
Nanoscale

PAPER

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2024, 16, 21960

Controlling TiO₂ photocatalytic behaviour *via* perhydropolysilazane-derived SiO₂ ultrathin shell†

Darya Burak, a,b Jae Hyun Han, a,c Joon Soo Han, In Soo Kim, d,e Md Abdur Rahman, for Joel K. W. Yang and So-Hye Cho to ** table to the same state of the sa

This study addresses the inherent photocatalytic activity of pure titanium dioxide (TiO₂), which limits its application as an industrial pigment. To mitigate this issue, a core–shell structure was employed, where TiO₂ cores were encapsulated within SiO₂ shells. Perhydropolysilazane (PHPS) was introduced as a superior SiO₂ precursor over tetraethylorthosilicate (TEOS), resulting in thinner and more uniform SiO₂ shells. Utilizing TiO₂'s photocatalytic properties, hydroxyl radicals facilitated the conversion of PHPS into SiO₂ via native Si–H bonds, eliminating the need for additional reducing agents. The formation of PHPS-derived TiO₂@SiO₂ core–shell nanoparticles demonstrated inherent self-limiting behaviour, ensuring uniform shell thickness regardless of PHPS concentration, simplifying the process for large-scale industrial applications compared to TEOS, which demands precise parameter control. Photocatalytic evaluations highlighted significant passivation of TiO₂ photocatalytic activity by PHPS-derived TiO₂@SiO₂ core–shell particles and TiO₂/SiO₂ thin films. Specifically, TiO₂@PHPS nanoparticles achieved 89–96% passivation compared to 30% with TiO₂@TEOS, while TiO₂/PHPS films degraded only 12% of Eosin B versus 80% with TiO₂ films. Moreover, both PHPS-derived nanoparticles and films maintained TiO₂'s inherent high whiteness and high-refractive-index optical properties, underscoring their suitability for applications in white paint production, cosmetics, and high-refractive-index coatings.

Received 31st August 2024, Accepted 4th November 2024

DOI: 10.1039/d4nr03566f

rsc.li/nanoscale

^aMaterials Architecturing Research Centre, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea. E-mail: sohyec@kist.re.kr ^bDivision of Nano & Information Technology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea

^cDisplay and Nanosystem Laboratory, College of Engineering, Korea University, Anam-ro 145, Seoul 02841, Republic of Korea

^dNanophotonics Research Centre, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea

^eKIST-SKKU Carbon-Neutral Research Centre, Sungkyunkwan University (SKKU), 25-2 Seonggyungwan-ro, Suwon 16419, Republic of Korea

^fDivision of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore

† Electronic supplementary information (ESI) available: Camera-captured images of PHPS solution after UV-C and UV-A irradiation (Fig. S1), HRTEM images of TiO2@PHPS nanoparticles prepared under UV-A-irradiated and non-irradiated conditions (Fig. S2), impact of UV-A irradiation time on formation of PHPSderived SiO2 shell: XRD (Fig. S3), SAED patterns (Fig. S4), FT-IR spectra (Fig. S5), TEM (Fig. S6) and HRTEM (Fig. S7) images, photocatalytic degradation graph (Fig. S8) of Eosin B by TiO2, TiO2@TEOS, and TiO2@PHPS nanoparticles, where TiO₂@PHPS nan-particles were synthesized under 1, 3, and 5 h UV-A irradiation, deconvoluted C1s XPS spectrum of TiO2@TEOS nanoparticles (Fig. S9), TEM images of ZnO@PHPS and TiO2 rutile@PHPS nanoparticles prepared via selfcatalyzed method (Fig. S10), colour characterization table of TiO2, TiO2@TEOS and TiO2@PHPS nanoparticles (Table S1), as well as TiO2 and TiO2/PHPS films (Table S2), GIXRD patterns (Fig. S11), ellipsometry-measured refractive indices (Fig. S12), pencil hardness and cross-cut adhesion test results (Table S3), camera-captured and microscopic images of TiO2 and TiO2/PHPS films after pencil hardness (Fig. S13) and cross-cut adhesion (Fig. S14) tests. See DOI: https://doi.org/10.1039/d4nr03566f

Introduction

TiO₂ nanoparticles have gained significant attention due to their exceptional chemical stability, optical properties, and photocatalytic activity. 1-3 TiO2 widespread applications in various industries, including paints,4 plastics,5 cosmetics,6 foods, ⁷ solar cells, and high-refractive-index coatings, ⁸ attest to their versatility. For instance, TiO2 finds use as a UV absorber9 in sunscreens, foundations, and other makeup products, where it acts as a physical barrier that reflects and scatters UV radiation away from the skin. In white paint production, especially for applications such as car exteriors, the use of TiO₂ as a coating is also crucial due to its high refractive index $(n \ge 2.4)^{10}$ Nevertheless, the unrestricted production of free radicals when TiO2 is exposed to UV radiation inadvertently raises concerns. 11,12 As a photocatalytic material, TiO2 generates highly reactive radicals, such as 'OH and 'O2", which can deteriorate organic pigment coatings and cause skin irritation, 13 highlighting the need to control and passivate its photocatalytic activity.

To control photocatalytic activity of TiO₂ while maximizing its refractive characteristics, a thin shielding shell is essential. While too thin shells (<1.4 nm) cannot be effective and rather enhance TiO₂ photocatalytic properties, ¹⁴ overly thick shells could lower the overall refractive index, rendering TiO₂ high-

Nanoscale Paper

refractive-index properties ineffective. Hence, it is essential to achieve an optimal balance in shell thickness to preserve both the desired refractive characteristics and effective passivation of TiO₂ photocatalytic activity.

Traditionally, a barrier shell is applied to the TiO2 core to passivate its photocatalytic activity, and silica is the predominant shielding material due to its cost-effectiveness and facile fabrication methods. 15-19 One of the most commonly used methods, the Stöber method, 20-22 is renowned for producing SiO₂ nanoparticles from TEOS (tetraethylorthosilicate). Nevertheless, the Stöber method is associated with a slow reaction rate requiring prolonged reaction times. Furthermore, it has been reported that SiO2 shells synthesized from TEOS must be sufficiently thick to effectively passivate the TiO₂ photocatalytic activity, owing to the microporosity inherent to TEOS-derived SiO₂ shells caused by ethanol used as the solvent. 16,23,24 As mentioned above, a thick silica shell can lead to a reduction in the overall refractive index of TiO2, which, in turn, diminishes its high-refractive-index properties essential for commercial applications.

To address the challenges associated with achieving effective passivation of TiO₂ photocatalytic activity while using a thinner silica coating, we fabricated TiO₂@SiO₂ core-shell particles using PHPS (perhydropolysilazane) as an alternative to TEOS. PHPS, an inorganic polymer containing Si–N, Si–H, and N–H bonds, undergoes a transformation into silica when exposed to atmospheric moisture at relatively low temperatures (<200 °C).^{25–27} Compared to TEOS, PHPS offers coatings of higher density,²⁸ reduced crack formation, and lower porosity. Despite these advantages, PHPS has been far less frequently reported as a silica shell precursor in literature.

Our method utilizes the photocatalytic properties of TiO₂ under UV light to convert PHPS into silica *via* hydroxyl radicals inherent to TiO₂, achieving enhanced control over SiO₂ agglomeration and allowing the deposition of a thinner, uniform silica shell on the TiO₂ core. This improved process resulted in effective photocatalytic passivation by the PHPS-derived TiO₂@SiO₂ core–shell particles and SiO₂/TiO₂ thin films, as demonstrated through photocatalytic degradation reactions with Eosin B. Colourimetric measurements showed that the high-refractive-index and whiteness of TiO₂ were not affected by the silica coating. Consequently, this approach offers superior photocatalytic passivation and UV protection, making it suitable for cosmetics and paints, and applicable in high-refractive-index optical coatings for lenses and mirrors.

Experimental

Materials

Titanium dioxide (TiO_2) powder was prepared from the commercial TiO_2 P25 powder (nanoparticle mean size ~20 nm) purchased from Sigma Aldrich (Darmstadt, Germany). ZnO nanoparticles (NPs) were synthesized *via* light-assisted sulfidation of ZnO NPs. ²⁹ Rutile TiO_2 was purchased from Junsei Chemical Co. Ltd (Tokyo, Japan). Perhydropolysilazane (PHPS)

(Product Number: CISD-15001, 18.6 wt% in dibutyl ether) was sourced from Samsung SDI (Yongin-si, South Korea). Tetraethylorthosilicate (TEOS) and Eosin B were purchased from Alfa Aesar (Ward Hill, MA, USA). Dibutyl ether (DBE), ethyl alcohol (EtOH, 95%), and isopropyl alcohol (IPA, 99.5%) were obtained from Daejung Chemicals & Metals Co. Ltd (Daejung, South Korea). Aqueous ammonia solution (28 wt% NH4OH) and titanium butoxide (TBOT, 97%) were purchased from Junsei Chemical Co. Ltd (Tokyo, Japan) and Sigma Aldrich (Darmstadt, Germany), respectively. These compounds were used as received without further purification. Deionized water (DI, 14.6 M Ω cm, Millipore Milli-Q lab water system) was used throughout all experiments.

Fabrication of TiO₂@SiO₂ core-shell nanoparticles

To prepare the PHPS-derived TiO₂@SiO₂ nanoparticles, 200 mg of TiO₂ P25 powder was homogeneously dispersed in 20 ml of DBE by sonication for 30 min. Then, the solution was stirred vigorously under UV-A irradiation (365 nm) for 1 h to activate the TiO₂ nanoparticles. Subsequently, a PHPS solution (0.5, 1, and 2 ml) was injected into the TiO₂ nanoparticles solution, and the mixture was sonicated in a water bath under UV-A irradiation for 1, 3 and 5 h. The resulting nanoparticles were separated from the solution *via* centrifugation (10 000 rpm, 15 min) and washed 3 times with DBE. The particles were then dried in a vacuum oven at 150 °C for 3 h. Throughout the subsequent text, the samples synthesized with PHPS will be referred to as TiO₂@PHPS and PHPS-derived TiO₂@SiO₂ core–shell nanoparticles.

In a control experiment, PHPS alone was exposed to UV light. Under UV-C irradiation (254 nm), PHPS showed an increase in haze level, indicating silica formation, confirming that PHPS absorbs UV-C light. However, under UV-A light, PHPS showed no reaction, signifying no transformation into silica. This indicated that silica formation under UV-A light results from the activation of TiO₂, highlighting the self-catalysed coating phenomenon of TiO₂ particles in converting PHPS to SiO₂ (Fig. S1†).

For the synthesis of the TEOS-derived TiO2@SiO2 nanoparticles, 100 mg of TiO2 P25 powder was homogeneously dispersed in 140 ml of EtOH by sonication for 30 min. Then, a TEOS solution (0.7, 1, and 1.4 ml) containing 9 ml of DI water and 3 ml of NH₄OH (added dropwise) was injected in the TiO₂ nanoparticles solution and stirred vigorously for 2 h. The resulting core-shell nanoparticles were separated from the solution by centrifugation (10 000 rpm, 15 min) and washed 3 times with ethanol. The particles were then dried in a vacuum oven at 80 °C for 3 h. Throughout the subsequent text, the samples synthesized with TEOS will be referred to as TiO2@TEOS and TEOS-derived TiO₂@SiO₂ core-shell nanoparticles.

Fabrication of PHPS-derived SiO2/TiO2 thin films

The PHPS-derived SiO₂/TiO₂ films were fabricated on Si wafer substrates. The substrates were ultrasonically cleaned in EtOH, IPA, and DI water, followed by drying under a stream of argon.

Paper

Further elimination of surface contaminants was achieved through UV/ozone cleaning using a UV Ozone Cleaner UVC-30S (Jaesung Engineering Co., South Korea).

TiO₂ films were deposited on the Si wafer substrates via spin-coating at 3000 rpm for 30 s. TBOT was used as a precursor and was dissolved in EtOH in a 1:7 ratio. Subsequently, the TBOT-deposited films were dried on a hot plate at 300 °C for 30 min to remove any residual EtOH solvent and initiate the hydrolysis process, resulting in evaporation of butoxide groups and formation of amorphous TiO2 films. The amorphous films were then crystallized to anatase TiO2 by annealing in a furnace at 500 °C for 15 min.

To subsequently deposit a PHPS-derived SiO2 film, the PHPS precursor solution was first dissolved in DBE in a 1:4 ratio. The TiO2 film was then placed at the bottom of a Petri dish, and the prepared PHPS solution was poured over it to ensure complete coverage. The reaction system was then exposed to UV-A irradiation for 10 min. After the deposition, the PHPS-derived films were dried on a hot plate at 200 °C for 1 h. Throughout the subsequent text, these samples will be referred to as TiO2/PHPS films.

Photocatalytic activity investigation

The photocatalytic activity of the TiO2@SiO2 core-shell particles was evaluated through the photodegradation of Eosin B. A 10 mg sample was dispersed in 20 ml of Eosin B solution $(4.5 \times 10^{-6} \text{ mol L}^{-1})$, kept in darkness for adsorption-desorption equilibrium and irradiated with a 365 nm UV-A lamp (Sankyodenki, Japan) for 5 to 7 h. Absorbance at 517 nm was measured to determine degradation using a calibration curve. For TiO2/SiO2 thin films, 2 ml of Eosin B solution was applied to 2.5 × 2.5 cm samples, irradiated for 3 h, and the absorbance was measured similarly.

Characterization

The composition analysis of the TiO2@TEOS and TiO2@PHPS core-shell nanoparticles was carried out using Fourier-transform infrared (FT-IR) spectroscopy with a scan range of 4000-400 cm⁻¹ in reflectance mode (Bruker ALPHA II Compact FT-IR Spectrophotometer, USA). Morphology of the core-shell nanoparticles and cross-section morphology of the TiO₂/SiO₂ thin films were examined by transmission electron microscopy (TEM) (FEI Tecnai F20 G2, USA). Cross-section samples were prepared utilizing the focused-ion-beam (FIB) technique. Composition and bonding states in the TiO2@SiO2 core-shell particles were determined via X-ray photoelectron spectroscopy (XPS) (Nexsa photoelectron spectrometer, Thermo Fisher Scientific, USA). The phases of SiO₂ and TiO₂ were identified through X-ray diffraction (XRD) analysis (Bruker DE/D8 Advance, USA).

In photocatalytic activity experiments, the concentration of Eosin B solutions was determined from UV-vis absorption spectra using a UV-vis spectrophotometer (Varian Cary100, Agilent Technologies, USA). The whiteness and high-refractiveindex properties of the TiO2@SiO2 nanoparticles and TiO2/ SiO₂ thin films were assessed through colourimetric measure-

ments. Reflectance spectra were measured with a spectrophotometer (Konica Minolta CM 3600A, Japan) equipped with a white xenon light source with a 4 mm diameter beam. Colour parameters were derived using Spectra-Magic NX Colour Data Software (Konica Minolta)³⁰ and represented in the CIELAB $(L^*a^*b^*)$ colour space, where L^* is brightness, and a^* and b^* are primary colours of human vision (red, green, blue, and yellow). Additionally, reflectance spectra of the TiO₂/ PHPS thin films were simulated for comparison with measured data. The films' refractive indices were determined via ellipsometry measurements and employed to simulate the reflectance spectra and colours. This simulation involved the modulation of multilayered thin films with known thicknesses and reflective indices of the TiO2 and SiO2 layers, using the characteristic matrix calculation in the OpenFilters Software. 31

Results and discussion

TiO2@SiO2 core-shell nanoparticles synthesis by passive (TEOS) and self-catalyzed (PHPS) methods

In this study, TiO2@SiO2 core-shell nanoparticles were synthesized via two different methods to assess their efficacy in passivating the photocatalytic activity of TiO2. Fig. 1 illustrates the formation process of the TiO2@TEOS and TiO2@PHPS nanoparticles. The synthesis method employing TEOS, referred to as the 'passive method', was adapted from the Stöber method detailed in prior literature. 20-22 By this method, silica shells are formed through the hydrolysis and condensation of TEOS mixed with water and NH4OH in an EtOH solution, with NH₄OH serving as a catalyst.

By another method proposed in our study, 'self-catalysed method', SiO2 shells are synthesized from PHPS, making advantageous use of the intrinsic TiO2 photocatalytic properties. The abundant Si-H groups in PHPS³² render it highly reactive with hydroxyl radicals formed on the surface of TiO2 by irradiation with UV light. The generated radicals catalyse PHPS hydrolysis, leading to the formation of short-lived silanol groups. Ultimately, condensation and cross-linking reactions result in the formation of a silica shell.

When TiO2 is activated under UV light, hydroxyl radicals are generated around the TiO2 core, 33 and silica formation proceeds uniformly around it. Thus, this process can prevent SiO₂ aggregation and provide ultrathin uniform shells. To validate this, Fig. S2† shows HRTEM images of TiO2@PHPS nanoparticles prepared under both UV-irradiated (1, 3, and 5 h irradiation) and non-irradiated conditions. In non-irradiated samples, the shell state was not smooth, along with observed aggregation phenomena. On the other hand, in the irradiated samples, where TiO2 particles were activated under UV-A light (365 nm), the hydroxyl radicals generated via photocatalysis facilitated better adherence of silica particles to the TiO2 core, resulting in a smooth and uniform shell without any aggregation.

Additionally, we conducted preliminary experiments to determine the optimal duration of UV-A light irradiation

Nanoscale Paper

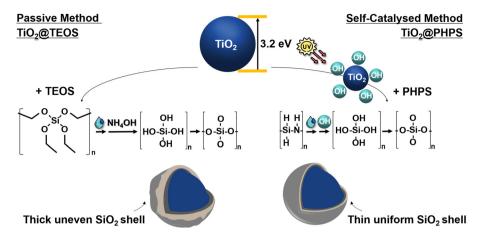


Fig. 1 Schematic representation of the TiO2@TEOS core-shell nanoparticles prepared via 'passive method', and the TiO2@PHPS core-shell nanoparticles prepared via 'self-catalysed method'.

required for the complete formation of the PHPS-derived SiO₂ shell. The irradiation time was varied from 1, 3 to 5 h. It was determined that an irradiation time of 3 h was optimal for sufficient conversion of PHPS into SiO2 and formation of a uniform thin film. Detailed description of this experiment is provided in the ESI (Fig. S3-S8†).

The XPS analysis was conducted to assess the structure of the 0.7 mL TiO2@TEOS and 1 mL 3 h irradiated TiO2@PHPS core-shell nanoparticles with similar thicknesses (2 nm) by examining peaks of interest, namely O 1s, Ti 2p, Si 2p, and C 1s (Fig. 2). For the uncoated TiO₂ particles, the O 1s spectrum (Fig. 2b) exhibited two discernible peaks at binding energies of 531.5 and 529.6 eV, corresponding to absorbed water molecules and O2 ions within the TiO2 lattice (Ti-O), respectively. 34,35 Conversely in the TiO2@PHPS nanoparticles, the O 1s deconvoluted spectrum displayed three peaks at 533.5, 532.7, and 530.0 eV, while in the TiO2@TEOS nanoparticles, these peaks appeared at 533.2, 532.6, and 530.0 eV. The peak at 530.0 eV indicated O₂ ions within the TiO₂ lattice (Ti-O), 35,36 while peaks at 532.7/532.6 eV were associated with the O₂⁻ in the SiO₂ lattice. The peaks at 533.5/533.2 eV were attributed to the Si-OH groups and adsorbed water. 14,35,36 The shift from 529.6 eV to 530.0 eV of the Ti-O bond suggested successful deposition of SiO2 onto TiO2, forming Ti-O-Si bonds. 14,37,38 Furthermore, a significant decrease in the intensity of the Ti-O bond in the TiO2@PHPS and TiO2@TEOS nanoparticles supported the evidence that the SiO2 shell successfully formed on the surface of TiO₂.³⁶

For the Ti 2p peak (Fig. 2c), the uncoated TiO2 nanoparticles exhibited two peaks at 458.4 and 464.1 eV, corresponding to Ti⁴⁺ 2p_{3/2} and Ti⁴⁺ 2p_{1/2}, respectively.^{35,39} In contrast, both TiO2@PHPS and TiO2@TEOS nanoparticles showed shifted peaks at 458.6 and 464.4 eV, and 458.5 and 464.3 eV, indicating an increase in binding energy of the Ti 2p inner shell electrons due to the SiO₂ shell, affirming the Ti-O-Si bond formation. The reduction in electron density near the Ti atom resulted from the higher electronegativity of Si interacting with O around the Ti atom. This, in turn, weakened the shielding effect, leading to an increase in the binding energy of the TiO₂@SiO₂ core-shell nanoparticles.³⁶ Furthermore, it was observed that the peaks of the TiO2@PHPS nanoparticles shifted slightly more than those of the TiO2@TEOS nanoparticles. This difference suggests a stronger Ti-O-Si bond in the TiO2@PHPS nanoparticles, likely due to hydroxyl radicals inducing the formation of the SiO₂ nanoparticles directly on the surface of TiO₂ nanoparticle core. Conversely, in the case of TEOS, the formation is passive, where the adherence was primarily due to a weaker interaction between the TiO₂ core and the SiO₂ nanoparticles. Valence-band XPS (VB XPS) analysis of the TiO2, TiO2/TEOS, and TiO2/PHPS films further confirmed the formation of the Ti-O-Si bond.40 As shown in Fig. S9a,† the valence band maximum of the TiO₂/PHPS film shifted to 3.6 eV after SiO₂ layer formation, from 2.1 eV for the TiO₂ film, while no significant shift was observed for the TiO₂/ PHPS film. This reinforces that the 'self-catalysed method' yields stronger Ti-O-Si bonding.

The sharp peak at 103.4 eV in the Si 2p spectrum (Fig. 2d) of the TiO2@PHPS nanoparticles confirmed the presence of SiO₂ on the TiO₂ surface. 41 However, in the case of the TiO2@TEOS nanoparticles, the peak appeared broader and slightly shifted, prompting a detailed analysis of the spectrum. In the TiO2@TEOS nanoparticles, the Si 2p spectrum revealed two distinct peaks at 103.4 and 102.5 eV, corresponding to SiO₂ and SiO_x-C, respectively. 42 This led to the conclusion that in the case of the TEOS-derived TiO2@SiO2 nanoparticles, carbon was still present due to the organic origin of TEOS. This was further supported by studying the C 1s peak of the TiO2@TEOS nanoparticles.

For the TiO₂@TEOS nanoparticles, the full scan survey XPS spectrum (Fig. 2a) demonstrated a significantly high peak of C 1s, indicating a substantial carbon component remaining from the organic origin of TEOS after its conversion into SiO₂ during the nanoparticle fabrication process. The presence of these carbon components (Fig. S9b†) in the TiO₂@TEOS nanoPaper Nanoscale

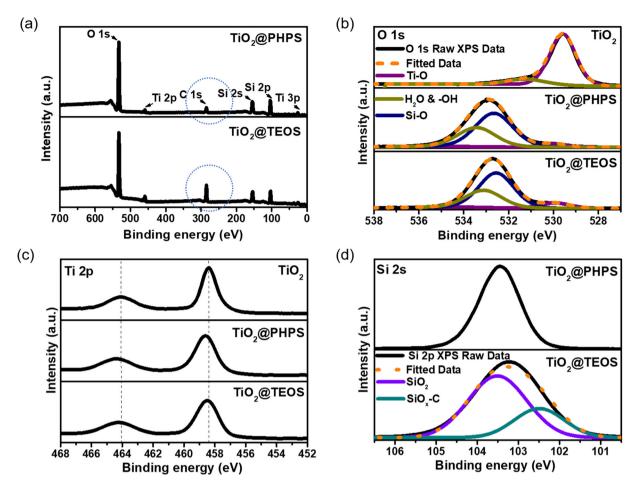


Fig. 2 (a) Full scan survey XPS spectra of 0.7 mL $TiO_2@TEOS$ and 1 mL 3 h irradiated $TiO_2@PHPS$ core-shell nanoparticles. Narrow-scan XPS spectra of (b) deconvoluted O 1s, (c) $TiO_2@TEOS$, and $TiO_2@PHPS$ core-shell nanoparticles.

particles was speculated to affect the purity and whiteness of the nanoparticles. In the case of TiO_2 @PHPS nanoparticles, small peak of C1s was likely due to hydrocarbon impurities during solvent contamination.

Self-catalysed method: effect of precursor concentration on SiO₂ shell thickness

Since the irradiation time of 3 h was determined to be optimal for sufficient conversion of PHPS into SiO₂ as detailed in the previous section, the irradiation time was maintained at 3 h for all TiO₂@PHPS nanoparticles in this experiment. In this experiment, we aimed to demonstrate that the self-catalysed formation of the TiO₂@PHPS nanoparticles is an inherently self-limiting process. This means that irrespective of the PHPS pre-cursor concentration, only a fixed amount of PHPS can interact with the hydroxyl radicals on the TiO₂ surface. Consequently, any excess PHPS remains unreacted and is removed from the system. This self-limiting behaviour leads to the formation of uniform shells with a constant thickness of the TiO₂@PHPS nanoparticles. In contrast, the shell thickness

of ${\rm TiO_2}$ @TEOS nanoparticles is highly dependent and varies with the concentration of the TEOS precursor.

As can be inferred from FT-IR measurements presented in Fig. 3a, the intensity of the Si-O-Si bond has undergone a substantial increase with the increase in TEOS concentration. Thus, it was confirmed that the TEOS-derived SiO₂ shells are typically greatly influenced by the concentration of TEOS (Fig. 3b), necessitating tedious control over the experimental parameters. On the other hand, FT-IR spectra of the TiO₂@PHPS nanoparticles revealed no change in the intensity of the Si-O-Si bond with different PHPS concentrations (Fig. 3c), suggesting that the thickness of the SiO₂ shell did not undergo any substantial changes. The following suggests that a certain amount of PHPS can come into contact with hydroxyl radicals of TiO2, thus meaning that the excess amount of PHPS would stay unreacted and discarded from the system after the reaction. The following postulation was supported by the HRTEM measurements presented in Fig. 3d and Fig. S10,† whereupon the thickness of the TiO₂@PHPS nanoparticles remained at 2 nm regardless of the PHPS concentration variation.

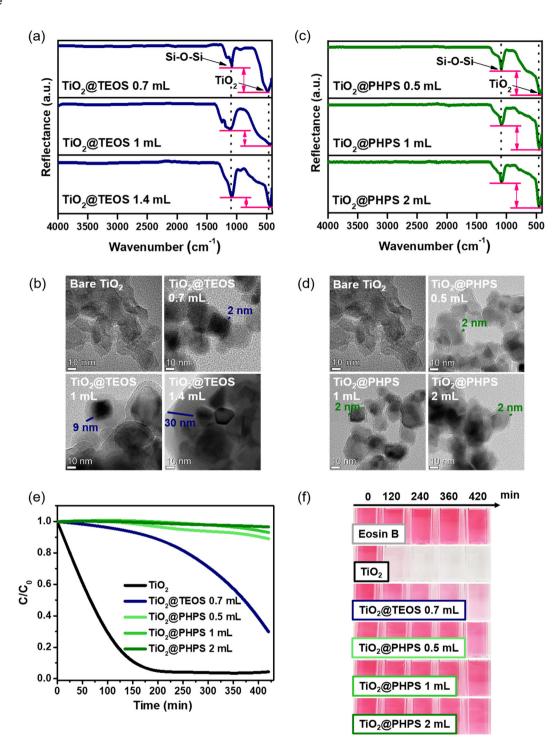


Fig. 3 FT-IR spectra of the (a) 0.7, 1, and 1.4 mL TiO₂@TEOS and (c) 0.5, 1, and 2 mL TiO₂@PHPS core-shell nanoparticles. HRTEM images of the (b) TiO₂, 0.7, 1, and 1.4 mL TiO₂@TEOS and (d) 0.5, 1, and 2 mL TiO₂@PHPS core-shell nanoparticles. (e) Photocatalytic degradation of Eosin B as a function of time by the TiO₂, 0.7 mL TiO₂@TEOS and 0.5, 1 and 2 mL TiO₂@PHPS core-shell nanoparticles. (f) Camera-captured images of the Eosin B solution following its photocatalytic degradation by the TiO₂, TiO₂@TEOS and TiO₂@PHPS core-shell nanoparticles under UV-A irradiation (365 nm).

The PHPS-derived $TiO_2 @SiO_2$ nanoparticles, prepared using varying concentrations of PHPS, demonstrated comparable passivation abilities of photocatalytic TiO_2 , reaching as high as 89–96% passivation observed after 420 min of Eosin B

photodegradation reaction (Fig. 3e and f). Moreover, all PHPS-derived nanoparticles exhibited superior passivation performance compared to those derived from TEOS (0.7 mL, 2 nm thickness), which only reached 30% passivation.

Paper Nanoscale

For proof-of-concept, we have also demonstrated that other photocatalytic materials can be used in the self-catalysed method to successfully fabricate a SiO₂ shell. Fig. S11a† demonstrates the uniform SiO₂ shell on the ZnO nanoparticle core by reacting photocatalytic ZnO and PHPS. The self-catalysed method was effective because ZnO exhibits photocatalytic activity under UV-A irradiation. On the other hand, we have also demonstrated that this method will not be applicable to rutile TiO₂ since the photocatalytic activity of rutile under UV-A irradiation is generally known to be weaker com-pared to anatase. A3,44 Hence, the self-catalysed coating was not dominant, and, as can be observed from TEM images in Fig. S11b,† SiO₂ particles aggregated segmentally on the surface of the TiO₂ core.

Whiteness assessment of TiO2@PHPS core-shell nanoparticles

In order to assess the practical suitability of the TiO_2 @PHPS core–shell nanoparticles for the white paint production, the colourimetric properties of the fabricated nanoparticles were analysed. According to the Hunter Whiteness Formula, ⁴⁵ a higher value of L^* (lightness) indicates greater whiteness in the sample. Additionally, the closer the values of a^*b^* parameters are to 0, the whiter the sample appears.

Analysis of the CIELAB a^*b^* diagram depicted in Fig. 4 revealed that a^*b^* parameters of the TiO₂@PHPS nanoparticles were generally closer to those of bare TiO₂. This suggested superior preservation of whiteness parameters in the TiO₂@PHPS nanoparticles compared to TiO₂@TEOS, where the a^*b^* parameters were more widely scattered on the diagram. Further insights from Table S1† indicated that the TiO₂@PHPS nanoparticles exhibited higher whiteness than the TiO₂@TEOS nanoparticles when comparing their $L^*a^*b^*$ parameters. On the other hand, the whiteness of the TiO₂@TEOS nanoparticles was speculated (as elaborated in the XPS analysis description above) to be affected by carbon impurities.

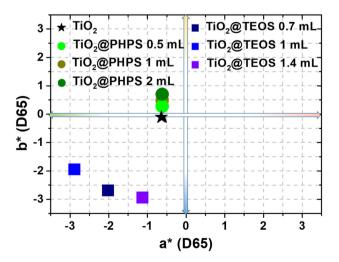


Fig. 4 CIE a^*b^* chromaticity diagram of whiteness parameters of the TiO₂, TiO₂@TEOS, and TiO₂@PHPS core—shell nanoparticles fabricated in this study with different TEOS and PHPS precursor concentrations.

Application of the PHPS-derived SiO_2 coating on high-refractive-index TiO_2 thin film

Building upon the remarkable passivation of photocatalytic activity observed in the TiO₂@PHPS core–shell nanoparticles, we extended this concept to thin films to explore how the PHPS-derived SiO₂ films deposited on TiO₂ would passivate its photocatalytic ability (Fig. 5a).

While no humps indicative of an amorphous SiO_2 layer were observed in XRD measurements (Fig. $S12\dagger$), cross-sectional analysis of the PHPS-derived TiO_2/SiO_2 film revealed the presence of SiO_2 (Fig. 5b). A clearly defined top SiO_2 layer was deposited on the surface of the TiO_2 layer. Since the PHPS-derived SiO_2 layer fully covered the TiO_2 surface, it was expected to exhibit superior passivation of the TiO_2 photocatalytic activity.

Following this hypothesis, photocatalytic experiments were conducted, and the results are presented in Fig. 5c and d. Fig. 5c shows that the concentration of Eosin B exhibited rapid decay for the bare TiO₂ film, reaching an 80% degradation after 180 min of UV-A irradiation. In contrast, the TiO₂/PHPS film showed no significant decrease in Eosin B concentration until 120 min, after which it began to exhibit gradual decay, showing only a 12% decrease (88% passivation) after 180 min of irradiation.

Next, to investigate how the introduction of the PHPS-derived SiO_2 layer affected the inherent high-refractive-index optical properties of the TiO_2 film, the optical performance of the TiO_2 /PHPS film was studied. The refractive indices of the films were measured *via* ellipsometry (Fig. S13,† n=2.4 at 550 nm), and the reflectance spectra were simulated for the comparison with the measured counterparts. The TiO_2 /PHPS film was considered as a two-layer structure with the independent TiO_2 and PHPS-derived SiO_2 layers of 82.1 and 9.8 nm thickness values, respectively. Fig. 6a and b displays the measured and simulated reflectance spectra of the films. The simulated reflectance spectra aligned well with the measured counterparts.

In the case the $\rm TiO_2/PHPS$ film, a slight redshift in the reflectance spectra was observed following the introduction of $\rm SiO_2$ onto the $\rm TiO_2$ film. This redshift occurred due to the increased number of layers, leading to an overall increase in film thickness and constructive interference. However, since the thickness of the $\rm SiO_2$ layer in the film was relatively small, only 9.8 nm, it had a minor impact on the interference pattern, resulting in a subtle redshift. How, the introduction of PHPS-derived $\rm SiO_2$ layer had a negligible effect on the intrinsic optical properties of the $\rm TiO_2$ layer, without significantly influencing the colour and high-refractive-index properties of the initial $\rm TiO_2$ film, while successfully passivating $\rm TiO_2$ photocatalytic activity.

From the CIE a^*b^* chromaticity diagram depicted in Fig. 6c, it was further demonstrated that the colour of the $TiO_2/PHPS$ film closely resembled that of the initial TiO_2 film in terms of the a^*b^* colour parameters. Table S2† presents the measured colours and their respective colourimetric parameters.

Nanoscale

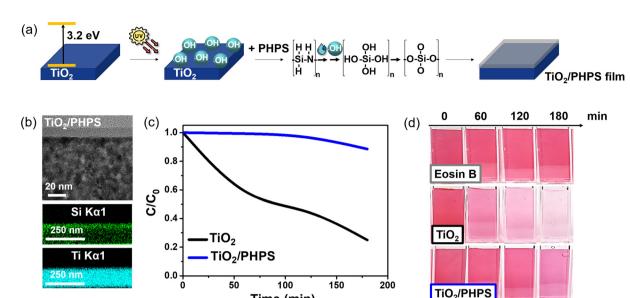


Fig. 5 (a) Schematic representation of the $TiO_2/PHPS$ film prepared via 'self-catalysed method'. (b) Cross-sectional TEM images of the $TiO_2/PHPS$ thin film. (c) Photocatalytic degradation of Eosin B as a function of time by the TiO_2 and $TiO_2/PHPS$ thin films. (d) Camera-captured images of the Eosin B solution following its photocatalytic degradation by the TiO_2 and $TiO_2/PHPS$ films under UV-A irradiation.

Time (min)

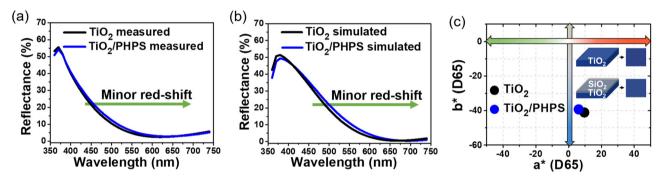


Fig. 6 (a) Measured and (b) simulated reflectance spectra of TiO_2 and $TiO_2/PHPS$ films. (c) CIE a*b* chromaticity diagram of colour parameters of the TiO_2 and $TiO_2/PHPS$ films. Insert in top right corner illustrates measured colours and their corresponding films.

Lastly, the $\rm TiO_2$ and $\rm TiO_2/PHPS$ films were subjected to standardized wear resistance tests to assess their suitability for practical applications, with results depicted in Table S3.† Fig. S14† demonstrated that the hardness of the $\rm TiO_2$ and $\rm TiO_2/PHPS$ films reached 4H, close to the reported value of 5H for sol–gel-derived $\rm SiO_2/TiO_2$ coatings. Adhesion was also evaluated using tapes with varying adhesion strengths, with attachment/detachment performed up to 10 times (Fig. S15†). Microscopic examination after the cross-cut test revealed no visible delamination or fragment separation, indicating strong adhesion of both $\rm TiO_2$ and $\rm SiO_2/TiO_2$ films.

Conclusions

This study introduced a novel method using perhydropolysila-zane (PHPS) to create an ultrathin uniform silica shell on ${\rm TiO_2}$

via a self-catalysed process under UV-A irradiation, where hydroxyl radicals from photocatalytic TiO2 reacted with Si-H bonds of PHPS. The formation of TiO₂@SiO₂ nanoparticles by this method exhibited a natural self-limiting behaviour, which guaranteed a consistent shell thickness independent of the PHPS concentration, thereby making the process more straightforward for large-scale industrial use compared to TEOS, which requires meticulous control of parameters. This approach offered superior control over photocatalytic passivation, achieving 89-96% passivation with TiO2@PHPS nanoparticles and 88% with TiO2/PHPS films, compared to only 30% passivation with traditional TEOS-derived SiO₂ shells. Additionally, PHPS did not compromise the whiteness of TiO₂@SiO₂ core-shell nanoparticles, essential for applications requiring pure white colours, while maintaining TiO2's highrefractive-index optical properties and original colour characteristics in TiO₂/SiO₂ films. This demonstrates PHPS as a

superior alternative to TEOS for fabricating TiO₂@SiO₂ coreshell nanoparticles and films.

Author contributions

Paper

Darya Burak: conceptualization, investigation, data curation, formal analysis, writing – original draft, writing – review & editing. Jae Hyun Han: conceptualization, investigation, data curation, writing – original draft. Joon Soo Han: investigation, data curation, validation. In Soo Kim: investigation, writing – review & editing. Md Abdur Rahman: data curation, writing – review & editing. So-Hye Cho: conceptualization, validation, funding acquisition, project administration, resources, supervision, writing – review & editing.

Data availability

The data supporting this article have been included as part of the ESI.†

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This research was supported by the Pioneer Research Center Program (RS-2024-00431320) and the Nano & Material Technology Development Program (2020M3H4A3106354) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

References

- 1 X. Kang, S. Liu, Z. Dai, Y. He, X. Song and Z. Tan, *Catalysts*, 2019, **9**, 191.
- 2 H. R. Mohammed and D. M. H. Shinen, *Mater. Today: Proc.*, 2023, **81**, 459–463.
- 3 J. Molina-Reyes, A. Romero-Moran, H. Uribe-Vargas, B. Lopez-Ruiz, J. L. Sanchez-Salas, E. Ortega, A. Ponce, A. Morales-Sanchez, F. Lopez-Huerta and C. Zuñiga-Islas, *Catal. Today*, 2020, 341, 2–12.
- 4 M. N. B. Razali, A. A. Alkaf and M. K. N. B. M. Zuhan, *Mater. Today: Proc.*, 2022, 48, 1905–1909.
- 5 I. Nabi, A.-U. R. Bacha, F. Ahmad and L. Zhang, J. Environ. Chem. Eng., 2021, 9, 105964.
- 6 P.-J. Lu, S.-C. Huang, Y.-P. Chen, L.-C. Chiueh and D. Y.-C. Shih, *J. Food Drug Anal.*, 2015, 23, 587–594.
- 7 R. J. B. Peters, G. van Bemmel, Z. Herrera-Rivera, H. P. F. G. Helsper, H. J. P. Marvin, S. Weigel, P. C. Tromp,

- A. G. Oomen, A. G. Rietveld and H. Bouwmeester, *J. Agric. Food Chem.*, 2014, **62**, 6285–6293.
- 8 F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert and R. W. Siegel, *J. Appl. Phys.*, 2008, **103**, 083120.
- 9 M. Bartoszewska, E. Adamska, A. Kowalska and B. Grobelna, *Molecules*, 2023, 28, 645.
- 10 A. Vyatskikh, R. C. Ng, B. Edwards, R. M. Briggs and J. R. Greer, *Nano Lett.*, 2020, 20, 3513–3520.
- 11 S. Ramesh, K. Govarthanan and A. Palaniappan, *Nanotoxicology*, 2023, 17, 176–201.
- 12 H. W. Lim, I. Kohli, E. Ruvolo, L. Kolbe and I. H. Hamzavi, I. Am. Acad. Dermatol., 2022, **86**, S27–S37.
- 13 W. Lyu, M. Qian and F. Yang, *Highl. Sci. Eng. Technol.*, 2022, 13, 155-162.
- 14 J. Guo, D. Benz, T.-T. D. Nguyen, P.-H. Nguyen, T.-L. T. Le, H.-H. Nguyen, D. La Zara, B. Liang, H. T. Hintzen, J. R. van Ommen and H. V. Bui, *Appl. Surf. Sci.*, 2020, 530, 147244.
- 15 I. A. Siddiquey, T. Furusawa, M. Sato, K. Honda and N. Suzuki, *Dyes Pigm.*, 2008, **76**, 754–759.
- 16 A. M. El-Toni, S. Yin, T. Sato, T. Ghannam, M. Al-Hoshan and M. Al-Salhi, *J. Alloys Compd.*, 2010, **508**, 1–4.
- 17 H. J. Kim, D. K. Roh, J. H. Chang and D.-S. Kim, Ceram. Int., 2019, 45, 16880-16885.
- 18 M. D. Purkayastha, T. P. Majumder, M. Sarkar and S. Ghosh, *Radiat. Phys. Chem.*, 2022, **192**, 109898.
- 19 O. K. Park, Y. S. Kang and B. G. Jo, *J. Ind. Eng. Chem.*, 2004, **10**, 733-738.
- 20 J.-W. Lee, S. Kong, W.-S. Kim and J. Kim, *Mater. Chem. Phys.*, 2007, **106**(1), 39–44.
- 21 E. Ukaji, K. Harigae, N. Suzuki, T. Furusawa and M. Sato, Mater. Technol., 2006, 24, 275–281.
- 22 H. Lee, S. Koo and J. Yoo, *J. Ceram. Process. Res.*, 2012, **13**, 300–303.
- 23 M. H. Lee, U. M. Patil, S. T. Kochuveedu, C. S. Lee and D. H. Kim, *Bull. Korean Chem. Soc.*, 2012, 33, 3767.
- 24 H. J. Cha, O. K. Park, Y. H. Kim, H. G. Cha and Y. S. Kang, *Int. J. Nanosci.*, 2006, **5**, 795–801.
- 25 F. Bauer, U. Decker, A. Dierdoft, H. Ernst, R. Heller, H. Liebe and R. Mehnert, *Prog. Org. Coat.*, 2005, 53, 183– 190.
- 26 Y. Jeong, C. Pearson, H.-G. Kim, M.-Y. Park, H. Kim, L.-D. Do and M. C. Petty, ACS Appl. Mater. Interfaces, 2016, 8, 2061–2070.
- 27 Z. Zhang, Z. Shao, Y. Luo, P. An, M. Zhang and C. Xu, Polym. Int., 2015, 64, 971–978.
- 28 H. Kozuka, K. Nakajima and H. Uchiyama, *ACS Appl. Mater. Interfaces*, 2013, 5(17), 8329–8336.
- 29 V. Poliukhova, J.-K. Park, D. Kim, S. Khan, J. Y. Seo, S. J. Kim, G.-H. Moon, K.-Y. Baek, S. Kim and S.-H. Cho, *Chem. Eng. J. Adv.*, 2022, 12, 100363.
- 30 Konica Minolta Sensing Inc., SpectraMagicTM NX Color Data Software. https://sensing.konicaminolta.us/us/products/spectramagic-nx-color-data-software/.
- 31 S. Larouche and L. Martinu, Appl. Opt., 2008, 47, 219-230.
- 32 K. Nakajima, H. Uchiyama, T. Kitano and H. Kozuka, *J. Am. Ceram. Soc.*, 2013, **96**(6), 2806–2816.

Nanoscale Paper

- 33 P. Magalhães, L. Andrade, O. C. Nunes and A. Mendes, *Rev. Adv. Mater. Sci.*, 2017, 51, 91–129.
- 34 T. Furusawa, K. Honda, E. Ukaji, M. Sato and N. Suzuki, *Mater. Res. Bull.*, 2008, **43**, 946–957.
- 35 Y. Yu, Y. Zhu, J. Guo, H. Yue, H. Zhang, C. Liu, S. Tang and B. Liang, *Ind. Eng. Chem. Res.*, 2018, 57, 8679–8688.
- 36 Y. Bai, Z. Li, B. Cheng, M. Zhang and K. Sua, RSC Adv., 2017, 7, 21758–21767.
- 37 Y. Lin, T. Wang and Y. Jin, *Powder Technol.*, 2002, **123**, 194–198.
- 38 G. Li, F. Liu and Z. Zhang, J. Alloys Compd., 2010, 493, L1-L7.
- 39 X. Wang, S. O. Pehkonen, J. Rämö, M. Väänänen, J. G. Highfield and K. Laasonen, *Catal. Sci. Technol.*, 2012, 2, 784–793.
- 40 H. S. Lee, S. M. Koo and J. W. Yoo, *J. Ceram. Process. Res.*, 2013, **13**, 300–303.

- 41 E. Ukaji, T. Furusawa, M. Sato and N. Suzuki, *Appl. Surf. Sci.*, 2007, 254, 563–569.
- 42 A. Kaur, P. Chahal and T. Hogan, *IEEE Electron Device Lett.*, 2016, 37(2), 142–145.
- 43 T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, *Sci. Rep.*, 2014, 4, 4043.
- 44 G. Žerjav, K. Žižek, J. Zavašnik and A. Pintar, *J. Environ. Chem. Eng.*, 2022, **10**, 107722.
- 45 T. Han, H. Xue, X. Hu, R. Li, H. Liu and Y. Tu, *LWT-Food Sci. Technol.*, 2022, **159**, 113178.
- 46 X. Zhang, A. Fujishima, M. Jin, A. V. Emeline and T. Murakami, J. Phys. Chem., 2006, 110, 25142–22514.
- 47 R. S. Dubey, *Superlattices Microstruct.*, 2017, **111**, 1099–
- 48 J. Wu, J. Tu, K. Hu, X. Xiao, L. Li, S. Yu, Y. Xie, H. Wu and Y. Yang, *Colloids Surf.*, *A*, 2022, **654**, 130173.