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Total synthesis of (–)-deglycocadambine†

Fang-Xin Wang, *a Ying-Tao Chen,‡a Hui Liu,‡a Heng-Shan Wang, a

Hong Liang, a Zhen-Feng Chen a and Yonggui Robin Chi *b,c

The first total synthesis of the monoterpene indole alkaloid (–)-deglycocadambine is achieved in 12 steps

with (+)-genipin as the chiral starting material. The reported synthetic approach is characterized by an

orchestrated cascade annulation between tryptamine and the highly functionalized dialdehyde precursor,

rapidly introducing the unique 6/5/6/7/6-fused pentacyclic skeleton and the ketone functional group at

C19 in a convergent manner. The successful implementation of transannular oxidative cyclization at C3

for bridged oxazolidine formation in the late-stage synthetic campaign ensured the final total synthesis of

this molecule.

Introduction

(–)-Deglycocadambine (Fig. 1) is a member of the monoterpene
indole alkaloids, a large family of metabolites that have
attracted much attention from both synthetic and pharma-
ceutical chemists due to their high structural diversity and sig-
nificant biological activities.1 First isolated from the twigs and
leaves of Emmenopterys henryi by Song and Zhao in 2013,2

(–)-deglycocadambine has a characteristic 6/5/6/5/6/6 hexacyclic
ring system, with its 6/5/6/7 tetracyclic nucleus containing a
unique hydropyrido[1,2-a]azepine subunit, which can also be
found in (–)-rubenine, (–)-kopsiyunnanine K, (–)-voacacines A
and B and other cadambine-type alkaloids, as shown in
Fig. 1.3 Although preliminary studies revealed no promising
activity, scarcity in nature precludes its systematic biological
evaluation.2 To the best of our knowledge, no synthetic route
has been reported thus far for this molecule. Of note, in 1991,
Brown et al. reported an elegant biologically inspired synthesis
of (–)-cadambine from (–)-secologanin,4,5 wherein a well-

designed chemo- and regioselective reaction between trypta-
mine and a highly functionalized epoxide was conducted to
efficiently introduce the seven-membered azepine ring of
(–)-cadambine. Theoretically, hydrolysis of (–)-cadambine
should give the desired aglycone (–)-deglycocadambine.
Accordingly, the exploration of a general synthetic route for
the total synthesis of (–)-deglycocadambine is required to
pursue the novel molecular architecture and investigate the
potential molecular functionality. Based on a rationally
designed two-fold annulation sequence for the rapid installa-
tion of the 6/5/6/7/6-fused pentacyclic core, we report our syn-
thetic efforts toward (–)-deglycocadambine.

Retrosynthetically, as shown in Scheme 1, (–)-deglycoca-
dambine could be properly obtained from the pentacyclic pre-
cursor A by the formation of the bridged oxazolidine ring via
the orchestrated transannular oxidative cyclization.6 The
stereospecific hydroxyl group at C19 of A could theoretically be

Fig. 1 Representative indole alkaloids with hydropyrido[1,2-a]azepine
subunits embedded in the 6/5/6/7-fused tetracyclic core.
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introduced via the diastereoselective reduction of the corres-
ponding ketone in synthon B. The critical hydropyrido[1,2-a]
azepine subunit embedded in B could be tentatively assembled
by a rationally designed twofold annulation reaction between
tryptamine and the highly functionalized dialdehyde C,7 the
latter of which could be formally derived from the commer-
cially available (+)-genipin by means of continuous functional
group transformations.

Results and discussion

Initially, to access fragment 8 (Scheme 2), we selected commer-
cially available iridoid (+)-genipin8 (∼$5 per g) from the chiral
pool to start our synthetic campaign. Protection of both
hydroxyl groups as TBS ethers was conducted in the presence
of TBSCl and AgNO3, giving 1 in 92% yield. The following
chemoselective dihydroxylation/oxidative cleavage cascade
reaction of the isolated alkene in the five-membered ring was
performed, affording compound 2 in 95% yield, with the left-
hand alkene embedded in the conjugated system remaining
intact. After the two-step operation involving the chemo-
selective protection of the aldehyde in 2 as the acetal and the
diastereoselective reduction of the ketone in 3, alcohol 4 was
produced as the major epimer (dr ∼ 10 : 1) in an overall yield
of 81%. Notably, for the reductive transformation from 3 to 4,
the observed stereochemistry at C19 could be explained by the
Felkin–Anh model,9 wherein the Si face attack was preferred.
With 4 in hand, esterification of the secondary alcohol in the
presence of Ac2O gave, after chemoselective deprotection of
the right-hand TBS ether, the primary alcohol 6. Finally, oxi-
dation of the hydroxyl group in 6 using Dess–Martin periodi-
nane followed by chemoselective hydrolysis of the ethylene
glycol acetal in 7 delivered the dialdehyde 8 without incident.

For the key cascade annulation of dialdehyde 8 and trypta-
mine, the pentacyclic ketone 11 was obtained as the sole
identified product in 41% yield when the reaction mixture was
exposed to TFA in CH2Cl2.

10,11 In this process, as shown in
Scheme 3, it was postulated that tryptamine firstly condensed
chemoselectively with the sterically more accessible aldehyde 8
to form inter-1, followed by the second condensation, deliver-
ing inter-2-1. Inter-2-1 might isomerize to inter-2-2 and further
to inter-2-3. Among these isomers existing in dynamic equili-
bration, inter-2-3 might be the most structurally favored for
further aromatic substitution. The resulting pentacyclic com-
pound 9 was further in situ hydrolyzed to give enol 10, which
was spontaneously isomerized to the more stable ketone 11.
The stereochemical outcome at C3 in 11 might be attributed to
the much easier accessibility of the Re face of the iminium ion
in inter-2-3 as molecular modelling of inter-2-3 revealed that
the Si face attack presumably led to severe steric repulsion
between the indole ring and H-15. Strategically, by using this
elaborated twofold annulation protocol, we not only incorpor-
ated the synthetically challenging hydropyrido[1,2-a]azepine
substructure but also finished the installation of ketone at C19
for further selective transformation at the same time. It should
be noted that this is the first example for this cascade annula-
tion wherein a complex and asymmetric dialdehyde was used
to react with tryptamine.7,12

With 11 in hand, as shown in Scheme 4, a chemo- and
diastereoselective reduction of a ketone using L-selectride as
the reducing reagent gave alcohol 12 in 84% yield. The I2-
mediated transannular oxidative cyclization of the tertiary

Scheme 1 Retrosynthetic analysis of (−)-deglycocadambine.

Scheme 2 Synthesis of dialdehyde 8.
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benzylic amine occurred smoothly to furnish compound 13,
with the last bridged oxazolidine ring characterized by the
N,O-substituted quaternary stereocenter at C3 assembled

efficiently.6 When subjected to HCl in THF at elevated temp-
erature, the TBS ether of 13 was directly deprotected to provide
(–)-deglycocadambine, the absolute stereochemistry of which
was unambiguously confirmed by X-ray crystallographic ana-
lysis.13 The 1H and 13C NMR spectroscopic data of the syn-
thetic sample are in accordance with the reported ones.2,11

Conclusions

In conclusion, a convergent synthetic strategy has been devel-
oped based on the ingenious use of a twofold annulation reac-
tion between the dialdehyde and tryptamine to rapidly install
the highly functionalized 6/5/6/7/6-fused pentacyclic ring
system and a late-stage transannular oxidative cyclization to
directly incorporate the bridged oxazolidine ring for the total
synthesis of (–)-deglycocadambine, which was obtained in an
overall yield of 9.5% over a longest linear sequence of 12 steps
from (+)-genipin. Strategically, the bond-forming logic demon-
strated in our protocol for installing the multicyclic ring
system characterized by a unique hydropyrido[1,2-a]azepine
subunit of (–)-deglycocadambine should enlighten the upcom-
ing efforts towards chemical synthesis of other structurally
related monoterpene indole alkaloids in our laboratory.
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