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Pd((R)-DTBM-SEGphos)Cl2-catalyzed kinetic
resolution of tertiary propargylic alcohols†

Jie Wang, ‡a Wei-Feng Zheng,‡a Yuling Li,b Yin-Long Guo, *b Hui Qian *a and
Shengming Ma a,b

We report here an asymmetric carboxylation reaction based on kinetic resolution of tertiary propargylic

alcohols by identifying Pd((R)-DTBM-SEGphos)Cl2 as the pre-catalyst. A variety of optically active tertiary

propargylic alcohols and tetrasubstituted 2,3-allenoic acids were obtained in good yields with excellent

enantioselectivities. The salient features of this report include the use of readily available substrates, a

readily available precatalyst, mild reaction conditions, remarkable functional group tolerance, gram-scale

synthesis, and versatile synthetic transformations. Mass spectrometry experiments trapped some key

intermediates, which revealed the mechanism.

Introduction

Optically active tertiary propargylic alcohols are useful build-
ing blocks in organic synthesis.1 Typically, three catalytic strat-
egies have been developed for asymmetric synthesis of tertiary
propargylic alcohols (Scheme 1a):2–6 (a) enantioselective alky-
nylation of methyl ketones,2b,c,e,g,h trifluoromethyl ketones,3b–f

α-carbonyl ketones,4 and acyl silanes5 with terminal alkynes or
1-alkynyl trimethylsilanes4b in >90% ee; (b) enantioselective
addition of nucleophiles (including Me2Zn, Et2Zn, TMSCF3,
aldehydes, α-N3 amides, etc.) with 4-phenylbut-3-yn-2-one,6a

pyridin-2-yl 1-alkynyl ketones,6d tert-butyl-substituted ethynyl
ketones,6e propargylic ketoesters,6f or trifluoromethyl 1-alkynyl
ketones6g,h in >90% ee; (c) catalytic kinetic resolution of
racemic tertiary propargylic alcohols:7 In 2019, Oestreich and
coworkers reported the kinetic resolution by the enantio-
selective Si–O coupling catalyzed by MesCu/(R,R)-Ph-BPE
affording tertiary 1-phenyl-1-(n-butyl)- or 1-cyclohexyl (or
N-Boc-piperidinyl-4-yl)-1-methyl-2-alkynols in 92–96% ee;7c in
2021, Li and coworkers realized the kinetic resolution via
chiral Rh(III)-catalyzed allenylation of benzamides affording
tertiary 1-aryl-1-bulky alkyl (tert-butyl, adamantyl, cyclohexyl,
isopropyl)-2-alkynols in >90% ee;7d in the same year, Zhou and
coworkers demonstrated the kinetic resolution via Cu(I)-cata-

lyzed azide–alkyne cycloaddition affording tertiary 1-aryl-1-bis
(cyclohexyloxy)methyl (or fluoroalkyl)-2-alkynols in >90% ee.7e

On the other hand, due to the axial allenes serving as versatile

Scheme 1 Approaches to optically active tertiary propargylic alcohols
and tetrasubstituted allenes.
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precursors in organic transformations and material science,8

development of expeditious paths for constructing optically
active tetrasubstituted allenes has been receiving increasing
attention in the synthetic community. Representative catalytic
methods for axially chiral tetrasubstituted allenes9,10 are as
follows (Scheme 1b): (a) direct asymmetric functionalization of
trisubstituted allenes.9f–i These reported strategies are gener-
ally based on the formation of allenic carbanion analogues
through the deprotonation of trisubstituted allenes to react
with electrophiles, which demand the potential acidity of tri-
substituted allenes such as trisubstituted allenoates and alle-
namides. (b) Asymmetric 1,4-functionalization of 1,3-
enynes.9j–o It is restricted to terminal enynes or activated
enynes. (c) Chiral phosphoric acid (CPA) catalyzed conjugate
addition to quinone methides9p–r formed from specific sub-
strates including 4-hydroxylphenyl, 4-aminophenyl, or 2/3/6/
7-indolyl substituted propargylic alcohols. Therefore, catalytic
asymmetric formation of tetrasubstituted allenes, especially
from readily available chemicals, remains challenging.
Recently, with the help of the supporting ligand PPh3, we
reported a Pd-catalyzed kinetic resolution carboxylation reac-
tion of tertiary propargylic alcohols for a series of chiral 2,3-
allenoic acids11 and chiral tertiary propargylic alcohols12

under different reaction conditions. Here we wish to report the
identification of pre-prepared Pd((R)-DTBM-SEGphos)Cl2 as
the pre-catalyst, and both optically active tertiary propargylic
alcohols and tetrasubstituted 2,3-allenoic acids could be easily
accessed under mild reaction conditions with high efficiency
and enantioselectivities via a kinetic resolution process.
Furthermore, the synthetic potential of the current method
has been showcased by scale-up reactions and derivatization
reactions of optically active products.

Results and discussion
Optimization of reaction conditions

With Pd((R)-DTBM-SEGphos)Cl2 as the pre-catalyst, the reac-
tions of 2-phenyloct-3-yn-2-ol rac-1a were conducted and some
of the typical results are shown in Table 1. First of all, two sets
of control experiments were conducted by using Pd((R)-
DTBM-SEGphos)Cl2 as the catalyst instead of PdCl2 and a
chiral phosphine ligand under our previous optimal con-
ditions (entries 1 and 2):11,12 no products were observed at
−5 °C (entry 1), and the reaction only delivered (S)-2a in 23%
NMR yield at 25 °C (entry 2). Interestingly, the reaction exhibi-
ted a moderate efficiency at 15 °C and provided (S)-2a in 17%
NMR yield with 93% ee in the absence of the supporting
ligand, which suggested that the catalytic species involved in
the current Pd-complex-catalyzed reaction may be different
from that of the former protocols (entry 3). By prolonging the
reaction time to 36 hours, the yield of (S)-2a was slightly
improved with a higher yield of the enyne product (entry 4). To
our delight, 44% yield of (S)-1a with 90% ee was observed
when the reaction was carried out at 20 °C (entry 5). By apply-
ing 10 mol% of (PhO)2POOH, the desired product (S)-1a was

formed in 46% yield with 98% ee (entries 6–10). Thus, the
optimal reaction conditions of this Pd((R)-DTBM-SEGphos)Cl2-
catalyzed kinetic resolution carboxylation reaction for the opti-
cally active tertiary propargylic alcohols have been identified as
shown in entry 7 of Table 1. Under the same conditions, opti-
cally active tetrasubstitued 2,3-allenoic acid (S)-2a could also
be smoothly obtained in 45% yield with 91% ee by just short-
ening the reaction time to 12 hours (entry 8).

Substrate scope

With the optimized reaction conditions in hand, the generality
of this Pd((R)-DTBM-SEGphos)Cl2-catalyzed carboxylation reac-
tion was investigated. As shown in Scheme 2, a range of ter-
tiary propargylic alcohols containing electron-donating groups
(1b–1d) or electron-withdrawing (1e–1g) on the phenyl ring
furnished the corresponding products in good yields (33%–

45%) with excellent ee (91%–99%). Naphthyl-substituted ter-
tiary propargylic alcohol (1h) was compatible with the current
system. Moreover, the substrates employing aliphatic substitu-
ents (Cy and tBu) were also successfully resolved to afford the
desired products (S)-1i and (S)-1j in good yields with excellent
enantioselectivities. Besides nBu substitution at the R1 posi-
tion, a series of tertiary propargylic alcohols containing
different carbon chains ranging from C3 to C8 and versatile
functional groups, such as the halogen atom (Cl), cyano, and
allyl, were all suitable, affording the corresponding optically
active tertiary propargylic alcohol products (S)-1k–(S)-1s in
29–45% yields with up to 99% ee. For the R2 group, the methyl
substituent may also be replaced with ethyl to recover (S)-1t in
38% yield with 95% ee.

Next, we turned our attention to the substrate scope for the
formation of chiral 2,3-allenoic acids (Scheme 3). No obvious
steric effect was observed since the substrates containing the

Table 1 Optimization of reaction conditionsa

Entry x T (°C) t (h)

(S)-2a (S)-1a (E)-2a′ 1a′
Yield,b

eec (%)
Recovery,b

eec (%)
Yieldb

(%)
Yieldb

(%)

1d 20 −5 18 0, — 100, — — —
2d 2 25 18 23, 90 78, 30 — —
3 20 15 18 17, 93 78, 16 — 5
4 20 15 36 20, 94 65, 19 — 13
5 20 20 18 51, 85 44, 90 2 4
6 15 20 18 51, 84 41, 93 2 4
7 10 20 18 51, 82 46, 98 2 2
8 10 20 12 45, 91 54, 70 — —
9 5 20 18 55, 82 45, 96 — —
10 2.5 20 18 51, 85 51, 91 — —

a Reaction conditions: rac-1a (0.2 mmol), Pd((R)-DTBM-SEGphos)Cl2
(2 mol%), (PhO)2POOH (x mol%), and H2O (20 equiv.) in toluene
(1 mL) at T °C with a CO balloon unless otherwise noted. bDetermined
by 1H NMR analysis using dibromomethane as the internal standard.
cDetermined by HPLC analysis. d 20 mol% PPh3 was added.
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methyl group at the 2-, 3- or 4-position of the phenyl group
provided the targeted products (S)-2b, (S)-2c and (S)-2w in
good yields (37%–41%) with high ee (91%–92%). The sub-
strates bearing the functional groups OMe, Cl, Br, and CO2Me
on the phenyl ring also underwent the carboxylation reaction
efficiently, affording the corresponding products (S)-2d–(S)-2g
in good yields with more than 90% ee. 2-Naphthyl substituted
and 3-thienyl substituted propargylic alcohols were also well
tolerated (1h and 1x). Notably, the alkyl substituted substrates
at R3 could also be converted to the desired products (S)-2i and
(S)-2j smoothly. R1 with different carbon chains bearing a
variety of different functional groups (halide, cyano, allyl)
afforded the desired products (S)-2k–(S)-2s and (S)-2u in good
yields with no less than 90% ee. Furthermore, when R2 was an
ethyl group, the reaction also formed the chiral 2,3-allenoic
acids (S)-2t and (S)-2v with high enantioselectivities. However,
when R2 was Bn, the reaction was slow, affording 15% of (S)-2y
with 71% ee after 72 hours.

Gram scale reactions and synthetic applications

A gram-scale carboxylation reaction worked smoothly, deliver-
ing the corresponding chiral product (S)-1a in 42% yield with
92% ee (Scheme 4a); the 50 mmol scale reaction of rac-1a
afforded 4.24 g of (S)-2a in 36% isolated yield and 90% ee. To
exhibit the synthetic utility, several transformations of (S)-1a
have been carried out as shown in Scheme 4b: rhodium cata-

lyzed highly regioselective hydroarylation of (S)-1a with
boronic acid afforded the desired product (R,E)-3 in good
yields without erosion of ee;13 the reaction of (S)-1a with red-Al
afforded the allylic alcohol (R,E)-4 in 80% yield with 91% ee;14

(S)-1a could be selectively transformed to phenyl enol ether (R,
Z)-5 in 77% yield with 91% ee under gold catalysis.15

Moreover, the copper-catalyzed hydroboration of (S)-1a deli-
vered the useful intermediate (R,Z)-6 in 91% yield.16 On the
other hand, 1.4 g of rac-1f was smoothly converted to (S)-2f in
39% yield with 94% ee and 50% of (S)-1f was recovered in 76%
ee under the standard conditions (Scheme 4c). Subsequently, a
successful successive kinetic resolution of the recovered (S)-1f
to afford (R)-2f in higher yield (80%) and ee (97%) was realized
with Pd((S)-DTBM-SEGphos)Cl2. Employing this pair of enan-
tiomeric allenoic acids (S)-2f and (R)-2f, a series of transform-
ations were investigated. A CuCl-catalyzed cycloisomerization
reaction was realized affording (R)-7 in excellent yield without
the loss of ee.17 Furthermore, a Suzuki coupling reaction with
the estrone-derived boronic acid afforded 8 in good yield and
dr (>20 : 1).18 A cyclization reaction of (S)-2f catalyzed by PdCl2

Scheme 2 The substrate scope of chiral tertiary propargylic alcohols.
Reaction conditions: rac-1 (0.5 mmol), Pd((R)-DTBM-SEGphos)Cl2
(2 mol%), (PhO)2POOH (10 mol%), and H2O (20 equiv.) in toluene
(2.5 ml) at 20 °C with a CO balloon unless otherwise noted. s is the
selectivity factor. s = kfast/kslow = ln[1 − (1 − recovery)(1 + ee)]/ln[1 − (1 −
recovery)(1 − ee)]. Recovery is determined by 1H NMR analysis, and ee is
the enantiomeric excess value determined by HPLC analysis. a The reac-
tion was carried out with 12 mol% (PhO)2POOH.

Scheme 3 The substrate scope of chiral 2,3-allenoic acids. Reaction
conditions: rac-1 (0.5 mmol), Pd((R)-DTBM-SEGphos)Cl2 (2 mol%),
(PhO)2POOH (10 mol%), and H2O (20 equiv.) in toluene (2.5 ml) at 20 °C
with a CO balloon unless otherwise noted. s is the selectivity factor. s =
kfast/kslow = ln[1 − (1 − recovery)(1 + ee)]/ln[1 − (1 − recovery)(1 − ee)].
Yield is determined by 1H NMR analysis, and ee is the enantiomeric
excess value determined by HPLC analysis. a The reaction was carried
out with 4 mol% Pd((R)-DTBM-SEGphos)Cl2.
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in the presence of allyl bromide afforded allyl furanone (S)-9 in
83% yield with 93% ee.19 The reaction of (R)-2f with methyl
methoxylamine hydrochloride led to the formation of Weinreb
amide (R)-10 in 89% yield with 97% ee.20 In addition, the treat-
ment of (R)-10 with MeMgBr could afford chiral allenone (R)-
11 in 84% yield and with 97% ee.

SAESI-MS studies

To further reveal the process of this Pd((R)-DTBM-SEGphos)
Cl2-catalyzed reaction, solvent-assisted electrospray ionization

mass spectrometry (SAESI-MS) studies were carried out
(Scheme 5).21 Under standard conditions, the resulting
mixture was analyzed after stirring for 10 min. A signal at m/z
1320 was observed, which matched the m/z of the intermediate
[Pd((R)-DTBM-SEGphos)Cl]+ (calcd for C74H100

35ClO8P2
106Pd+:

1319.5611) MS-Int. I (Scheme 5b). The reaction of the catalyst
with the H+-activated tertiary propargylic alcohols, H2O, and
CO could afford the allenylpalladium intermediate (Sa)-MS-Int.
II (Scheme 5c, m/z 1470). Moreover, the carboxylation inter-

Scheme 4 The gram scale reactions and synthetic applications.
Reaction conditions: (1) (Cp*RhCl2)2 (2.5 mol%), (4-MeO2C)C6H4B(OH)2
(2.0 equiv.), AgBF4 (15 mol%), NaOAc (20 mol%), MeOH, rt, air, 12 h; (2)
red-Al (3.5 equiv.), Et2O, −78 °C, 1 min, rt, 6 h; (3) PPh3AuNTf2 (2 mol%),
PhOH (1.2 equiv.), K2CO3 (1.0 equiv.), CHCl3, 50 °C, 16 h; (4) B2Pin2 (1.3
equiv.), CuCl (15 mol%), PCy3 (18 mol%), NaOtBu (15 mol%), MeOH (2.0
equiv.), toluene, rt, 12 h; (5) rac-1f (5.0 mmol), Pd((R)-DTBM-SEGphos)
Cl2 (2 mol%), (PhO)2POOH (10 mol%), H2O (20 equiv.), toluene, CO
balloon, 20 °C, 11 h; (6) CuCl (4 mol%), MeOH, 60 °C, 1 h; (7) Pd(dppf )
Cl2 (10 mol%), boronic acid (1.1 equiv.), K2CO3 (2.0 equiv.), DMSO, 80 °C,
1.5 h; (8) PdCl2 (5 mol%), allyl bromide (6 equiv.), DMA, 50 °C, 18 h; (9)
Pd((S)-DTBM-SEGphos)Cl2 (2 mol%), (PhO)2POOH (10 mol%), H2O (20
equiv.), toluene, CO balloon, 20 °C, 16 h; (10) methyl methoxylamine
hydrochloride (1.3 equiv.), EDC·HCl (1.3 equiv.), NEt3 (1.3 equiv.), DMAP
(0.1 equiv.), DCM, 0 °C to rt, 3 h; (11) MeMgBr (4.0 equiv.), THF, −78 °C
to 0 °C, 1 h.

Scheme 5 The SAESI-MS studies. (a) SAESI-MS spectrum of the reac-
tion solution after stirring for 10 min; the inset SAESI-MS spectrum
shows the major signal from m/z 1315 to 1330, 1465 to 1480, 1510 to
1525 and 1525 to 1540; (b) SAESI-MS/MS spectrum of the complex ion
[Pd((R)-DTBM-SEGphos)Cl]+ (MS-Int. I) at m/z 1320; (c) SAESI-MS/MS
spectrum of the complex ion (Sa)-MS-Int. II at m/z 1470; (d) SAESI-MS/
MS spectrum of the complex ion (Sa)-MS-Int. III and/or (Sa)-MS-Int. III’
at m/z 1534.
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mediate (Sa)-MS-Int. III and/or (Sa)-MS-Int. III′ (Scheme 5d, m/z
1534) was also detected.

Combining the 1H NMR monitoring experiment (for details
see ESI Table 1†) and mass spectrometric studies, a catalytic
cycle was proposed as shown in Scheme 6. First, Pd((R)-
DTBM-SEGphos)Cl2 I would be reduced in situ to form the cat-
alytically active species Pd(0)((R)-DTBM-SEGphos) II. Then II
would react with the configuration-matched H+-activated pro-
pargylic alcohol (R)-1′ to afford the allenylpalladium intermedi-
ate (Sa)-MS-Int. II via stereo-defined anti-SN2′-type oxidative
addition. The subsequent reaction of (Sa)-MS-Int. II with CO
and H2O delivered the carboxylation intermediate (Sa)-MS-Int.
III and/or (Sa)-MS-Int. III′, which generated the product 2,3-
allenoic acid (S)-2a via reductive elimination. Moreover, the
slowly reacting propargylic alcohol (S)-1a could be recovered in
excellent ee.

Conclusions

In summary, a Pd((R)-DTBM-SEGphos)Cl2-catalyzed carboxyl-
ative kinetic resolution reaction of racemic tertiary propargylic
alcohols has been developed. Under this set of mild reaction
conditions, a variety of enantioenriched tertiary propargylic
alcohols and optically active tetrasubstituted 2,3-allenoic acids
were obtained in good yields with excellent ee (up to >99%).
Gram-scale reactions were easily realized and the optically
active tertiary propargylic alcohols and 2,3-allenoic acids could
be converted to a series of optically active functionalized pro-
ducts indicating the generality and practicality of this strategy.
Mass spectrometry experiments revealed the catalytic process.
Further studies in this topic are currently underway in our
laboratory.
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