CHINESE
CHEMICAL
SOCIETY

ROYAL SOCIETY
OF CHEMISTRY

ORGANIC CHEMISTRY
FRONTIERS

CCS

PELFES

View Article Online

RESEARCH ARTICLE

View Journal | View Issue

Efficient synthesis of benzophosphole oxides via

{ M) Check for updates ‘
Ag-promoted radical cycloisomerizationti

Cite this: Org. Chem. Front., 2024,

11, 3376

Liyao Ma, )@ Sonia Mallet-Ladeira,” Julien Monot, 2 Blanca Martin-Vaca ) *® and

Didier Bourissou (2 *@

Cycloisomerization reactions involving C—P bond formation have been overlooked for the synthesis of
P-heterocycles. In this work, we developed a simple, efficient and versatile route to synthesize benzo-
phosphole oxides by reacting ortho-alkynyl secondary phosphine oxides with 5 mol% AgSbFe.
Mechanistic investigations revealed a radical-chain mechanism involving phosphinoyl radicals as key inter-
mediates and rare 5-endo-dig cyclization as a key step, rather than the n-activation of the C=C triple
bond. The transformation is both efficient and versatile. It effectively complements alternative inter-
molecular approaches. It works with a wide diversity of substitution patterns (alkynyl, benzo and phos-
phorus moieties) and enables the exquisite control of regioselectivity. Post-functionalization via direct C—
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Introduction

Cycloisomerization reactions involving intramolecular nucleo-
philic additions to alkynes and alkenes w-activated by tran-
sition metals (TMs) have become a very powerful and versatile
tool in synthesis." They enable straightforward and efficient
preparation of a wide variety of heterocycles and carbocycles
with full atom economy.> The as-obtained cyclic motifs are
ubiquitous in natural products, synthetic pharmaceuticals and
optoelectronic materials. Their preparation is thus a major
concern that requires timely resolution. Thus far, most efforts
have concentrated on C-O, C-N and C-C bond-forming cycloi-
somerizations and spectacular progress has been achieved.
However, little is known about related C-P bond-forming
transformations to give P-heterocycles.

In this regard, benzophosphole oxides (BPOs) are primary
targets owing to their application in organic electronics,
including light-emitting devices,” photovoltaics* and cell-
imaging dyes.” The cycloisomerization route has attracted
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H vinylation of the C2 position is also substantiated.

much attention because of its selectivity and substrate scope,
but surprisingly, it has only been much rarely considered thus
far and remains largely underdeveloped. Accordingly, the
preparation of BPOs through the cyclization of ortho-alkynyl
secondary phosphine oxides (SPOs) has only been reported
once under basic conditions.® Typically, heating 1a at 70 °C for
24 hours in DMSO in the presence of ‘BuOK (20 mol%) was
found to afford BPO 2a with 79% yield (Scheme 1). The reac-
tion is simple to operate and does not require a TM-based cata-
lyst, but it is limited in scope. It works only for substrates fea-
turing an internal alkyne substituted by an aryl group.

With the aim to apply and develop a TM-catalyzed cycloi-
somerization approach for the synthesis of P-heterocycles,
such as 2a, we screened various complexes reported to be
efficient in C-O, C-N and C-C bond-forming transformations
(mainly Pd and Au complexes).” As a result, we discovered that
AgSbF, alone efficiently promotes the cycloisomerization of 1a
into 2a. This finding prompted us to in-depth investigate Ag'-
promoted cycloisomerization route to benzophosphole oxides
and we hereafter discuss this transformation in terms of reac-

BUOK (20 mol%) 79 %

Q o]
P< DMSO, 70°C, 24 h p—Ph
W Ph Ph
« AgSbFg (5 mol%) /

. Xpp foluene, 80°C,9h  91%  ,.

Scheme 1 Cycloisomerization of the (2-alkynylphenyl) phosphine
oxide 1a into benzophosphole oxide 2a: unique precedent under ‘BuOK
catalysis and the Ag'-promoted route reported here.
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tion optimization, mechanistic investigations, scope, compari-
son with alternative methods and post-functionalization.

Results and discussion

Upon reacting SPO 1a with 5 mol% AgSbF¢ at 120 °C in a
toluene solution, complete conversion was achieved within
only 2 hours, as indicated by *'P NMR spectroscopy. The
doublet signal diagnostic for 1a (5 15.8 ppm, “Jpy 498 Hz) dis-
appeared to give a new signal at § 39.2 ppm, which is attribu-
ted to 2a.° The reaction conditions were then varied and opti-
mized (Table 1). Lowering the temperature to 80 °C led to
similar results without significantly compromising the reac-
tion time (9 hours). Reducing the loading in AgSbF, to 2 mol%
enabled us to achieve full conversion at 80 °C in 20 hours
(increasing the concentration of 1a from 0.12 to 0.8 M), but
side products were formed and the benzophosphole oxide 2a
was obtained in only 80% yield. Other silver salts with more
coordinating and/or more basic counter-anions showed lower
performance. Longer reaction times were required to achieve
high conversion, and more side products were formed. Radical
initiators (AIBN, TBHP, and Mn(OAc);) and oxidizing con-
ditions (K,S,0; or O,), commonly involved in P-C bond for-
mation, were also tried, but they gave poor results (<30% yield
in 2a, Table S1}).” Of note, in some cases, a side product was

Table 1 Ag-promoted into 2a and

optimization

cycloisomerization of 1a

Standard conditions

P 9 Ph P

Papn AgSbFg (5 mol%) wph ( % >
Toluene (2 mL) Z Ph

X

0.12M,80°C,9h

1a Ph 2a 3a
0.25 mmol
Conv® Yield”
®%) (%)

Standard conditions >96 >96 (91)°
Deviation from standard conditions

Reaction conditions 120 °C, 2 h >96 93
20 mol% AgSbFg, 4 h >96 >96
2 mol% AgSbFs, 0.8 M, 20h 95 80
100 mol% AgSbF, >96 27 (49)°
NO AgSbFy 9 7
Under air 87 67 (15)°

Silver salt 5 mol% AgNTf,, 9 h 51 49
5 mol% AgOTf, 9 h 61 60
5 mol% AgBF,, 9 h 44 44
5 mol% AgNO;3, 9 h 100 20
5 mol% AgOAc, 72 h 100 20
5 mol% Ag,CO;, 72 h 100 20

Solvent Benzene, 9 h >96 >96
‘BuPh, 9 h 85 83
1,2-Dichlorobenzene, 22 h >96 84
CH;CN, 33 h >96 86
DMF, 9 h 61 48
DCE, 47 h >96 82

“Estimated by *'P NMR spectroscopy. ” Isolated yield in parentheses.
“Yield in phosphaisocoumarin 3a in parentheses.’
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detected in the "H NMR spectrum of the crude mixture. It was
isolated and unambiguously authenticated as the corres-
ponding phosphaisocoumarin 3a.” The formation of 3a shows
that the oxidation of the phosphine oxide/phosphinoyl radical
may occur prior to cyclization.

Changing toluene for more polar solvents such as 1,2-
dichlorobenzene, DCE, DMF or CH3;CN had no benefit, rather
the opposite, while similar results were obtained with
benzene. Using the optimized reaction conditions (AgSbFs
5 mol%, toluene, 80 °C), the reaction was then scaled up to
10 mmol of 1a, operating at 0.8 M to reduce both the time and
the quantity of solvent. The transformation was complete in
5 hours, and 2a was obtained in 90% isolated yield (2.72 g).”

Given the state-of-the-art and literature precedent, two
mechanistic scenarios can be a priori envisioned for the Ag'-
promoted cycloisomerization of 1a. On the one hand, Ag’ salts
are known to activate alkynes via n-coordination and to
promote the addition of pro-nucleophiles to the C=C triple
bond (Fig. 1a).>® Conversely, Ag' salts may act as oxidants
towards secondary phosphine oxides R,P(O)H [and phospho-
nates (RO),P(O)H] to generate phosphinoyl radicals, which can
then undergo radical addition to alkynes (Fig. 1b).>'® On the
other hand, the Ag' salt is used in stoichiometric amount or
an excess of oxidant is added to regenerate Ag" in situ.'!

To try to distinguish between these two paths, a series of
experiments were performed. First, we assessed the impact of
additives that may foster the “n-activation” route (Fig. 2a), i.e.
weak bases such as ‘Bu,Py, K,CO; or Et;N (10 mol%) to acti-
vate the pro-nucleophile, PPh; to stabilize Ag","* and hydrogen-
bond donors such as Ph,P(O)OH, C¢H3(OH); or HFIP to favor
protodemetalation upon H-shuttling."® In most cases, the con-
version of 1a was significantly lowered. Complete consumption
was only observed with HFIP as an additive, but the benzo-
phosphole oxide 2a was obtained in low yield (11%).
Conversely, the concomitant use of AgSbFs, and TEMPO
(5 mol% each) drastically reduced the conversion of 1a (15%)
and the yield in 2a (10%) (Fig. 2b). Furthermore, the addition
of 5 mol% of TEMPO after 4 hours of reaction under standard
conditions considerably slowed down further transformation
(the conversion of 1a stopped at 70-80% conversion and the
yield in 2a did not exceed 65-70% after 5 additional hours,
Fig. S3}).” These experiments favor the radical pathway over
the m-activation route. To further substantiate the formation of
the phosphinoyl radical A upon oxidation of 1a with Ag', spin

a) OH b) o
R @Q
+ ,’) Ph S Ph
Ag A

Fig. 1 Key intermediates for the two mechanistic scenarios envisioned
to account for the cycloisomerization of 1a into 2a: (a) nucleophilic
addition of the A3-form of the SPO moiety to the alkyne r-activated by
Ag' and (b) formation of the phosphinoyl radical A by oxidation of the
SPO moiety with Ag', followed by radical addition to the alkyne.
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‘ a) Additives (base, ligand and H-shouttling) ‘

o
1,
AgSbFg (5 mol%) p—Ph
. / Ph
Toluene (2 mL)

0.12M,80°C,9h

2a
0.25 mmol
Conv (%)? Yield (%)?
Standard Conditions >96 >96(91)°
Deviation from standard conditions
10 mol% Et3N,16 h 23 10
10 mol% K,CO3, 16 h 31 2
g 10 mol% BusPy 9h 62 60
Z_g 10 mol% PPhs, 16 h 11 10
Z | 5mol% PhoP(0)OH, 9 h 66 65
5 mol% CeH3(OH)3,9 h 56 55
HFIP 0.5 mL, 45 h >96 11

————————————————————
2Estimated by 31P{'H} NMR spectroscopy after addition of
PPhs as internal standard. PIsolated Yield in brackets.

‘ b) Radical quenching l

o AgSbFg (5 mol%) o
Pspp  TEMPO (5 moi%) p—Ph
Y Ph
[ Toluene (2 mL)
A
1a Ph 80°C,9h 2a H

15 % conv; 10 % Yield

View Article Online

Organic Chemistry Frontiers

‘ c) Radical trapping

1]
P<
H'Ph  AgSbFe (15 mol%)  rhen 25 °C and

S ‘BuPh (2 mL) DMPO (1 equiv)
1a N Ph 80°C,1h
A
v N
‘.‘ ‘l‘ \ o ©-
I l I X
w“ .| / ' |
I I m / ’”‘
I | \
‘M"M‘,‘H\M‘ )”“\\‘\J\VMH\MWM
|| VI \ I/
w ' U
\ M
f «
‘ d) Isotopic labeling I
L _Ph %
5 AgSbFs (5 mol%) P‘F”;h
>
\\80 % toluene (2 mL), 80 °C ¢
1a-D Ph 2aD 0 ~72%D
(up?,Ph 9
A AgSbF¢ (5 mol%) P—Pf;’h
T Tol-Dg (2 mL), 80 °C 7
4
1a Ph 2 96%H

Fig. 2 Experiments performed to discriminate the two mechanistic paths, namely n-activation and radical addition.

trapping with a nitrone (DMPO) was performed (Fig. 2c).” The
reaction was conducted in ‘BuPh with 15 mol% of AgSbFs. The
mixture was stirred at 80 °C for 1 hour to initiate the reaction,
and then cooled to room temperature (to prevent direct reac-
tion of 1a with the nitrone)'* before the addition of DMPO
(15 mol%). ESR analysis showed the formation of a nitroxide
radical (the pattern is very similar to that reported for the trap-
ping of the phosphinyl radical Ph,P(O)" by DMPO and to that
we obtained ourselves by reacting Ph,P(O)H instead of 1a with
AgSbFg, Fig. S15%).”">7"” This experiment further supports the
radical pathway as the operating mechanism in the Ag'-pro-
moted cycloisomerization of 1a.

Based on the gathered information, we propose the radical-
chain mechanism displayed in Fig. 3 to account for the cycloi-
somerization of 1a into 2a promoted by AgSbFs. The initiation
would involve the generation of the phosphinoyl radical A
upon oxidation of the A>-P(O)H/A*-P(OH) moiety of 1a/1a’ by
the Ag' cation. The propagation phase would then involve cycli-
zation of A via intramolecular 5-endo-dig radical addition to
the C=C triple bond, to give the vinyl radical B. Finally, hydro-
gen atom transfer (HAT) would deliver the benzophosphole
oxide 2a. To decipher the H atom source, we resorted to
D-labeling experiments using either 1a-D deuterated at the P
atom or toluene-Dg as the solvent (Fig. 2d).” Inspection of the
"H NMR signal for the vinylic =C-H of 2a showed that the
SPO substrate indeed acts as a H donor towards B, enabling
chain propagation. The absence of deuterium incorporation in
2a when operating in toluene-Dg indicates that the solvent

3378 | Org. Chem. Front, 2024, 1, 3376-3383
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cyclization
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p—Ph
/F’h

Fig. 3 Proposed radical-chain mechanism to account for the Ag'-pro-
moted cycloisomerization of 1a into 2a.

does not take part in the HAT, in line with the similar results
observed using toluene or benzene as the solvent.

Of note, radical 5-endo-dig cyclization with P(O)-centered
radicals has not been previously reported to the best of our
knowledge. With other types of radicals, this kind of cycliza-
tion is challenging and rare, but not unprecedented.
Experimental evidence was first reported with a Si-centered

This journal is © the Partner Organisations 2024
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radical,’® then with C-centered radicals'® and more recently
with N-*° and Ge-centered radicals.*!

Following mechanistic studies, we assessed the scope of the
transformation with respect to the substitution pattern of
alkynyl, benzo and phosphorus moieties (Fig. 4). The bifunc-
tional substrates were prepared in few steps from ortho-bromo,
iodo-benzene derivatives upon sequential introduction of
alkyne and SPO moieties (by the Sonogashira coupling and
ionic coupling with a dichlorophosphine followed by hydro-
lysis, respectively).” Electron-enriched alkynes with a para-Me
or para-OMe phenyl substituent (1b,c), an alkyl substituent
("Bu, 1d), and a silyl group (SiEts;, 1e), were cyclized more
rapidly than 1a and the corresponding benzophosphole oxides
were obtained in high yields (in particular 2b-2d, 81-95%). As
for the silyl-substituted BPO 2e, it was obtained in the mixture
with the desilylated benzophosphole oxide 20 (2/1 ratio) under
the standard conditions (5 mol% AgSbF¢), but reducing the
Ag' loading to 2 mol% enabled us to increase the isolated yield
of 2e to 72%. Me and MeO substitution of the ortho and meta
positions of the phenyl group (1f-1h) resulted in longer reac-
tion times without impacting the yields (92-99%). The intro-
duction of electron-withdrawing groups at the phenyl substitu-

View Article Online

Research Article

ent of the alkyne moiety required longer reaction times than
1a (15-23 hours) without compromising the efficiency of the
cycloisomerization (79-97% yields for 2i-21). Compound 21
was actually characterized by single-crystal X-ray diffraction
analysis,” unambiguously confirming the benzophosphole
oxide structure and the C2-substitution. The cyclization reac-
tion also worked well with substrates bearing n-conjugated
alkene or heterocyclic substituents at the alkyne moiety, such
as cyclohexene or thiophene, as substantiated by the formation
of 2m and 2n with 73-74% yield. A longer reaction time was
required to cyclize the terminal alkyne 10 (20 hours), and the
corresponding BPO 20 was obtained in a modest yield (40%)
probably due to parasitic reactions between the =C-H bond
and the silver salt.>> However, we leveraged on the desilylation
process observed with 1e to develop an alternative route to 2o.
Installing a trimethylsilyl group at the alkyne (substrate 1p)
and using 50 mol% of Ag' salt, the parent benzophosphole
oxide 20 was formed as very major product within only 1 hour
and it could be isolated in 85% yield.*® Of note, efficient
preparation of 20 is a challenge and only a few precedents
exist, as recalled in Scheme 2. Desilylation of 2p with TBAF
affords 20 in only 50% yield.>* Better results were obtained by

g standard conditions o
HPh  AgSbF (5 mol%) p—Ph
I
\\ Toluene, 80 °C
R 0.12 M, t

95 %, 8 h 93 %, 4 h

2g MeO

92 %, 16 h 90 %, 15 h

99 %, 10 h

2l

97 %, 18 h

74 %, 4 h

variation of the alkyne substituent

b g g
P—Ph P—Ph pP-Ph
2b 2c 2d

81%,4h

0 o OMe Je 2 ?
P—Ph P—Ph P—Ph P—Ph P—Ph
CIoC) T~ 0= U~
h 2i 2] 2%
o) o) o] o]
& ph B—Ph B-Ph s P—Ph
2m 2n

73 %, 60 h

? 2 Ve
P—Ph P—Ph
7T O aVal
2e

2f Me
53%,3h o
72 %, 24 h, AgSbFg 2 mol% 96 %, 12h

79 %, 23 h 89 %, 15 h

from 1p (R = TMS)

AgSbFg 50 mol%,
20 85%,1h

40 %, 20 h

2q
93 %, 12h

variation of the benzo substituent

o}
Me Bph Me
o=

P /O Me 0
o P—Ph FiC P—Ph Aph
Y Ph Y Ph / Ph
2r 2s 2t
97 %, 15 h 89 %, 13 h 93 %,3h

2u
97 %, 9 h

oF variation of the P substituent

B P
@E/%Ph

1l \F: 19
CF, —'Pr p—OEt
) Ph ,—Ph
2v 2w

99 %, 33 h 52 %, 16 h, 120 °C

Fig. 4 Synthesis of benzophosphole oxides via Ag'-promoted cycloisomerization and substrate scope.
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TR
o y&‘imr 20 ‘% o
\\ _Ph 50 %k 90 9, \\ _Ph
R R
/ T™S —
2p \

Scheme 2 Alternative syntheses of the unsubstituted benzophosphole
oxide 2o.

ring-closing metathesis of a divinyl precursor with an
Hoveyda-Grubbs second-generation catalyst>®® or by direct
cyclization of Ph,P(O)H with acetylene promoted by CuCl, in
the presence of an excess of tert-butyl peroxobenzoate (TBPB)
as an oxidant.?*”?

Substitution of the phenyl ring linking the SPO and alkynyl
moieties was then investigated (substrates 1q-t). In all cases,
the corresponding benzophosphole oxides were obtained in
high yields (89-97%). Here, the cycloisomerization approach
inherently provides precise control of the BPO structure. The
reaction proceeds at the phenyl ring bearing the alkynyl
moiety and gives a single regioisomer, in contrast to the inter-
molecular variant involving Ar,P(O)H secondary phosphine
oxides and alkynes (see below). No significant electronic bias
was observed between electron-donating and -withdrawing
substituents, the reaction times to obtain 2q (Me), 2r (OMe)
and 2s (CF;) (13 hours) being essentially identical
(12-15 hours). Interestingly, Me substitution of the position
ortho to P proved more impactful. The formation of 2t pro-
ceeded faster (3 hours), which may be due to some buttressing
effects favoring the 5-endo-dig cyclization. Finally, variation of
the P substituent was explored. Introducing the electron-with-
drawing group 3,5-(CF;),Ph (1u) made no noticeable difference
with the reference substrate 1a in terms of reaction time and
yield of the obtained BPO (9 hours, 97%). Comparatively, elec-
tron-enriched substrates proved more difficult to cyclize. For
the Pr-substituted substrate 1v, 33 hours were required to
achieve full conversion, but the yield of 2v was not compro-
mised (96%). Phosphinates (RO),P(O)H are more challenging
substrates than SPO in oxidative radical couplings.'®
Consistently, harsher conditions were required to cyclize the
ethoxy-substituted substrate 1w (120 °C, 16 h), but the corres-
ponding BPO 2w was nonetheless obtained in 52% isolated
yield.?®

Overall, the cycloisomerization methodology reported here
allows for the efficient preparation of a wide structural variety
of benzophosphole oxides with electron-donating/electron-
withdrawing substituents at C2, the benzo ring and/or the P
atom (17 examples, 88% average yield). This transformation is
versatile and complementary to the alternative intermolecular
routes developed over the last decade (Fig. 5 and S7%).” The
most studied route involves the dehydrogenative coupling of
diaryl SPO and internal alkynes (Fig. 5a)."*”">° It requires an

3380 | Org. Chem. Front, 2024, 1, 3376-3383
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a) R4

|
7
R, Ad, Mn”' K2S,05 5 Q\Q
A\ —R
! |]| s
R1 Photocatalylc Z

conditions Ry

Mainly R, = R3 # H

b)
(0]
R\1 MX R, 1/ Co or Ni cat. R \}:/ R4
| . 2/ Cu cat., R4PCl, l\\ A
Z II 3/ HyO VAR
M = Zn, Mg R3 "one-pot" Rs
Mainly R, = Rz # H

c)

/R1
J
W f - - 0
V. o 2 1/THO (2 equiv), R W\ o=
DA DMAP (1 equiv.) R
I || 2o (55,
2/ Hy0,

Rs Rs
Mainly R, = R3 # H

2
(0]

Ry Po g
m AgSbFg (5 mol%) R1\(>:|>—54
- = Vs
X
"

Ro

Fig. 5 Comparison of the main synthetic routes developed to access
benzophosphole oxides: known intermolecular strategies (a—c) versus
the cycloisomerization approach reported here (d).

oxidant (typically Ag', Mn'™ or K,S,0s) in stoichiometric
amount or excess. Greener variants have been uncovered
recently using an organic photocatalyst and a pyridinium salt
as an oxidant,"” or even simply dioxygen.>® Another strategy
relies on a one-pot multicomponent reaction involving Co/Ni-
catalyzed migratory carbometallation of alkynes, Cu-catalyzed
C-P coupling and phosphorus oxidation (Fig. 5b).>' A third
method is based on the electrophilic annulation of SPO with
internal alkynes in the presence of an excess of Tf,O and a
base (Fig. 5¢).>* All these routes use internal alkynes and thus
give C2/C3-disubstituted benzophosphole oxides. Moreover,
symmetric internal alkynes are largely preferred to prevent the
formation of regioisomeric mixtures. The same limitation
applies to the diaryl SPO substrates used in the first and third
strategies, and symmetric SPOs are used routinely to prevent
selectivity issues in the cyclization step. It is worth noting that
the cycloisomerization approach reported here requires the
preparation of alkynyl-SPO substrate 1, but it inherently
proceeds with complete selectivity and it circumvents the for-
mation of BPO mixtures. This is nicely illustrated by the
selective formation of compounds 2q-t, where related
intermolecular transformations suffered from the randomiz-
ation of the regiochemistry of the fragment
(Fig. SSi).7’17'27’29’32'33

As mentioned above, another attractive feature of the Ag'-
promoted cycloisomerization route is to provide efficient
access to the parent benzophosphole oxide 20. Given the

“benzo”

This journal is © the Partner Organisations 2024
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C2-H vinylation of BPO 2x (Hirano et al)*®

ph Pd(OAc); (10 mol%)

Tf,0 \\ _Ph AgTFA (2 equiv.) o\\ _Ph
Base j NaH003 (2 equiv.) R Y R
>—H
Ph p\ % 1,4-dioxane, 110 °C, 20 h
Ph
o Pd(OAc); (10+10 mol%) o)
\ _Ph AgTFA (2+2 equiv.) \\ _Ph
R NaHCOj3 (2 equiv.) R 4R
) H o+ g R — /)
L 1,4-dioxane, 110 °C, 20 h
20 H H

Mme MOMe ©:2_//002Et

20a (90 %) 20b (94 %) 20c (73 %)

Scheme 3 C2-H vinylation of benzophosphole oxides.

recent progress achieved in the post-functionalization of
BPO**?**” we wondered about the possibility to derivatize 20
by C-H activation. In particular, we became interested in the
installation of vinyl groups at C2 since it is challenging by
other means. One option is to achieve Pd-catalyzed Mizoroki-
Heck or Stille cross-coupling from the BPO bearing a bromine
atom at C2 (Fig. $93).”?*

More attractive synthetically is the Pd-catalyzed and Ag-
assisted C-H vinylation reported recently by Hirano et al. from
the BPO 2x (obtained by electrophilic coupling of 1,1-diphenyl-
ethylene and phenylphosphinic acid) (Scheme 3).*>*® It was
observed that under similar conditions, the parent BPO 20 was
fully consumed but a complicated mixture of products was
obtained. Intrigued by the influence of the Ph group at C3 on
this transformation, we tested the functionalization of 20
under the same conditions (10 mol% Pd(OAc),, 2 equiv.
AgTFA, 2 equiv. NaHCO;, dioxane, 110 °C) using para-methyl
styrene as the partner. *’P NMR monitoring indeed showed
consumption of 20 but the reaction leveled off at 40% conver-
sion after 7 hours. To drive complete conversion, more Pd
(OAc), (10 mol%) and AgTFA (2 equivalents) were added and
gratifyingly, the C2-vinylated BPO 20a was thereby obtained in
90% isolated yield.” These forcing reaction conditions were
then applied to para-methoxy styrene and ethyl acrylate,
affording the corresponding C2-functionalized BPO 20b and
20c in good yields (94 and 73%, respectively).

Conclusions

In summary, reacting ortho-alkynyl secondary phosphine
oxides with 5 mol% of AgSbF turned to be a very efficient and
general route to synthesize benzophosphole oxides. Compared
with intermolecular approaches, such cycloisomerization
inherently proceeds with complete selectivity.

Besides the specific preparation of BPO, these results point
out the synthetic potential of C-P bond-forming cycloisomeri-
zation reactions to access P-heterocycles. This strategy is illus-
trated here in a radical transformation, but ionic as well as
TM-catalyzed variants can certainly be conceived and are

This journal is © the Partner Organisations 2024
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worth investigating. This work also highlights the synthetic
potential of silver salts. Long neglected compared to other TM,
Ag' species have found increasing applications as m-activators,
halide abstractors®® as well as oxidants.?® In this work, AgSbF
was used as a radical initiator, in catalytic amounts and
without any external oxidant.
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