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An efficient one-pot microwave-assisted potassium fluoride-mediated synthesis of 1-fluoroalkyl-3-fluor-
oisoquinolines and fused fluoroalkylpyridines from N-fluoroalkylated 1,2,3-triazoles was developed. The
reaction has a wide scope and allows the preparation of structurally diverse 3-fluoroisoquinolines with a
fluoroalkyl group in position 1, a substituent in position 4 and a substituent on the fused benzene (or het-
eroaromatic) ring. N-Fluoroalkylated ketenimines, which undergo stereoselective formal 1,3-fluorine shift
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to difluoroazadienes, were identified as intermediates in the reaction sequence. The presence of fluorine
in position 3 and a halogen in position 4 of the resulting isoquinolines allowed for further modification by
nucleophilic aromatic substitution and cross-coupling reactions, respectively. The developed method-

rsc.li/frontiers-organic ologies were utilized for the synthesis of derivatives of drug candidates.
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Introduction

The isoquinoline core is present in a variety of drugs and a
large number of naturally occurring alkaloids, which in many
cases possess compelling biological activities (Fig. 1).'™*
Numerous synthetic approaches exist leading to these benzo-
pyridines, such as multistep sequences of reactions including
the well-known Bischler-Napieralski,” Pomeranz-Fritsch® and
Pictet-Spengler” reactions, as well as processes involving tran-
sition metal catalysis.®

The introduction of fluorine atoms or fluoroalkyl groups
into a lead molecule is a widely used strategy to enhance the
pharmacologically relevant properties’ and several 1-trifluoro-
methylisoquinolines exploit this trend (Fig. 2), for example
valiglurax'® - a positive allosteric modulator of mGlu4 recep-
tors and a candidate for the treatment of Parkinson’s disease.
Yet, the procedures for their preparation remain underdeve-
loped, substrate-specific, low-yielding, or require expensive,
non-selective and atom non-economical fluoroalkylation
methods or transition metal catalysts."*"*
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The first multi-step approach leading to 1-perfluoroalkyliso-
quinolines with the Bischler-Napieralski type cyclization was
demonstrated by Pastor'” in 1979. A similar approach was also
used in 2019 by Lindsley (Scheme 1A) for the preparation of
valiglurax, which allowed the construction of the isoquinoline
core in an overall 21% yield."® Another possible approach
involves direct C-H bond perfluoroalkylation of isoquino-
lines'®  (Scheme 1B) or isoquinoline-N-oxides.”'®
Trifluoromethylation via a coupling reaction of iodoisoquino-
lines with copper'®>* or palladium® catalysts was also
reported. However, the most common strategy towards 1-fluor-
oalkylated isoquinolines involves the insertion of fluoroalkyl
radicals into isonitriles, followed by radical cyclization
(Scheme 1C)."324729

Herein, we report a high-yielding and novel one-pot syn-
thetic strategy to prepare substituted 1-fluoroalkyl-3-fluoroiso-
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Fig. 1 Examples of an isoquinoline containing alkaloid (papaverine) and
synthetic drugs (fasudil and ripasudil).
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Fig. 2 Examples of bioactive 1-trifluoromethylisoquinolines.

A: Multi-step synthesis (Bischler-Napieralski approach)
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B: Late-stage aromatic C-H fluoroalkylation
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D: Synthesis from N-fluoroalkyl-1,2,3-triazoles (this work)
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Scheme 1 Selected literature syntheses of 1-fluoroalkylated isoquino-
lines (A—C) and our new approach from triazoles (D).

quinolines 2 based on thermal decomposition of
N-fluoroalkyl-1,2,3-triazoles 1, formal 1,3-fluorine shift, and
cyclization (Scheme 1D). The presence of fluorine in position 3
and a halogen in position 4 of the isoquinoline ring enabled
further modifications by nucleophilic aromatic substitution
and/or cross-coupling reactions, respectively. The procedure is
applicable also to heteroaryl substituted N-fluoroalkyl-1,2,3-tri-
azoles affording heteroarenes with fused fluoroalkylated pyri-
dine rings. The methodology thus allows the expansion of
known chemical space to new selectively substituted fluor-
oalkylated isoquinoline-type structures with potential appli-
cations in life sciences.

Results and discussion

Recently, we reported thermal rearrangement of N-fluoroalkyl-
1,2,3-triazoles®** 1 leading to N-fluoroalkylated ketenimines
3.>* We noticed that a prolonged heating of 3 led to new pro-
ducts identified by HRMS and NMR as isoquinolines 2 and
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enamides 5. Their formation can be explained by a thermally
induced 1,3-fluorine shift of ketenimines 3 to two geometric
isomers of azadienes 4. Although four isomers of 4 can be
theoretically formed by the fluorine shift, only the formation
of two isomers was observed. The isomer (Z,E)-4 cyclized to
isoquinolines 2 while the isomer (Z,Z)-4 only hydrolysed to
enamides 5 (Scheme 2) (see the ESIT for three examples of iso-
lated enamides 5). A high-temperature NMR kinetic study
revealed the time course of intermediate and product for-
mation (Fig. 3).

A related transformation was briefly reported by Lermontov
in 2002.>® Thermal Huisgen cycloaddition of diphenylacety-
lene with ethyl 3-azido-2,2,3,3-tetrafluoropropanoate afforded
isoquinolines and enamides in low yields. The authors
wrongly assumed antiaromatic 1H-azirines to be the reactive
intermediates (Scheme 3A), which we disproved with ab initio
calculations in our previous study.*® In another report, Molina
showed the formation of an isoquinoline by ring closure of an
N-styryl-substituted ketenimine (Scheme 3B).*%7®

In order to develop a general synthesis of 1-fluoroalkylated-
2-fluoroisoquinolines 2 from triazoles 1 or ketenimines 3 we
studied the effect of additives on the formation of 4. Ideally,
the formation of 4 should proceed stereoselectively to the Z,E-
isomer. Therefore, the influence of additives on the stereo-
selectivity of the formal 1,3-fluorine shift of 3a at room temp-
erature was studied. While the addition of Et;N, DBU, or
BF;-OEt, did not lead to efficient formation of 4a, the addition
of other basic additives or fluoride salts proved beneficial
(Table 1). Carbonates induced the stereoselective transform-
ation to the required (Z,E)-isomer of 4a with Cs,CO; reacting
much faster than K,CO; (entries 2 and 3) and Na,CO; being
unreactive (presumably due to its low solubility). However,
decomposition of 4a was observed in the basic conditions over
time. A similar trend was observed in the case of inorganic flu-
orides with NaF being unreactive and CsF inducing the for-
mation much faster than KF, but product decomposition and
isomerization precluded its use in preparative experiments
(entries 4-6; see the ESIf for the isomerization study of 4a with
CsF). Therefore, mildly basic KF was used as the additive of
choice, accelerating the formal 1,3-fluorine shift of keteni-
mines 3 and providing a high selectivity to the required isomer
of 4 for further cyclization. The origin of the stereoselectivity

F F
2N A\ F Z N
N\—Re Ny
N Y &2 Y e )R
F
/ = Z
/CN‘%F 1,3-F R/ R/ R/
F T shift (ZE)4 2
| X
AF H
R 3 N F H.0 N N\H,RF
SN JN\ -HF m e
R
@24 £ R 5

Scheme 2 Proposed reaction mechanism of thermal additive-free
decomposition of ketenimines 3 to isoquinolines 2 and side-products
enamides 5.
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Fig. 3 Conversion of 3a (R = H, R = CF3) vs. reaction time for the for-
mation of intermediates 4a and product 2a determined by *H NMR
(C,D4Clp; 140 °C).

A: Thermal Huisgen cycloaddition and cyclization
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B: Ring closure of N-styryl ketenimines
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Scheme 3 Published preparations of isoquinolines by thermal Huisgen
cyclization (A) and from N-styryl-substituted ketenimines (B).

Table 1 Influence of additives on the formation of isomers of 4a
~CF,CF3  Additive (2 equiv.) i i i
=N q ~ N/ + Pho A, A
PH CDCl3, 1t L N
3a (ZE)-4a (Z,2)-4a
'°F NMR yield 3a/(Z,E)-4a/(Z,Z)-4a (%)
Entry Additive 1h 5h 24 h
1 KHCO; 78:22:0 49:45:0 23:62:0
2 K,CO;3 83:17:0 57:38:0 0:83:0
3 Cs,CO3 0:86:0 0:43:0 0:0:0
4 NaF 98:0:0 98:0:0 98:0:0
5 KF 83:17:0 50:50:0 13:80:0
6 CsF 0:89:0 0:79:0 0:50:12

of the thermal or heterogeneous additive-mediated 1,3-fluo-
rine shift is unknown; however, we propose the steric factor to
be dominant with fluoride addition to the central sp carbon
atom of the ketenimine proceeding trans to the large aryl
group followed by fluoride elimination from the CF, group
(Scheme 4).
Difluoroazadiene (Z,E)-4a was prepared using CsF
(Scheme 5). The structure of its derivative 4m was confirmed
by X-ray crystallography. Furthermore, addition of sodium

acetate to 3a efficiently afforded acetate 6a, confirming that
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Scheme 4 Fluoride-mediated formation of azadienes 4a from keteni-
mine 3a.
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Scheme 5 Characterized azadienes 4 and 6.

indeed a suitable nucleophile can add to the sp carbon of kete-
nimine 3a, followed by fluoride elimination. Attempts to use
chloride or iodide salts were unsuccessful.

An optimization study revealed that under microwave
heating conditions a slight excess of KF afforded the formation
of isoquinoline 2a directly from triazole 1a without the need to
isolate the intermediates ketenimine 3a or difluoroazadiene 4a
(Table 2). As for the solvent effect, we previously reported that
the formation of ketenimines 3 from triazoles 1 works best in
DCE but other solvents (chloroform, THF, toluene, cyclo-
hexane, acetone) can also be used.*® In this study we chose
DCE as the optimal solvent.

With the optimized set of conditions, we expanded the mul-
tistep  one-pot  process to  diversely  substituted
N-fluoroalkylated 1,2,3-triazoles 1 (Table 3). The method toler-
ated various functional groups on the aryl moiety, including
electron-neutral, electron-rich and electron-poor substituents
on the phenyl group with slightly decreased yields in the last

Table 2 Optimization of potassium fluoride-accelerated synthesis of
isoquinoline 2a from triazole 1a

NZVN-CF2CFs KF NCFCFs )\
)=/ MW, DCE,  pH
PH 165°C, 1h
1a 3a (ZE )-4a

Entry KF (equiv.) '9F NMR ratio 3a/(Z,E)-4a/2a
1 0.05 70:20:10
2 0.2 48:28:24
4 0.7 7:5:88
5 1.0 3:3:94
6 1.1 0:0:99
7 2.0 0:0:99
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Table 3 Substrate scope of KF-mediated synthesis of isoquinolines 2

R
=N, KF (1.1 equiv. XY
N Ncpr REOTeauv) N
A/‘%( MW, DCE P
r % 165-185 °C,1-5h R
1 2

Different Ar groups

CF3 CF3
N - MeO N
¢ -’\,/\,/\ e
2a, 87% X-ray of 2a 2b, 74% 2¢, 73%

CF, Fs CFy CF;

X

AN e A E e

2d, 72% 2e, 78% 2f, 25% 29, 64%
CF3 o~ CFy
?

N I

- Y Meo™ P

2h, 50% X-ray of 2h 2i, 69%, 90:10

CF, GFs
=
Br & F F

OMe

2j, 75% 2k, 69%

Fused pyridines

F

S X S X

' ResloclBsee:
At Z>F AN F Z

O CFs

21, 74% 2m, 49% 2n, 0% 20, 19%
Different X groups
CF3 CF; CF, CF;
SN SN SN SN
=
P E 7 E 7 F
Cl Br I
2p, 66% 2q, 58% 2r, 41% 2s,47%
Different R groups
CFyH CF,0Ph CF,SPh COOEt
NN SN SN N
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F Z e ZF S
2t, 77% 2u, 68% 2v, 70% 2w, 83%
Difluoroisoquinoline
F
N=N, solvent-free X
SN T res e an !
Ph - 185°C, Ap
1x 2x, 12%

case. Different substitution positions on the aryl group were
also well tolerated with differently substituted isoquinolines
being produced from o-, m- or p-substituted aryls. In the case
of m-substituted aryls, two isomers of the products were
formed (2i) with good regioselectivity. In another case, the
reaction was regiospecific (2j). Substrates with large (11) or het-
eroaromatic (1m) groups also underwent the reaction to afford
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unique isoquinolines or fused pyridines; however, the pyridyl-
substituted triazole (1n) was found to be unreactive and only
decomposition to a complex mixture of products was observed.

Position 5 of the starting triazole ring can be substituted
with a halogen or alkyl group, which introduced these func-
tions into position 4 of the final isoquinoline with various
degrees of efficiency. The observed trend can be explained by
steric factors where bulky substituents on the ketenimine sp?
carbon atom hindered the attack of the fluoride ion to form
the productive isomer of azadienes 4.

The methodology was found to display an excellent robust-
ness with regards to the fluoroalkyl substituent in position 1
of the products. Not only the trifluoromethyl group, but also
difluoromethyl, substituted difluoromethylene and ethoxycar-
bonyl substituents can be introduced efficiently. Under solvent
free conditions difluoroisoquinoline 2x was prepared in low
yield due to its high volatility and some side reactions.

The presence of a fluorine substituent in isoquinolines 2 in
the activated position called for the investigation of substi-
tution with various nucleophiles by SyAr which expanded the
diversity of accessible 1-fluoroalkylated isoquinolines. Thus,
the fluorine atom of isoquinolines 2 was readily substituted
with various oxygen, sulfur, and nitrogen nucleophiles in
polar solvents to obtain heteroatom-substituted 1-trifluoro-
methyl isoquinolines 7 (Table 4).

Furthermore, isoquinolines 2 were used for the preparation
of a small library of nine analogues of the TRPM8 antagonist
shown in Fig. 2. Compounds 8 were easily accessed by nucleo-
philic sulfonamidation of 2 (Scheme 6), demonstrating the
value of our approach in the synthesis of fluorinated and fluor-
oalkylated isoquinolines and their structurally diverse deriva-
tives in drug development.

Other investigated follow-up derivatizations of compounds
2 were the cross-coupling reactions. Suzuki-Miyaura coupling
of arylboronic acids with chloroisoquinoline 2p afforded coup-
ling products 9a-c in high yields (Scheme 7). Heck,
Sonogashira and Buchwald-Hartwig reactions of bromoisoqui-

Table 4 SyAr of isoquinolines 2

CF3 CF3

SN Nucleophile SN

= F MW or RT = Nu

X X

2 7
Entry Nucleophile (equiv.) X  Solvent Temp. (°C) 7,yield (%)
1 NaOH (15) H H,0 155 7a, 88
2 EtONa (12) H EtOH 80 7b, 96
3 EtONa (12) Cl EtOH 155 7¢, 99
4 ¢-BuOK (1.2) H BuOH 80 7d, 80
5 PhONa (1.5) H DMA 80 7e, 89
6 MeSNa (5) H DMA 20 7f, 85
7 MeSNa (2) Ph DMF 20 7g, 91
8 p-Tol-SNa (1) H DMA 80 7h, 91
9 p-Tol-SO,Li (2.5) H DMSO 155 7i, 58
10 NH,NH, (20) H i-PrOH 100 7j, 95
11 p-Tol-CH,NH, (2) H DMSO 155 7k, 42

Org. Chem. Front, 2024, 11, 4442-4448 | 4445
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Scheme 6 Analogues of the TRPM8 antagonist.

CF3
CF3 B(OH),
Pd(OAc); (2 mol%), PPh3 (8 mol%), N
SN N Na,COj; (3 equiv.) O _
% F THF, H,O, MW, 120 °C, 40 min F
R
2 “ . 9a, 98% (R = H) O
P 1.5 equiv. 9b, 87% (R = OMe)

9c,91% (R=NO,) R

\
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Q

2
\N
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Scheme 7 Suzuki—Miyarura coupling reactions with 2p.

noline 2q also worked well giving the coupling products 10a-c
(Scheme 8).

The developed method for the synthesis of fluorinated iso-
quinolines was used for the preparation of 3-fluoro analogue
12 of the drug candidate valiglurax. The brominated isoquino-
line 2j was used for Pd-catalyzed amination, followed by pro-
tecting group removal to give analogue 12 in high yields
(Scheme 9).

CF Pd(OAc), (2-5 mol%), CFs
3 Ligand (2-20 mol%),
SN +RH Base (3 equiv.) SN
e MW -
2 Br 10a-c R
CFs CF3 CF3
SN SN SN
=
AN Z~p F
NH
Z Il
COOMe h
10a, 59% 10b, 75% 10c, 90%

Scheme 8 Heck, Sonogashira and Buchwald—Hartwig coupling reac-
tions of 2r (see the ESIT for detailed conditions).
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Pz n N NH, Toluene, MW, /I N F
Br F — 110 °C, 30 min = H
' ) TFA
2j 1.15 equiv. 1, 94% toluene, MW,
120 °C, 30 min
CF;
HN-N SN
N N | _—

Scheme 9 Synthesis of valiglurax analogue 12.

Conclusions

In conclusion, microwave heating of N-fluoroalkyl-1,2,3-tri-
azoles in the presence of potassium fluoride led to a series of
events involving triazole ring opening, nitrogen molecule elim-
ination, rearrangement, stereoselective formal 1,3-fluorine
shift, and finally cyclization to produce diverse 1-fluoroalky-
lated 3-fluoroisoquinolines in good yields and with excellent
substrate scope. Nucleophilic aromatic substitution of the fluo-
rine atom in position 3 with heteroatom nucleophiles afforded
1-fluoroalkylated 3-substituted isoquinolines. Cross-coupling
reactions of halogen atoms in position 4 of the isoquinolines
gave derivatives with aryl, alkenyl, alkynyl or alkylamino
groups. This synthetic approach to novel selectively fluorinated
isoquinolines was applied in the synthesis of analogues of two
families of drug candidates.
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