
Organic &
Biomolecular Chemistry

PAPER

Cite this: Org. Biomol. Chem., 2024,
22, 1907

Received 12th January 2024,
Accepted 30th January 2024

DOI: 10.1039/d4ob00063c

rsc.li/obc

Carbones (–C2−–), carbenes (–C:–) and
carbodications (–C2+–) on the magnetic criterion†

Erich Kleinpeter * and Andreas Koch

The spatial magnetic properties, particularly the through-space NMR shieldings (TSNMRSs, the anisotropy

effect in 1H NMR spectroscopy) of carbenes, carbones and carbodication (carbo2+) compounds (with

and without stabilization by NMe2 π-donation) and those of a number of carbo2+ analogues have been

calculated using the GIAO perturbation method, employing the nucleus-independent chemical shift

(NICS) concept, and visualized as iso-chemical-shielding surfaces (ICSS) of various sizes and directions.

TSNMRSs prove the electronic structure of carbo2+ compounds to be completely different from those of

carbenes and carbones, preferring both the π-electron distribution and the structure of allenes/cumu-

lenes despite the central carbon atom being the most electrophilic centre.

Introduction

Carbenes are a class of bivalent carbon species with six
valence electrons (one σ-type lone pair and one vacant pz
orbital). In N-heterocyclic carbenes (NHCs) and cyclic(alkyl)
(amino)-carbenes (CAACs), the extreme stabilization by one or
two nitrogen atom(s) adjacent to the carbene electron-deficient
centre was already emphasized in the initial reports1,2 [the
electronegativity of the nitrogen atom(s) (−I substituent effect)
and the electron donation of the N-lone pair(s) (+M substituent
effect) stabilize the carbenes via ylide mesomeric contributor(s)
(Scheme 1)]:

The π-donation of the nitrogen lone pair(s) into the for-
merly empty pz orbital of the ylide carbon atom is proved
by dynamic NMR studies of the restricted rotation about
the partial C,N double bonds (Scheme 1) in non-cyclic bis
(dialkylamino)carbenes (NCACs): dependent on the substitu-
ents at nitrogen, the C,N bonds have variable but substan-
tial double bond character (ΔG# = 10.7 to 19.35 kcal
mol−1).3,4

Carbones bear comparable allene-like, carbene-like and
carbone-like resonance contributors, among them the one
with the central carbon atom carrying two negative charges
(Scheme 2).5–9

Besides allene-like and carbene-like mesomeric contribu-
tors (the latter in phosphorus allenes), a multiplicity of

carbone-like compounds (bent allenes, carbodiphosphoranes
and chalcogen-stabilized carbones) can be identified.

Finally, another carbon species was very recently discovered
by Bertrand and coworkers10 with a mesomeric contributor of
two positive charges on the central carbon atom (carbo2+,
doubly oxidized carbene); however, it can stabilize itself in a
number of allene-like, cumulene-like canonical structures, and
even a higher degree of multiple bond character on the central
carbon atom is suspected (Scheme 3).10

After unequivocally identifying the dominant mesomeric
contributors in carbenes (ylide structures)11 and carbones
(bent allenes, carbodiphosphoranes and chalcogen-stabilized
carbones) on the magnetic criterion,12 we were strongly inter-
ested in how the extremely conjugated carbo2+ structure
(Scheme 3) behaves under the same criteria. The main goal
hereby was to identify the predominant mesomeric contributor
and, from this, to assign the existing π-electron distribution
and thus the electronic structure of the novel carbo2+ com-
pound.10 This is the main object of this paper.

We employed our through-space NMR shielding (TSNMRS)
concept13–15 to qualify the spatial magnetic properties (actu-
ally, the anisotropy effects in 1H NMR spectroscopy) of the
studied species. Along this concept, the NICS values were cal-
culated for a grid of ghost atoms surrounding the molecules in
order to locate diatropic and paratropic regions around the
structures. The TSNMRSs were visualized as iso-chemical-
shielding surfaces (ICSS) and employed to qualify and quantify
the anisotropy effects of the studied compounds. While the
normally employed specifications of NICS values to quantify
e.g. (anti)aromaticity are theoretical items, the experimental
Δδ/ppm in proton NMR spectra are the molecular response
properties of TSNMRS values.16
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Results and discussion

Introducing the topic, the various ICSSs of the TSNMRS of
singly non-conjugated carbenes 1 (Me2C:), carbones 2 (Me2C

−

−) and the carbo2+ relative 3 (Me2C
+ +) have been calculated

(Scheme 4)17 and are shown in Fig. 1. While anisotropy effects
of the central carbon atom of carbenes and carbones are com-
parable in size and extension, the corresponding anisotropy
effect in the comparable carbon2+ compound 3 proves to be
completely different: the carbon2+ compound 3 is linear (see
also Table 1); the distinct shielding anisotropy effect above/

below plane in the angled carbenes and carbones disappeared
and are replaced by a paratropic area located at the central
carbon atom; the shielding ICSSs (familiar from carbenes and
carbones, Fig. 1) are shifted to the methyl carbon atoms.

For the dis-dimethylamino analogues in Fig. 2, stabilization
by conjugation proves to be an alternative: the conjugated car-
benes 4 stabilize themselves essentially,11 if not exclusively,5,6

via ylide structures and thereby significantly reduce the an-
isotropy effect of the central electron-deficient center; due to
the angled structure of the ylide, the dimethylamino substitu-
ents are slightly twisted from the common resonance plane

Scheme 1 Mesomeric contributors of NHCs, CAACs and NCACs.

Scheme 2 Mesomeric contributors of carbones.

Scheme 3 Mesomeric contributors of carbo2+ compounds.

Scheme 4 Dis-methyl- (1–3), dis-dimethylamino-carbene, -carbone and -carbo2+ (4–6) and allene (7).
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(Table 1). Conjugated carbone structures 5 also significantly
reduce the anisotropy effect but retain the characteristic ball-
like anisotropy effect of the central carbon atom (–C2−–).12 The
carbone molecule is also angled (Table 1), as the Me2N

+vC−–

NMe2 carbene analogue 4 is perfectly symmetric with the
vNMe2 moieties exactly orthogonal to each other, but the
NMe2 groups are structurally pyramidal; because of the already
existing doubly negatively charged central atom in carbones,
the π-donor effect of the amino groups can only develop to an
extent reduced accordingly.

The carbon2+ structure 6, finally, exhibits a completely
different behavior on the magnetic criterion: the distinctive
but not very strong deshielding zone around the central
carbon atom in 3 disappeared, but the linearity in 6 remained.
An allene-conform structure can be seen (see also Table 1),
which has CvN double bonds in-plane of the Cv(NMe2)2 frag-
ments, with the CvC(NMe2)2 moieties exactly orthogonal to
each other. In-plane of the completely planar C(sp)vC(NMe2)2
fragments, the anisotropic effect of the CvN double bonds
emerges clearly as in real allene structures (vide infra).

Fig. 1 Visualisation of the spatial magnetic properties (TSNMRSs) of dimethylcarbene 1, dimethylcarbone 2 and dimethylcarbon2+ 3 by different
ICSS of −0.1 ppm (red) deshielding and 5 ppm (blue), 2 ppm (cyan), 0.5 ppm (green) and 0.1 ppm (yellow) shielding.

Table 1 Geometry and NMR parameters of carbodications and comparable compounds, fully optimized at the MP2/6-311G(d,p) level of theory
without constraints

No.

Geometry NMR parameters

Bond length (Å) Bond angle
δ(13C)/ppm ICSS (+5, +2 and 0.5)/(Å)dC–C/C–N C–C–C/N−C−N

Me2C#
1 1.481 111.6° 820.0 2.0, 2.7 and 4.25
2 1.454 103.55° 152.0 1.8, 2.7 and 4.2
3 1.346 Linear 325.7 paratropic hole
(NMe2)2C#
4 1.354 116.1° 283.4 1.6, 2.1 and 3.0
5 1.339 145.0° 145.1 1.3, 1.7 and 2.3
6 1.245 Linear 189.8 1.0, 1.4 and 2.1
CH2vCvCH2
7 1.430 Linear 203.5 1.2, 1.5 and 2.1, but above centers

of CvC bonds: 1.5, 1.8 and 2.3
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These initial results of the model carbenes, carbones and
carbo2+ structures brings us significantly forward in answer-
ing the initial question: as Guy Bertrand and coworkers
suggested,10 due to the higher electronegativity of nitrogen
compared to carbon and the distinctive lone pair donation

(+M effect) of the amino groups, the positive charges are not
mainly located on the central carbon of the carbon2+ com-
pound 6 but on the neighboring nitrogen atoms in exact allene
structures; the direct comparison of the spatial magnetic pro-
perties with the allene CH2vCvCH2 7 in Fig. 3 proves to be

Fig. 2 Visualisation of the spatial magnetic properties (TSNMRSs) of dis-dimethylamino-carbene 4, dis-dimethylamino-carbone 5 and dis-dimethyl-
amino-carbon2+ 6 by different ICSS of −0.1 ppm (red) deshielding and 5 ppm (blue), 2 ppm (cyan), 0.5 ppm (green) and 0.1 ppm (yellow) shielding.

Fig. 3 Visualisation of the spatial magnetic properties (TSNMRSs) of dis-dimethylamino-carbon2+ (4) and allene CH2vCvCH2 (7) by different ICSS
of −0.1 ppm (red) deshielding and 5 ppm (blue), 2 ppm (cyan), 0.5 ppm (green) and 0.1 ppm (yellow) shielding.
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unequivocal. Especially crucial proves to be, at this point, the
characteristic anisotropy effect of the CvN and CvC double
bonds, respectively, of the two CvX(NMe2)2 (X = C, N) fragments.

Now to the recently synthesized carbo2+ structure 8,10 two
analogues (9, 10) and [4]cumulene 11 that are intended to
support the generality of the former conclusions from the
model compounds 1–7 on the magnetic criterion: the TSNMRS
values as ICSSs of different size and direction are given in
Fig. 4., and structural and magnetic data for 8–11 are given in
Table 2. The occurrence of allene-like structures of the
carbon2+ compounds 8–10 compared with the [4]cumulene
structure 11 is confirmed. This is particularly demonstrated by
the orthogonality of the terminal moieties. However, only 9 (as
6) is still linear; 8 and 11 deviate from linearity, with N–C–N at

168.5° and 163.2°, respectively, and C–N–C at 168.0° for both.
On the other hand, the spatial magnetic properties (TSNMRSs)
are even more convincing. As in [4]cumulene 11, the various
ICSSs of 8–10 are spread more or less evenly over the allene
(cumulene)-like double bonds and rise slightly towards the
end of the molecules [see ICSS (+0.1 ppm) yellow]; perpendicu-
lar to this (the other side of the molecule due to sp hybridiz-
ation of the central carbon atom), they fall off quickly. All in
all, the present allene(cumulene)-like structure is convincingly
depicted. The TSNMRSs of the CAAC molecule 8 are somewhat
confusing due to the highly substituted 5-membered rings, but
despite the extensive substitution, the present allene(cumu-
lene)-like structure and corresponding π-electron distribution
proves to be predominant (Scheme 5).

Fig. 4 Visualisation of the spatial magnetic properties (TSNMRSs) of carbodication 12+ (8), two analogues (9 and 11) and tetramethyl-[4]cumulene
(10) (from left) by different ICSS of −0.1 ppm (red) deshielding and 5 ppm (blue), 2 ppm (cyan), 0.5 ppm (green) and 0.1 ppm (yellow) shielding.

Table 2 Geometry and NMR parameter of carbodications and comparable compounds, fully optimized at the MP2/6-311G(d,p) level of theory
without constraints

No.

Geometry NMR parameters

Bond lengths (Å)
Bond angles

δ(13C)/ppm OthersdC1–N (Å) dC2–N(Å) N–C–—N/C2–N–C1

CvCvCvCvC
10 1.284 1.326 Linear 126.5 C2 (189.0); C3 (114.5)
CvNvCvNvC
8 1.225; 1.197 1.368; 1.349 168.5°;163.2° 138.6; 119.8 C3 (183.0); CAAC units almost orthogonal (79.6°)

1.361°;147.8°
9 1.210 1.311 Linear 245.4 vCMe2 units (85.2°)
11 1.223 1.336; 136.8° 168.0° 135.2 C3 (157.9); –CHvNMe2 units (83.4°)
4 1.245 — Linear 189.8 –NMe2 units orthogonal
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The choice between cumulative (suggested by Bertrand
et al.)10 and allene resonance contributors (Scheme 3) cannot
be decided only from the spatial magnetic properties: Wiberǵs
bond orders in 8 [C1–N1 (1.92), N1 –C2 (1.29) and C2–N2

(1.63)]10 and in the CAAC (ylide) [(1.53)11b (Scheme 1)] point
more urgently to a predominant allene resonance contributor.
The dominating, if not complete, CvN double bond of the
ylide structure of carbenes has been proven.3,4 Furthermore,
the 13C chemical shifts of the central carbon atom in 8, 9 and
11 also demonstrate the clear dependence on the presence of
the CAAC nitrogen in 8 (and of the terminal nitrogen atom in
11) and supports the presence of the allene-like resonance con-
tributor. Without the terminal nitrogen atoms, the 13C chemi-
cal shift of the central carbon atom is much further down field
(Scheme 6).

Despite the by-far predominant allene (cumulene)-like
mesomeric contributor, the canonical structure of the carbo2+
compound 8 with the corresponding vacant orbitals must be
detectably present, because the central C atom is chemically
confirmed (double bond formation, successful mono- and di-
nucleophilic attack)10 as the dominant electrophilic site of the
molecule.

Conclusion

The spatial magnetic properties, through space NMR shield-
ings (TSNMRSs, the anisotropy effects in 1H NMR spec-
troscopy) of carbenes, carbones and the recently synthesized
new class of carbo2+ compounds have been calculated and,
together with geometry and electronic structure, compared on
the magnetic criterion. While carbenes prefer the ylide
(N+vC−–), carbones, the carbone (C–C2−–C) and not the allene
(CvCvC) resonance contributor, carbo2+ compounds unequi-
vocally occur as allene (N+vCvN+) canonical structure, con-
firmed by geometry and 13C chemical shift data.

Author contributions
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The authors declare no conflicts of interest.

Scheme 5 Structures of the carbo2+ family 8–10 and [4]cumulene 11.

Scheme 6 13C Chemical shifts of the central carbon atom in 7–11.
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