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Computational analysis of organic radical species presents significant challenges. This study compares the

efficacy of various DFT and wavefunction methods in predicting radical stabilisation energies, bond dis-

sociation energies, and redox potentials for organic radicals. The hybrid meta-GGA M062X-D3(0), and

the range-separated hybrids ωB97M-V and ωB97M-D3(BJ) emerged as the most reliable functionals,

consistently providing accurate predictions across different basis sets including 6-311G**, cc-pVTZ, and

def2-TZVP.

1 Introduction

Computational chemistry is routinely used to help rationalise
and provide insight into the reactivity of organic radical
species.1–8 In the field of organic chemistry, experimentalists
are increasingly eager to accurately model and assess the
thermodynamic feasibility of organic radical reactions (as illus-
trated in Fig. 1). These reactions involve molecules containing
unpaired electrons, adding a layer of complexity to their study.
However, there are conflicting reports regarding the suitability
of common methods to study such open-shell species.9

Computationally demanding wavefunction-based methods,
which are normally highly reliable for closed-sell systems,
often suffer from complications regarding spin contami-
nation.10 Therefore, less computationally expensive DFT
methods are often employed due to their greater speed and
resilience to spin contamination. However, determining the
most suitable methods for describing radical species, particu-
larly when employing basis sets with lower computational
costs, can be challenging, especially for those new to the field.

One solution to this problem may be to avoid traditional
approaches entirely and instead apply machine learning (ML)
techniques to predict the outcomes of quantum mechanical
calculations. Indeed, while this field is still in its infancy, a few
pioneering papers have begun to explore the utility of ML to
predict properties related to radical species, such as bond dis-
sociation energies (BDEs).11–17 Although not the primary focus

of this paper, the potential of ML within the context of organic
radical chemistry should be acknowledged.

Turning our attention to quantum computational methods,
we sought to examine the performance of selected compu-
tational methods and basis sets in the context of organic syn-
thetic chemistry. A total of 12 different DFT functionals and
three basis sets were evaluated to find the best methods to
reliably calculate radical stabilisation energies (RSEs), BDEs
and redox potentials. These properties were selected due to
their significance in characterising both neutral and ionic
radical species, ensuring a broad analysis of radical behaviour.

The DFT functionals selected for this study were chosen
based on their prevalent use in organic chemistry,18 those
which performed best in the GMTKN55 dataset,19 and to
evenly cover each rung of Jacob’s ladder (see Table 1). Jacob’s

Fig. 1 An illustrative reaction process containing common reaction
steps of relevance to this work (electron transfer and hydrogen atom
transfer).
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ladder is a commonly used concept in computational chem-
istry to classify density functional approximations (DFAs)
based on the terms included in the exchange–correlation func-
tional.20 Additional terms are included at each rung (see
Table 1), which are thought to improve the accuracy of the
functional, while increasing the computational cost. In this
study, we focus only on the three highest rungs, since lower
rung functionals are rarely used for modelling molecular
systems.

While Goerigk et al.21 and Najibi and Goerigk22 describe
benchmarks against the GMTKN55 dataset, which covers
many different types of reactivity and properties, some pro-
perties or conclusions might be only marginally relevant to
experimental researchers looking to solely study radical
species. However, these benchmarks provide the foundation of
general guidelines such as the use of dispersion correction
schemes for DFAs.

In addition, recent studies by Nie, Zhang and co-workers
highlighted the importance of dispersion corrections to accu-
rately calculate the BDEs of X–NO2 bonds.23 Therefore, dis-
persion corrections were included for all functionals (see
Fig. 2), as demonstrated by Goerigk, Grimme, and co-workers
with the GMTKN55 benchmark dataset.21

The “gold standard” CCSD(T) and CCSD methods were
chosen for wavefunction-based methods. Considering that
most MP2 methods are known to suffer from severe spin con-
tamination, the orbital-optimised spin component-scaled MP2
(OO-RI-SCS-MP2) method developed by Neese and co-workers
was selected as this approach was shown to effectively elimin-
ate spin contamination from the wavefunction.24

The accuracy of a chosen computational method is inherently
influenced by the basis set used. Therefore, we evaluated the per-
formance of three moderately-sized and commonly used basis
sets for each method. These included the 6-311G** Pople,25,26 cc-
pVTZ Dunning,27,28 and def2-TZVP Ahlrichs basis sets.29

It is important to emphasise that, while the conclusions
drawn from this study are significant, they should not be
regarded as universally applicable. However, we aim for this
work to serve as a valuable resource and reference for research-
ers studying organic radical species, offering insights and gui-

dance in navigating the complexities of computational meth-
odologies in this field.

2 Computational methods

All quantum chemical calculations were performed using
ORCA 5.0.4,30 which was interfaced with xtb31 6.6.1 for execut-
ing GFN2-xTB32 calculations. The investigated methods are
comprised of twelve density functional approximations with
either non-local33,34 or atom-pairwise35,36 treatment of dis-
persion interactions, and three wavefunction-based methods.
The methods were invoked with the following keywords
RI-DSD-PBEP86 NL,37 RI-wB97X-238 D3BJ,39 wB97M-V,40

wB97M-D3BJ,22 CAM-B3LYP41 D3BJ,42 B3LYP43,44 D3BJ,35

B3LYP43,44 NL34, M062X45 D3ZERO,42 PBE046 D3BJ,36

B97M-V,47 B97M-D3BJ,22,47 M06L48 D3ZERO,42 OO-RI-SCS-
MP2,24,49 CCSD,50,51 CCSD(T).51 The dispersion parameters for
the ωB97X-2 functional were taken from Mehta et al.,39 while
the ORCA default parameters were used for all other methods.
Dispersion corrections were applied non self-consistently to
the final energy. The respective Coulomb-fitting auxiliary basis
sets (AuxJ) were used according to the ORCA default
settings.29,52 The resolution of identity (RI) approximation
with the respective auxiliary basis sets (AuxC) was used for the
MP2-based correlated methods.52–54 If no suitable auxiliary
basis set was available (e.g. for 6-311G**), either the AutoAux
keyword was invoked or no RI approximation was used with
the NORI keyword. Frequency calculations and thermostatisti-
cal corrections were performed within the quasi-rigid rotor
harmonic oscillator approximation.

2.1 Radical stabilisation energy

Radical stabilisation energies constitute a measure of the
stability of a radical species relative to a reference radical, typi-
cally the methyl radical (•CH3):

•CH3 þ R–H ! CH4 þ R• ð1Þ
The radical R• is more stable than the methyl radical, if the

reaction is exothermic. Therefore, the RSE is an indicator of

Fig. 2 Selection of the benchmarked functionals, basis sets, and dis-
persion corrections used in this study. The studied properties are high-
lighted in the centre of the knot.

Table 1 Density functional approximations used in this study grouped
by rung according to Jacob’s ladder. Each rung includes components of
the rungs below and additional terms as specified. The lower rungs of
Jacob’s ladder have been omitted as they are not included in this study

Rung Functional Component

Rung 5: Double hybrids DSD-PBEP86, ωB97X-2 Non-local MP2
correlation

Rung 4: Global and
range-separated hybrids

ωB97M, CAM-B3LYP,
B3LYP, B3LYP, M062X,
PBE0

Non-local Fock
exchange

Rung 3: Meta-GGA B97M, M06L Gradients of the
electron density and
kinetic energy
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the stabilising or destabilising effect of the substituent R on
the radical species and is often employed to estimate the reac-
tivity and formation of organic radical species.11

The performance of each method and the three different
basis sets was evaluated on the RSE43 dataset, which is
a subset of the GMTKN55 database.21,24 This dataset com-
prises carbon-centred radicals adjacent to various electron-
donating (EDG) and electron-withdrawing (EWG) groups. The
RSE43 geometries had been generated with B3LYP/TZVP,24 and
additional geometries were generated by re-optimising these
geometries with B3LYP-D3(BJ)/def2-TZVP, and GFN2-xTB for
this benchmark. Electronic single-point energies were com-
pared with published reference values obtained using the W1-
F12 protocol with B3LYP/TZVP geometries.21,55 All systems
were treated with the unrestricted formalism. The radical
stabilisation energy relative to the methyl radical (•CH3) were
calculated based on the homodesmotic reaction as defined in
eqn (1).

RSE ¼ EðCH4Þ þ EðR•Þ � ðEð•CH3Þ þ EðR–HÞÞ ð2Þ
The deviation of the calculated RSE (RSEcalc) from the refer-

ence value (RSEref ) is calculated as

ΔRSE ¼ RSEcalc � RSEref ð3Þ
Hence, the RSE is overestimated if ΔRSE > 0, and underesti-

mated if ΔRSE < 0.

2.2 Bond dissociation energy

The performance of each method was also evaluated against a
dataset comprised of 43 experimentally reported BDE values,56

including C–H, N–H, O–H, and C–N bonds adjacent to both
EDG and EWG groups. For wavefunction-based methods, all
species were described with the unrestricted formalism. For
DFT methods, only open-shell species were described with the
unrestricted formalism. Geometries were generated with
B3LYP-D3(BJ)/def2-TZVP and vibrational frequency calcu-
lations were performed at the same level (T = 298.15 K; ideal
gas p = 1 bar) to confirm that the obtained geometries were
local minima and to calculate thermochemistry corrections.
Electronic single-point calculations were performed on these
geometries using the selected method and these energies were
converted into enthalpies using the B3LYP-D3(BJ)/def2-TZVP
corrections. The DEFGRID3 keyword was added to the input of
all BDE calculations. BDEs were calculated based on three
reaction classes:

BDE ¼ ΔH°ðR•Þ þ ΔH°ð•HÞ � ΔH°ðR–HÞ ð4Þ
BDE ¼ ΔH°ðR•Þ þ ΔH°ð•NOÞ � ΔH°ðR–NOÞ ð5Þ
BDE ¼ ΔH°ðR•Þ þ ΔH°ð•NO2Þ � ΔH°ðR–NO2Þ ð6Þ

2.3 Redox potentials

The OROP dataset, a sub-dataset of the OROP313 benchmark
dataset, was used to assess the performance of DFT methods
to reproduce experimental redox potentials of small to

medium-sized organic molecules (5–82 atoms).57 This dataset
consists of 193 one-electron transfer systems in their oxidised
and reduced form. Wavefunction-based methods were not
assessed in this benchmark due to resource restraints.

Redox potentials were determined following the workflow
outlined by Neugebauer et al.:57 (i) obtain optimised geome-
tries for oxidised and reduced species; (ii) harmonic frequency
analysis for thermostatistical corrections; (iii) single point
energy calculations; and (iv) correcting for solvation energies.

The initial geometries for the oxidised and reduced species
were obtained from the original work,57 and were reoptimised
using B97-3c58 composite method and the GFN2-xTB semi-
empirical for consistency reasons. Additionally, the published
B97-3c geometries were reoptimised with B3LYP-D3(BJ)/def2-
TZVP. Thermostatistical corrections were obtained with each
of the three methods at room temperature (T = 298.15 K; ideal
gas p = 1 bar) using the Freq keyword, and the NumFreq True
setting in case of GFN2-xTB. The minima were confirmed by
the absence of imaginary frequencies greater than 10 i cm−1.

Single-point energies were obtained for each functional
using the def2-TZVP, 6-311G**, and cc-PVTZ basis sets. Those
systems containing iodine were only evaluated using the def2-
TZVP basis set since the other two basis sets do not describe
iodine basis functions. The solvation model based on density
(SMD)59 was employed in the single point calculations to
obtain corrections for the solvation energy for each benchmark
method, using acetonitrile or dimethylformamide (DMF) as
solvent. Those species with an odd number of electrons were
treated using the unrestricted scheme, while those with even
numbers of electrons were treated using the restricted formal-
ism. Redox potentials were calculated from the free energies
ΔrG°

RedOx and the absolute potential of the reference electrode
E°
AbsðRefÞ using the Nernst equation:

E°
RedOx ¼ �ΔrG°

RedOx

neF
� E°

AbsðRefÞ ð7Þ

E°
AbsðRefÞ ¼ E°

AbsðSHEÞ þ E°
AbsðSHE� SCEÞ ð8Þ

The free energy ΔrG°
RedOx was obtained by applying the ther-

mostatistical ΔG°
therm

� �
and solvation energy corrections

ΔδG°
solv

� �
to the adiabatic ionisation potential (IP):

ΔrG°
RedOx ¼ IPþ ΔG°

therm þ ΔδG°
solv ð9Þ

The absolute reference potential was adapted from the
primary sources which use the saturated calomel electrode
(SCE) as their experimental and computational reference.60,61

3 Results and discussion
3.1 Bond strengths – neutral radicals

Our investigations began by examining the ability of the
selected methods to accurately describe bond strengths, as
these values are often fundamental to the design of new syn-
thetic reactions. Considering how the prediction and interpret-
ation of experimental findings is a major goal of compu-
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tational chemistry, it was deemed pertinent to analyse data
sets based on both theoretical and experimental data.
Accordingly, two datasets were selected, both aimed at charac-
terising the strength of a particular bond:

(i) The established RSE43 dataset comprises 43 radical
stabilisation energies.21

(ii) A new dataset based on 43 experimentally determined
BDE values.56 Importantly, previous studies in this area high-
lighted that DFT methods might struggle to describe systems
with lone-pair–radical (three-electron) interactions,9 so the
dataset was selected with a bias towards such systems.

To evaluate the descriptive capabilities of the different
methods under study, reliance was placed on various statistical
metrics, including the Mean Absolute Error (MAE) and Mean
Error (ME), which were calculated based on reported experi-
mental or computational reference values. These metrics offer
valuable insights into the accuracy and precision of compu-
tational predictions, facilitating comparison of the different
methodologies.

The results from the RSE43 dataset are depicted in Fig. 3.
The wavefunction-based methods exhibited the lowest MAEs,
indicating their superior accuracy in predicting RSEs. The
density functionals, on the other hand, generally showed
overall higher MAEs compared to wavefunction-based
methods, with notable exceptions. The double-hybrid func-
tional ωB97X-2-D3(BJ) was one of the most accurate among the
different functionals covered, with errors below 1 kcal mol−1.
Furthermore, the hybrid meta-GGA functional M062X-D3(0)
demonstrated a notably low MAE. M062X-D3(0) therefore pro-
vides a favourable compromise between accuracy and compu-
tational cost, making it an attractive choice for practical appli-
cations. The range-separated hybrids also performed generally
well, except for CAM-B3LYP-D3(BJ). Global hybrid functionals
performed poorly, except as noted for M062X-D3(0). The least

accurate functionals belong to the third rung of Jacob’s ladder,
meta-GGA, which exhibited the highest MAEs consistently.
The performance of the semi-empirical GFN2-xTB method was
also briefly assessed, but the errors were significant.
Interestingly, the different approaches for treating dispersion
did not significantly impact the results and no clear pattern
emerged regarding one type of dispersion correction being
superior to another.

Notably, there was a discernible trend regarding basis sets.
Specifically, for both DFT and wave-function-based methods,
def2-TZVP consistently outperformed the other two sets. In
contrast, the smaller 6-311G** Pople basis set performed
worse across the board, except for the M06L-D3(0) meta-GGA
functional. Thus, to gain further insight into the performance
of each method, the error distribution using the def2-TZVP
basis set was investigated (Fig. 4). Here, errors ranged from
−12 to 2 kcal mol−1. From this analysis, it became evident that
density functionals tended to underestimate the RSE, while
single-reference-based dynamic correlation methods such as
MP2 or CC, seemed to overestimate the RSE. Additionally, out-
liers are observed within the dataset, appearing as either mild
or hard outliers, depending on their deviation from the mean
of the distribution. These outliers originate predominantly
from systems presenting unsaturations. In summary, while
methods such as M062X-D3(0) and B3LYP-D3(BJ)/NL exhibit
relatively few mild outliers, the presence of hard outliers is
mainly attributed to DSD-PBEP86-NL. As expected, GFN2-xTB
demonstrates the highest error distribution.

Next, unlike the gradual decrease in MAE observed when
climbing the rungs of Jacob’s ladder for the RSE43 dataset,
results from the experimental BDE dataset were far more
varied (Fig. 5). Here, the hybrid meta-GGA functional
M062X-D3(0) and range-separated hybrids ωB97M-V and
ωB97M-D3(BJ) displayed the smallest MAEs and outperformed

Fig. 3 MAE values for all methods under study against the RSE43 dataset. The reference values were obtained using the W1-F12 composite
method.21

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2024 Org. Biomol. Chem., 2024, 22, 6166–6173 | 6169

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/1
4/

20
25

 9
:2

3:
02

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ob00532e


the three wavefunction-based methods. The double-hybrid
functionals performed comparably to the global hybrid and
meta-GGA functionals—excluding PBE0-D3(BJ) and M06L-D3(0),
respectively.

Interestingly, single-reference-based dynamic correlation
methods, MP2 and CC, performed noticeably better with the

cc-pVTZ basis set, which is perhaps unsurprising, as the corre-
lation-consistent basis sets are often used in post-HF calcu-
lations. To further study the importance of the basis set in
these calculations, the BDE dataset was reanalysed using the
larger 6-311G(3df,3pd), cc-pVQZ Dunning, and def2-QZVP
basis sets for the top performing M062X-D3(0) functional
(Table 2). The MAE values were reduced from 1.83 to 1.66 kcal
mol−1 by adding more polarisation functions to the 6-311G
Pople basis sets (entries 1 and 2). However, the larger cc-pVTZ
and cc-pVQZ Dunning basis sets gave very similar results (1.72
and 1.74 kcal mol−1, respectively, entries 3 and 4). Finally,
increasing the Ahlrichs basis set from triple to quadruple zeta
slightly reduced the MAE from 1.86 to 1.79 kcal mol−1 (entries
5 and 6). It is important to note that these values are all very
close to the typical uncertainty ranges of the reported experi-
mental data, so further increasing the size of the basis set is
unlikely to improve the accuracy of these results.

3.2 Redox potentials – ionic radicals

Having explored the description of neutral organic radicals,
our attention turned toward ionic radical species. To achieve
this, redox potentials from the OROP dataset were identified
as excellent properties to benchmark the selected methods.

Fig. 4 Error distribution among different computational methods
employing the def2-TZVP basis set.

Fig. 5 MAE values for all methods under study against the experimental BDE dataset.

Table 2 Influence of the basis set on the MAEs for M062X-D3(0)
against the experimental BDE dataset

Entry Basis set MAE (kcal mol−1)

1 6-311G** 1.83
2 6-311G(3df,3pd) 1.66
3 cc-pVTZ 1.72
4 cc-pVQZ 1.74
5 def2-TZVP 1.86
6 def2-QZVP 1.79
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First, to investigate the impact of the geometry optimisation
method, geometries from the OROP dataset were reoptimised
using the B97-3c composite method, semi-empirical GFN2-
xTB, and B3LYP-D3(BJ). Redox potentials were then calculated
using each set of geometries and the 12 density functional
methods with the def2-TZVP basis set (Fig. 6, note that wave-
function-based methods were omitted due to resource
restraints). The differences between each geometry optimi-
sation method were minimal and the MAE values obtained for
all functionals remained within the range of 0.2 to 0.5 V. The
GFN2-xTB geometry optimisation method consistently exhibi-

ted the highest MAE value for each method, while the B97-3c
method consistently resulted in the lowest MAE values
throughout. However, the B97-3c and B3LYP-D3(BJ) methods
often resulted in nearly identical MAE values. Consequently,
both the composite method and B3LYP-D3(BJ) appear to offer
accurate structures within a comparable range, although it
should be noted that frequency calculations are less computa-
tionally expensive for B97-3c.

Next, the effect of the basis set was examined as in the pre-
vious section (Fig. 7). Pleasingly, the mean absolute errors
(MAEs) consistently remained below 1.0 V in all cases. On

Fig. 6 MAE of redox potentials obtained with 12 different functionals with the def2-TZVP basis set. Three different DFT-based methods were used
for structure generation and computation of thermostatistical corrections. They are compared for each functional. Errors are relative to the experi-
mental OROP dataset.

Fig. 7 MAE values for B3LYP-D3(BJ) def2-TZVP geometries and 12 DFT functionals with the 6-311G**, def2-TZVP, and cc-pVTZ basis sets against
the experimental OROP dataset.
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examination of different functionals, M062x-D3(0) exhibited
the lowest MAE, followed by the range-separated hybrids.
Interestingly, similar to the BDE analysis, the double hybrids
did not noticeably outperform the range-separated hybrids.
Except for PBE0-D3(BJ), both B3LYP-D3(BJ) and B3LYP-NL
global hybrids performed slightly worse than meta-GGA
functionals.

When examining the effect of the different basis sets, the
same trend noted for the RSE-43 dataset was observed.
Specifically, def2-TZVP resulted in the lowest MAEs for each
method, while 6-311G** resulted in the highest errors, most
notably for the double hybrids.

When comparing the different dispersion schemes used,
it can be noted that the atom-pairwise dispersion correction
yields lower errors than the non-local dispersion model for
the same functional (see Fig. 6 and 7). On average, the MAE
for the D3(BJ) corrected ωB97M and B3LYP functionals
using the def2-TZVP basis set is 0.03 V (≈0.7 kcal mol−1)
lower than for the same functionals using the non-local dis-
persion model. We attribute the influence of the dispersion
model on the MAE to the larger systems in this dataset. The
BDE and RSE43 datasets contain only small molecules (up
to 30 atoms), for which either dispersion model seems to be
accurate.

4 Conclusions

This benchmarking study enables selected DFT and wavefunc-
tion methods to be compared for their ability to describe
organic radical species through the prediction of RSEs, BDEs,
and redox potentials. For the prediction of RSEs, the hybrid
meta-GGA functional M062X-D3(0) was notable for its low
MAEs, which were comparable to much more computationally
expensive wavefunction and double-hybrid methods. For the
prediction of experimentally determined BDEs and redox
potentials, the hybrid meta-GGA functional M062X-D3(0)
exhibited the lowest MAEs of all methods studied. Consistent
with recent studies,12,13,62,63 it appears that M062X-D3(0) rep-
resents an excellent and resource-efficient starting point for
calculating the electronic energies and thermodynamic pro-
perties of organic radical species. After M062X-D3(0), the
range-separated hybrids ωB97M-V and ωB97M-D3(BJ) also per-
formed strongly for the prediction of RSEs, BDEs, and redox
potentials. It is also important to note that the MAEs for these
three recommended functionals were quite consistent regard-
less of the chosen basis set, which reinforces confidence in the
robustness of these methods.

While barrier heights/activation energies have not been
studied in this work, the performance of M062X-D3(0),
ωB97M-V, and ωB97M-D3(BJ) has already been tested against
other relevant data sets. For example, in the BH76 barrier-
height test set, the mean absolute deviation (MAD) values for
M062X-D3(0), ωB97M-V, and ωB97M-D3(BJ) were 2.34, 1.60,
and 1.41 kcal mol−1, respectively.21,22 Collectively, these find-
ings suggest that these functionals may be reliably employed

to model full reaction profiles and explore potential reaction
mechanisms.

In conclusion, it is important to stress that the rec-
ommended functionals will not provide a perfect universal
answer for every problem, but they may serve as valuable start-
ing points for the investigation of organic radical species.
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