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Organophosphorus compounds are important motifs in living organisms, medicinal chemistry, agricultural
chemistry, materials science, catalysts, ligands, etc. However, catalytic carbonylative transformation of
a-phosphorus, a-sulfur or a-boron substituted alkyl halides remains a formidable challenge due to
a-heteroatom effects. In this report, we describe a nickel/photoredox dual-catalytic strategy for the direct
amino- and alkoxycarbonylation of a-phosphorus, a-sulfur, and a-boron substituted organohalides with
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an array of reaction partners under low CO gas pressure which furnished various high-value products in
excellent yields. The utility of this process was also demonstrated by the development of a new
a-phosphine amide ligand. Additionally, this synergistic protocol also facilitates a sequential four-com-
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Introduction

Phosphorus is one of the essential elements for life and is
closely related to living organisms. In addition, organopho-
sphorus compounds are not only important structural motifs
of genes, but also widely used in medicinal chemistry, agricul-
tural chemistry, materials science, organic synthesis, and
other fields." In particular, p-phosphonyl acids and derivatives,
an indispensable class of phosphorus skeletons, are widely uti-
lized as ligands and key intermediates in organometallic
species-mediated reactions due to their unique chemical pro-
perties.” Thus, developing efficient strategies to access
B-phosphonyl acids from readily available starting materials
remains an important task. One of the most attractive
approaches is the use of broadly available carbon monoxide as
the C1/carbonyl source toward organophosphorus molecules.
Carbonylation reactions have become indispensable tools
for constructing carbonyl-containing compounds in organic
and medicinal chemistry as they enable the efficient and
robust union of molecular fragments and carbon monoxide.®
Over the last few decades, multiple generations of catalytic
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ponent carbonylation in the presence of vinyl phosphonate.

systems have been explored that have elevated the transition
metal-catalyzed carbonylation of organohalides to an essential
transformation.* Compared with mature noble metal catalysts,
cheap metal catalysts such as nickel have also been explored
successfully by taking advantage of slow CO-releasing reagents
and specialized ligand complexes to minimize the generation
of highly toxic and low catalytic activity Ni(CO),.”> Concerning
the substrates applied, aryl,® benzylic,” and alkyl halides® have
been relatively well studied, even with nickel -catalysts
(Fig. 1(a)); however, carbonylative transformations of
a-heteroatom substituted organohalides to construct high-
value o-heteroatom substituted amides or esters remain less
developed, with some examples of a-phosphorus- and a-sulfur-
substituted alkyl halides.’

a-Heteroatom functionalization is a key and challenging
strategy in organic synthesis.” However, because of the unique
properties (electron cloud density, bond energy, resonance,
etc.) of heteroatoms, the substituents containing heteroatoms
could change the properties and reaction characteristics of the
molecules, especially in adjacent positions.”*'® In addition,
the coordination of m-acidic CO and heteroatoms with metal
catalysts might decrease or even inhibit metal catalytic
activity."* On the other hand, the rate of decarbonylation
depends strongly on the nature of substituents, and the
a-heteroatoms can effectively stabilize the adjacent carbon rad-
icals, resulting in acyl radicals that tend to decarbonylate to
form a stable radical species, especially at lower CO pressures
or higher temperatures.'>'® Additionally, owing to the
relatively more polar carbon-halogen bonds, o-heteroatom
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Fig. 1 The background of a-heteroatom halide carbonylation.

substituted alkyl halides can readily undergo dehaloprotona-
tion (Fig. 1(b)). To overcome these challenges, the develop-
ment of novel and efficient strategies is highly in demand.
Considering the challenges discussed above, we questioned
if photoredox catalysis may offer a unique pathway for the
carbonylation of a-heteroatom substituted alkyl halides.
Synergistic photoredox catalysis and metal catalysis offer a
powerful catalytic platform for many challenging organic
transformations. Several outstanding studies have shown that
pairing a visible-light photocatalyst with a conventional nickel
or palladium catalyst can accelerate challenging steps in reac-
tions."* Herein, we report the first example of nickel/photo-
redox dual-catalyzed carbonylation of a-heteroatom substituted
alkyl halides with various nucleophiles under low CO pressure,
furnishing a series of high-value compounds (Fig. 1(c)).
Notably, this catalytic strategy also enables the multicompo-
nent carbonylation of vinyl phosphonate and affords the target
compounds in moderate yields and with high selectivity.

Results and discussion

To establish this transformation and explore the optimal con-
ditions, bromophosphate 1a and aniline 2a were selected as
the model substrates. After a systematic evaluation of all the
reaction parameters, the optimized reaction conditions were
determined, as summarized in Table 1 (for more details, see
the ESIf). Lower yields were obtained with other nickel cata-
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Table 1 Investigation of reaction conditions?

Br /O Ni(acackéilgﬁl(“/:)‘ml.o:u/(j mol%) (EtO)zP/’o

P ’ I\OEQ v e co Cs,C03 (1.5 equiv.), MeCN (2 mL ) Ph NHPh
EtO blue LEDs (30 W) o
1a 2a 3a
Photocatalyst c R R
Z
NC cN OMO
Cz Cz © il‘,\i &U R H\%
Cz  4cziPN L2, R =PMP

Entry Variation from standard conditions 3a (%)
1 None 68
2 NiBr,(DME) instead of Ni(acac), 17
3 Ni(TMHD), instead of Ni(acac), 36
4 L2 instead of L1 20
5 Acr-Mes'ClO, instead of 4-CzIPN 2
6 fac-Ir(ppy); instead of 4-CzIPN 59
7 PhCEF; as solvent 62
8 THF, DMAc, DCE as solvent 0-10
9 DIPEA instead of Cs,CO; 0
10 1 bar CO instead of 10 bar CO 60
11 1.5 equiv. of 1a was used 75
12 With 10 mol% KI 93
13 1 bar CO, 1.5 equiv. of 1a, and 10 mol% KI 82
14% w/o Ni and PC 0
15 w/o PC or Ni or L1 or Cs,CO; or light 0

“Reaction conditions: 1la (1.2 equiv.), 2a (0.2 mmol), Ni(acac),
(5 mol%), L1 (6 mol%), 4-CzIPN (1 mol%), Cs,CO; (1.5 equiv.), CO (10
bar), MeCN (2 mL), 30 W blue LEDs, 18-25 °C, 24 h, isolated yields.
acac = acetylacetone; TMHD = 2,2,6,6-tetramethyl-3,5-heptanedione.
b60 bar CO.

lysts than those with Ni(acac), (Table 1, entries 2 and 3). The
nature of the ligand played an essential role in improving the
yield of this reaction, and the bidentate nitrogen ligand L2
resulted in decreased yield (Table 1, entry 4). Next, Acr-Mes +
ClO,” made the reaction almost impossible to occur (Table 1,
entry 5). When fac-Ir(ppy)s instead of 4-CzIPN was tested, a
similar yet slightly diminished reactivity was observed
(Table 1, entry 6). Diminished yield or no product was detected
when using THF, DMAc, and DCE (the dehaloprotonation
product was the main by-product), but PhCF; could give a
good yield (Table 1, entries 7 and 8). Screening of the bases
highlighted the significant promotion of this carbonylation by
Cs,CO; (Table 1, entry 9). Notably, a good yield was also
obtained with only 1 bar CO (Table 1, entries 10 and 14).
Further assessment on the amount of bromophosphate indi-
cated that 1.5 equivalents performed the best (Table 1, entry
11). In addition, the best yield of the desired product was
observed in the presence of 10 mol% KI (Table 1, entry 12). We
hypothesize that the reaction begins with the nucleophilic sub-
stitution of bromophosphate 1a with KI to form the corres-
ponding iodophosphate. The desired product could not be
detected under 60 bar CO in the presence of nickel or a photo-
catalyst (Table 1, entry 14). Experiments without a photo-
catalyst, nickel catalyst, ligand, Cs,CO;, or light failed to
produce the desired carbonylated product, implying that all
these components are necessary for the reaction to proceed
(Table 1, entry 15). It is worthy of mention that easily accessi-
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ble chiral dioxazole ligands were tested with the idea of intro-
ducing a chiral center, but low or no yield of the desired
product was obtained without enantioselectivity.

Encouraged by these results, we first investigated the scope
of various nucleophiles under the optimized conditions
(Fig. 2). Various aromatic amines substituted with an electron-
donating group or an electron-withdrawing group were all suit-
able coupling partners. A variety of substituents including -F
(3d), -Cl1 (3e), -Br (3f), and -CF; (3g) survived, providing possi-
bilities for further derivatization. The sterically bulky amine 3h
also reacted equally well. In addition, a wide range of strongly
nucleophilic alkylamines could be used, including benzyla-
mine (3m), butylamine (3n), and amantadine (30).
Gratifyingly, heterocycle-containing substrates that readily
coordinate with metals could successfully participate in this
transformation to deliver the corresponding products in good
yields (3p, 3q, 3r, and 3s). Next, some alcohols were also

View Article Online
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tested, such as long chain alcohols (4a, 4b, and 4c), cycloalco-
hols (4d and 4e), 3-methoxy-1-propanol (4f), chiral alcohol (4g)
and benzyl alcohol (4h), giving the target products in moderate
to excellent yields. Only a trace amount of the carbonylated
product was detected when using sterically bulky ter¢-butanol
as the substrate. In addition, phenols, which readily quench
radicals, were also suitable substrates for this transformation
(4j, 4k, 41, and 4m). However, tert-butanol led to only a trace
amount of the desired product (4i). Subsequently, we turned
our attention to challenging nucleophiles. Several alcohols
with various sensitive functional groups including trimethyl-
silyl (-TMS) and halogen atoms (-Cl and -I) were converted
into the corresponding products in moderate to good yields
(4n, 40, and 4p). CD;0D was successfully converted into the
corresponding D-containing product (4q) in 69% yield.
Notably, the catalytic efficiency was unaffected when substrates
with a carbon-carbon double bond (4r, 4s, 4t, and 4u) were

Ni(acac), (5 mol%), L1 (6 mol%) _0
o 4-CzIPN (1 mol%), KI (10 mol%) (B0~
Ph/\)\ 4 + NuH + co Nu
eg OBt Cs,CO03 (1.5 equiv.), 24 h, blue LEDs Ph
MeCN or PhCF (2 mL) )
1a 2 3or4
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0 0 3b, R = p-'Bu, 74% 3g, R = p-CF3, 69% 0
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Fig. 2 Substrate scope. ? Reaction conditions: 1a (1.2 equiv.), 2 (0.2 mmol), Ni(acac), (5 mol%), L1 (6 mol%), 4-CzIPN (1 mol%), Cs,COs (1.5 equiv.),

KI (10 mol%), CO (10 bar), MeCN (2 mL), 30 W blue LEDs, 18-25 °C, 24 h

, isolated yields. ® PhCF5 (2 mL). € 1a (2.4 equiv.), 1,6-hexanediol (0.2 mmol),

Ni(acac), (10 mol%), L1 (12 mol%), 4-CzIPN (2 mol%), Cs,COx5 (3 equiv.), KI (20 mol%), CO (10 bar), PhCF3 (3 mL).
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used. Finally, we explored the reactivity of diols, and 1,6-hexa-
nediol successfully delivered the diester product in good yield
(4v). However, no target product could be obtained when thio-
phenol was used as the nucleophile.

The conditions shown in Table 1 were then used for the
transformation of various a-heteroatom substituted halides
(Fig. 3). A series of phosphates with different steric hindrance,
including diethyl, diisopropyl (5a), and dibutyl (5b) phospho-
nates, could be tolerated in this reaction. Other a-alkyl substi-
tuents of bromophosphates, such as long chain alkanes (5d,
5e, 5g, and 5j), cycloalkane (5f), heteroatom substituted
alkane (6h), and halogen atom substituted alkane (5i), could
be used in this reaction. However, both internal alkene (5k)
and terminal alkene (51) were all well tolerated in the trans-
formation. Subsequently, a-bromoalkyldiarylphosphine oxides
were successfully employed in this reaction, affording the

View Article Online

Organic Chemistry Frontiers

target products in good to excellent yields (5m, 5n, 50, 5p, 5q,
and 5r). To demonstrate the practicality of this transformation,
several natural products and bioactive molecules were also
tested (Fig. 3). Aminoglutethimide (6a), sulfalen (6b), and
amino acid derivatives (6¢c and 6d) were all suitable substrates.
Likewise, geraniol (6e), phytol (6f), cholesterol (6g), menthol
(6h) diacetonefructose (6i), lanosterol (6j), and epiandroster-
one (6k) also reacted smoothly.

Next, we found that various sulfur-containing compounds
were also suitable carbonylated substrates (Fig. 4). Good yields
were obtained with different functionalized a-bromo sulfone
compounds (7a, 7b, 7¢, 7d, and 7e). Finally, a carbonylative
homologation of halomethylorganoborons, which are also
important C1 reagents,"® was tested in this transformation.
However, only acetylation products (7f and 7g) were obtained
in good yields, which formed through a base-promoted proto-
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Fig. 3 Substrate scope of a-phosphonates and complex molecules. Reaction conditions: 1a (1.2 equiv.), 2 (0.2 mmol), Ni(acac), (5 mol%), L1
(6 mol%), 4-CzIPN (1 mol%), Cs,COs (1.5 equiv.), KI (10 mol%), CO (10 bar), MeCN (2 mL), 30 W blue LEDs, 18-25 °C, 24 h, isolated yields.  PhCF3

(2 mL).
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deboronation of the
a-acylboron products.*®

According to the literature, alkyl halides can be converted
to the corresponding alcohols via oxyanions in the presence of
bases."”” To our delight, we attempted to use alkyl halides
instead of alcohols and the corresponding products were deli-
vered in moderate yields (Fig. 4(c); 8a, 8b, 8c, and 8d).
Catalytic carbonylative multicomponent reactions (CMCRs)
represent a powerful and efficient strategy for the rapid con-
struction of carbonyl-containing products in a single oper-
ation.'® Notably, a nickel/photoredox dual-catalyzed four-com-
ponent a-heteroatom carbonylation reaction was also success-
fully achieved, and the target products were obtained in mod-
erate yields (Fig. 4(d); 9a and 9b). In this way, the introduction
of three useful fragments of phosphine, carbonyl, and fluorine
into one molecule can be achieved.

To demonstrate the practicality and synthetic utility of this
methodology, the carbonylation was performed on the 1 mmol
scale and the target product 3a was delivered in 73% yield
(Fig. 5(a)). Subsequently, we synthesized the Wittig-Horner
reagent via a one-step reaction (Fig. 5(b)). Next, we successfully
obtained the phosphine ligand 11 in 63% yield through the
reduction reaction (Fig. 5(c)). The obtained phosphine ligand is
a valuable and potential ligand in organic synthetic chemistry."

Subsequently, to better understand the pathway of this
transformation, several control experiments were performed,

originally produced carbonylative
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as presented in Fig. 6. First, radical inhibition experiments
were carried out by adding radical scavengers, and the results
indicated that the reaction possibly proceeded via a radical
pathway (Fig. 6(a)). The captured radical intermediate was
detected by GC-MS and HRMS. Next, competition experiments
between primary and secondary alkyl bromides with aniline
were performed, and the primary substrate gave a slightly
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a) Radical inhibition experiments

o)
Br p~
o) *Standard conditions' (EtO),P
/\)\ 7 + PhNH, + co NHPh
Ph S NoEt Ph
EtO 3a 0
1a 2a

.0
(EtO),P?~ Ph
TEMPO (2 equiv.) 3a (0% yield) Ph Ph
DPE (2 equiv.) 3a (0% yield) 12 Ca7H3405P* 437.2240;
HRMS [M+H]* Found: 437.2235.

¢) Testing the reactivity of 3-iodopropanol

0
*Standard conditions' (EtO),P~
Br = O. I
0 4p, 49%: 8e, 0% Ph/\)Y ~NS
Ph 3 (o] 4p
EtO OEt
*
HO. 1 'Standard conditions' 0
i Cs,CO; (3.5 equiv.) (EtO),P
- 0. OH
4p, 20%; 8e, 0% Ph T
o 8e

Fig. 6 Control experiments.

better yield (Fig. 6(b)). In order to test the reactivity of 3-iodopro-
panol, we carried out the reaction in the presence of 1.5 equiva-
lents and 3.5 equivalents of Cs,COs3, respectively, and the corres-
ponding product 8e was not detected in both cases (Fig. 6(c)).
Finally, control experiments were performed to compare the
current catalytic conditions with the several previously reported
reactions. The developed strategy (Fig. 6(d); entry 1) afforded the
desired product in high yields, whereas the previously reported
carbonylation protocols (Fig. 6(d); entries 2-5) could not yield
the target product (for more details, see the ESI).

Although elucidation of the detailed mechanism requires
further studies, we proposed a possible catalytic pathway for
this carbonylation reaction (Fig. 7), based on the above
mechanistic studies and related literature.*® First, blue light
irradiation of the photoredox catalyst would generate the
excited-state PC*, which will oxidize the Nil species via a SET
process to generate Ni" Subsequently, the
a-phosphonate  alkyl radical delivered from

species.
A  was

o

° Her%Nu
R
He(%’}“mm

R Nu

LnNi'

E
Nickel-Catalytic Cycle [4-CzIPNJ*
Blue LEDs
co
SET

[4-CzIPN]

NuH

Photo-Catalytic
Cycle
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0 PN

Het”™ “Ni" Z
Het. "
e %N\'” c Ln 0

Ln . AN
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Fig. 7 Proposed mechanism.
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b) Competition between primary and second a-phosphate halides

gy "Bu
Q )\ Q O-"Decyl
P B Ph
Ph Ph O sp 27%
'Standard conditions'
and + PhPNH, @ —048M >
SN 2a Q O-"Decyl
Ph R” "Br P R’
Ph Ph O 5s,40%
d) Carbonylation strategies
0}
Br z
/\)\ o) Catalytic conditions (EtO)P
Ph 4 + NuH + CO —mM8M Ph Nu
s
EtS OEt NuH = PhNH, / 1-Hexanol o
1a 2 3
Entry Catalytic conditions Yield of 3a or 4a
1 Standard conditions 93% (3a)
2 Pd(OAc),, Xantphos, Na,CO3, 6 bar CO, 50 °C 0%
3 Fe3(CO)s2, 1,10-Phen, Cs,CO;, 6 bar CO, 90°C 0%
4 Pd(PPhs),Cl,, IMes, Cs,CO3, 2 bar CO, 50°C 0%
5 CuBr-(Me,S), bpy, Cs,CO3, 40 bar CO, 110 °C 0%

a-bromophosphate through a SET reduction process. Then,
the a-phosphonate alkyl radical A was trapped by CO to give
the carbamoyl radical B, which was then quickly intercepted
by the Ni" species generated above to generate intermediate D.
Alternatively, the a-phosphonate alkyl radical Awas intercepted
by the Ni" species to afford the alkyl Ni"" intermediate C, fol-
lowed by migratory insertion with CO to deliver the same acyl
species D. Next, the acyl complex D reacted with nucleophiles
to afford the complex E. Finally, reductive elimination of the
Ni"" complex E provided the corresponding product and regen-
erated the nickel(1) complex for the next catalytic cycle.

Conclusions

In summary, we have identified a novel dual nickel/photoredox
catalyzed direct amino- and alkoxycarbonylation of
a-heteroatom substituted organohalides. The fundamental
challenges posed by a-heteroatom effects, including decarbo-
nylation, difficult oxidative addition, nucleophilic substitution,
and reduction, can be circumvented by using the current
nickel/photoredox catalyzed radical pathway. A variety of
a-heteroatom substituted organohalides, including
a-phosphorus, o-sulfur, and a-boron, reacted with amines,
alcohols, phenols, and alkyl halides to deliver various
a-heteroatom substituted amides and esters in excellent yields
under mild conditions. In addition, a four-component
carbonylation of vinyl phosphonate was also developed.
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