 kcal mol−1), forming the persistent ambiphilic
iminyl radical B and the transient O-centered radical A. The
highly reactive alkoxy radical C (rel

‡ 64.5 kcal mol−1 downhill in
energy from 1a*) is generated after spontaneously extrusion of
CO2 and MeCN via TSA. Then, C′ can undergo an irreversible
1,5-HAT event via TSC’ to afford the transient δ-C(sp3)-centered
radical D (downhill in energy by 14.5 kcal mol−1 from C′).
Afterward, D can undergo a selective radical–radical cross
coupling with the iminyl radical B to generate the 1,4-amino
alcohol 2a. However, D can also follow a radical chain pathway
to form 2a, as suggested by the experimentally measured
quantum yield value (Φ ≈ 3) and the lower relative concen-
tration of the iminyl radical B versus the precursor 1a. D upon
addition to reagent 1a via TSD-1a forms the radical intermedi-

Fig. 1 Proposed mechanism supported by computational studies to transform 1a into 2a. Calculated free Gibbs energy (G) values at 298 K (kcal
mol−1) [CPCM(acetone) UB3LYP-D3/def2-svp].16
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ate E (rel
‡ 2.3 kcal mol−1 uphill in energy from D). Finally,

intermediate E affords the desired 1,4-amino alcohol 2a via
TSE (energy barrier of 0.3 kcal mol−1) through the release of
CO2, MeCN and C′, regenerating the cycle. These findings
are in agreement with previous reports similar to this
transformation14,24 and with the results of the light on/off
experiment.16

Conclusions

In summary, an operationally simple δ-insertion of protected
amines into the skeleton of aliphatic alcohols was developed
from bifunctional reagents. These reagents were designed to
carry both radical partners, a transient alkoxy radical and a
persistent iminyl radical formed through an energy transfer
(EnT) photocatalytic process. This protocol was used in the
synthesis of tetrahydrofuran 2t and in the δ-amination of alkyl
N-tosyl amines. The scale-up of this photoinduced transform-
ation was conveniently realized via a continuous-flow system,
maintaining reactivity and reducing reaction time compared to
batch conditions. Furthermore, the synthetic potential of the
constructed δ-imino alcohols was demonstrated through some
derivatization reactions incorporating this motif into pharma-
ceuticals such as indomethacin. Although the photochemical
quantum yield suggested a radical chain mechanism, its low
value and computational studies do not entirely rule out the
catalytic cycle pathway.
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