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Super-resolution microscopy and Single-Molecule Localization

Microscopy (SMLM) are powerful tools to characterize synthetic

nanomaterials used for many applications such as drug delivery. In

the last decade, imaging techniques like STORM, PALM, and PAINT

have been used to study nanoparticle size, structure, and compo-

sition. While imaging has progressed significantly, image analysis

has often not advanced accordingly and many studies remain

limited to qualitative and semi-quantitative analyses. Therefore, it

is imperative to have a robust and accurate method to analyze

SMLM images of nanoparticles and extract quantitative features

from them. Here, we introduce nanoFeatures, a cross-platform

Matlab-based app for the automatic and quantitative analysis of

super-resolution images. nanoFeatures makes use of clustering

algorithms to identify nanoparticles from the raw data (localization

list) and extract quantitative information about size, shape, and

molecular abundance at the single-particle and single-molecule

levels. Moreover, it applies a series of quality controls, increasing

data quality and avoiding artifacts. nanoFeatures, thanks to its

intuitive interface, is also accessible to non-experts and will facili-

tate analysis of super-resolution microscopy for materials scien-

tists and nanotechnologies. This easy accessibility to expansive

feature characterization at the single particle level will bring us

one step closer to understanding the relationship between nano-

structure features and their efficiency (https://github.com/n4nlab/

nanoFeatures).

1 Introduction

Nanoparticles have emerged as a promising tool in nano-
medicine, owing to their remarkable physical and chemical
properties.1,2 These physicochemical properties (e.g., size,
shape, and the presence and quantity of surface ligands) are

the key to selective delivery, via both passive,3 and active tar-
geting.4 These approaches hold the potential to mitigate side
effects and reduce the required drug dosage.1

Despite these advantages, there has been limited success in
translating nanoparticles to clinical applications. Since 1995,
when Doxil became the first FDA-approved liposome-based
nano-drug for cancer treatment,5 only 31 formulations have
been clinically approved, including the emergency approval for
the COVID-19 vaccine.6 The limited amount of approved nano-
formulations shows that many open challenges still remain
when translating the promising results of nanocarriers in vitro
to a clinical application.7,8 Considering the vast number of
nanoparticle formulations reported in the literature, this evi-
dence highlights the urgent need for promoting the clinical
approval of nanocarriers.

A current challenge is the lack of standardization in charac-
terization methods, which results in a low degree of reliability
and reproducibility in the nanomedicine literature.9 Properly
characterizing nanoparticles is a fundamental step in their
potential application, as their physical and chemical pro-
perties can differ vastly at the nanoscale. Morphological fea-
tures, like size or shape, heavily influence the nanoparticle
properties, leading to unforeseen behavior or even toxicity in
the case of incorrect characterization.2,10 Currently available
characterization techniques typically can only assess one prop-
erty at a time, requiring the integration of multiple techniques
for comprehensive characterization.2,11 Moreover, bulk
measurement methods tend to average values and correspond-
ingly mask the inherent heterogeneity of nanoparticles, which
determines the effective distribution of nanoparticles to their
site of action, and even their potential toxicity in biological
media.10

Recently, super-resolution microscopy12 and, in particular,
Single-Molecule Localization Microscopy (SMLM)13 have
emerged as powerful techniques to improve nanoparticle
characterization at the single-particle level. SMLM breaks the
diffraction limit by computationally localizing individual fluo-
rescent events separated in time and reconstructing super-
resolved images based on these high-precision localizations.
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Therefore, SMLM images are created by stacking all the com-
puted localization coordinates found in each frame of the
acquisition movie, which allows researchers to visualize and
analyze nanoparticles at the single-particle and single-molecule
level with nanometer precision.13 This technique has already
shown its versatility in various research fields from cell
biology14,15 to material characterization,16,17 making it a powerful
tool to address the challenges described above. For example,
SMLM has been used to study and quantify protein corona for-
mation on nanoparticles,18,19 which revealed their heterogeneous
nature. Furthermore, by combining SMLM with Transmission
Electron Microscopy (TEM), multidimensional information to
describe this heterogeneity could be obtained.20 Moreover,
SMLM has also allowed for the study of cell–nanoparticle
interactions.21,22 Currently, research interest is shifting towards
multiplexed images to correlate different modalities, which gene-
rate bigger datasets and complex data structures.23–27

A crucial side of SMLM is represented by data analysis, as it
is the key to go from qualitative images to quantitative data.
SMLM data analysis is based on: (1) processing the acquisition
movie to obtain localizations, through the fitting of the point-
spread function (PSF),28 (2) processing the localizations, for
example, aligning or merging localizations,29 and finally (3)
obtaining interpretable data30 that we can use to measure size
and morphology, thanks to the high spatial resolution of
SMLM (20–50 nm).13 Modular platforms like the Super-resolu-
tion Microscopy Analysis Platform (SMAP) allow the user to
integrate many of the SMLM image analysis steps into single
software.31 However, most of the available software resources
are dedicated to biological imaging while materials and nano-
structures lack tailored dedicated tools. A brief overview of
multiple SMLM data analysis software can be found in ESI
Table 3.† However most of these are meant for general image
analysis, rather than a specialized characterization tool that
runs on already processed localization data in batches.
Therefore, these software solutions could complement the
application presented in this work.

Here, we introduce nanoFeatures, an automated standalone
MATLAB-based application dedicated to analyzing nano-
particles from SMLM datasets. The nanoFeatures app can
process SMLM images, locate the nanoparticles, and automati-
cally compute and display their features (Fig. 1). After simply
uploading the raw datasets and setting the right parameters,

the user will receive a list of the key features for each individ-
ual nanoparticle that can later be used in further analysis. By
characterizing nanoparticles in a systematic and reproducible
way, we aim to open the door for data-driven research, such as
machine learning for property prediction or data mining. In
what follows, we showcase an example application, whereby we
analyse two different nanoparticle datasets: (1) dual color
nanoparticles imaged with DNA-PAINT32 and (2) triple color
nanoparticles imaged with exchange PAINT.23

2 Results and discussion
2.1 General procedure

A raw SMLM image is a list of coordinates for each of the
fluorophore localizations found after fitting a Gaussian on the
bright spots across the numerous frames in the acquisition
movie (ESI Fig. 1†). An overview of the nanoFeatures algorithm
is shown in Fig. 2a.

The nanoFeatures general workflow is as follows (Fig. 2a):
(1) User input: several inputs are required from the user,

which will determine the following steps of the analysis. The
steps are as follows:

(a) File input. The user inputs the file, as specified in the
User input subsection, containing the list of localization coor-
dinates (ESI Fig. 1†). Multiple color channels can be input as a
single file or as multiple files, corresponding to either simul-
taneous multi-color imaging (e.g. 2- or 3-color STORM) or
sequential multiplexing (e.g. exchange-PAINT). To increase the
throughput, users can select multiple files to be processed
under the same settings in batch analysis.

(b) Input type selection. After inputting the file, the user
must select the input type (ONI, NIKON, or ThunderSTORM),
based on the microscope or software used to obtain the images.

(c) Workflow and parameter specification. Within the
Graphical User Interface (GUI), users can specify the desired
workflow for data processing. For example, when analyzing
samples acquired sequentially, the user should activate the
channel alignment option. Furthermore, users can define the
parameters for filtering and feature extraction, and have the
option to include the quantitative PAINT (qPAINT) analysis.33

(2) Read and pre-process file(s): once the input, workflow,
and parameters have been defined, the data are pre-processed
into a single list of localizations, containing all color channels.

(3) Channel alignment (optional) (Fig. 2b): if specified, the
drift between different color channels is corrected before
clustering.

(4) Clustering (Fig. 2c). The processed localizations are then
used as the input of a clustering algorithm, which will identify
potential nanoparticles, using the vicinity information.

(5) Quality filters (Fig. 2d): a series of quality filters are
applied to exclude clusters of localizations not identified as
single nanoparticles.

(6) qPAINT (optional) (Fig. 2e): quantifies the target ligands
count based on the spatiotemporal response within each
cluster.

Fig. 1 General nanoparticle analysis workflow. First, the nanoparticles
are imaged in super-resolution microscopy. Then, the image data are
sent to nanoFeatures to obtain nanoparticle features, such as size,
shape, and number of binding sites. Scale bar 2 µm.
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(7) Generate output: finally, nanoFeatures will generate an
output CSV file containing the features corresponding to each
detected nanoparticle in the original SMLM image. This file,
together with the plots prompted during the execution, will be
saved in a “results” folder in the user’s Matlab path.

In addition, SMLM images often have high background
noise, leading to prolonged computing time for clustering ana-
lysis and complicating the automated identification of nano-
particles. For this reason, we advise pre-processing the image
before using nanoFeatures, for example, by applying a density
filter, as seen in ESI Fig. 2.† In this specific case study, we
used the thunderSTORM plug-in for ImageJ,34 with the set-
tings outlined in the Density filter subsection in Materials and
methods. Moreover, a description of the datasets used for this
case study can be found in the Datasets subsection in
Materials and methods.

The following sections provide a detailed description of
each of these steps.

2.2 User input

nanoFeatures accepts three distinct data structures, corres-
ponding to outputs from various commercial microscopes or
open-source image pre-processing software. The app extracts
the pixel localizations (X, Y), the frame of detection, and the
associated color channel. The three supported input file types
are:

(1) NIKON:35 TXT file format. The app reads the file as a
table, identifying headers named “Channel_Name”, “X”, “Y”
and “Frame”.

(2) ONI:36 comma-separated values (CSV) file format. The
app reads the file as a matrix, considering the 1st column as
the channel name, 2nd column as the frame number, and the
3rd and 4th columns as X and Y coordinates, respectively.

(3) ThunderSTORM:34 CSV file format. The app reads the
file as a table, identifying headers named “Channel”, “Frame”,
“x [nm]” and “y [nm]”.

Fig. 2 nanoFeatures algorithm. (a) General workflow from the raw dataset to the calculation of the nanoparticle’s features. (b) Example of the
channel alignment results, in this case aligning fiducials from three different channels. (c) Description of the image sectioning to send the different
sections to parallel computing threads. MATLAB’s DBSCAN is used to identify clusters in the sections, an example of how this algorithm works is also
shown. Scale bar 2 µm. (d) Quality filters applied to the identified clusters by DBSCAN. Aggregated, non-spherical, or off-size nanoparticles are
filtered in this step. Selected clusters are circled in black and given an ID number. (e) qPAINT scheme, the frames in which single fluorophores are on
or off are counted, obtaining the dark and bright times, and are used to infer the total number of binding sites.
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Extension to further formats is envisioned in the future to
follow the evolution of the different formats used in the
community.

As an example, we showcase the workflow and parameter
specification for the analysis of the file “210714_COOH_
200_loc2_merge.csv”, which can be found in our online reposi-
tory under the files “Datasets/dualColor/COOH_200nm_
100dist_50neighbors”. The workflow and parameter selection
can be seen in Fig. 3a–c and the results preview given by
nanoFeatures within the GUI is seen in Fig. 3d.

2.3 Channel alignment

SMLM images are often acquired sequentially, one color at a
time, such as through exchange-PAINT.23 The resulting data
are stored in multiple localization files, one for each color.
Since the image acquisition is done at different time points,
there is a drift between the coordinates of different channels
that we need to correct, as shown in Fig. 2b. To achieve this,
we use fiducial markers—objects consistently visible in all
color channels that serve as reference points. In this study, we
use gold nanorods as fiducial markers.

For this reason, upon clicking the “Run” button and only if
the “channel alignment” checkbox is selected, nanoFeatures

prompts the user to input files containing the fiducial localiz-
ations for each respective color channel.

To correct the temporal drift, first, the fiducial localizations
are clustered to obtain their centroid. Then, nanoFeatures
finds the n-channels nearest neighbors within a limited dis-
tance, to avoid fiducial mismatching. Finally, the average drift
distances for each fiducial match between sequential files are
calculated, after which the coordinates are corrected and the
files are merged.

2.4 Clustering

After aligning all localizations from the different color chan-
nels and concatenating the files into a single matrix, the local-
izations are ready for clustering. This is a crucial step needed
to identify individual nanoparticles and assign all the detected
molecules to a specific nanoparticle or discard them as
background.

To speed up computational time, the image is divided into
nine sections according to their coordinates. Then these sec-
tions are processed simultaneously in nCores − 1 ≤ 9 parallel
computing threads, running the DBSCAN algorithm,37 as
described in Fig. 2c. This parallelization step significantly
reduces the execution time, while preventing the app from
potential collapse due to the generation of massive data struc-

Fig. 3 Case study using the nanoFeatures Graphical User Interface (GUI). (a) Filters tab to input the file(s) and select the desired filters, (b) para-
meters tab to input the specific parameters used to analyze the files, (c) qPAINT tab to input the parameters for the qPAINT analysis, if the checkbox
is selected, and (d) graphs tab to show a preview of the results.
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tures required to link all localizations within a background-
dense image (ESI Fig. 3†). Note that at least one core remains
available for other computer processes.

DBSCAN requires two parameters: (1) the radius in which
adjacent localizations are considered as neighbors, and (2) the
minimum number of points in this neighborhood required to
form a cluster. These are introduced by the user, and they
require optimization for each experiment and sample. To do
this, the user can select the Silhouette checkbox in
nanoFeatures to plot the Silhouette coefficient38 for each
cluster, as in ESI Fig. 4f.† However, this analysis is computa-
tionally expensive, hence it is not recommended to use with
large files or during batch analysis.

Then, nanoFeatures plots the reconstructed complete
image (all nine sections), with the identified clusters by
DBSCAN, which are depicted by different colors as shown in
Fig. 4a.

2.5 Quality filters

Although DBSCAN can identify clusters in images, and discard
some localizations based on user-defined parameters, some
quality filters are necessary to discard unwanted signals. For
example, large aggregates or debris need to be discarded.
Moreover, a strong background signal may be detected by
DBSCAN as a particle. Therefore, to ensure that the identified
clusters are indeed nanoparticles, the data undergo the follow-
ing quality filters: (1) the sphericity filter removes clusters that
are too elongated, or not elongated enough, depending on the
sample. (2) The size filter removes clusters that are too big or
too small. And (3) the aggregate filter removes clusters that are
too close to each other (Fig. 2d).

To do this, each filter (1) fits an ellipse on the clusters to
obtain the aspect ratio, then (2) sets a random starting radius
and adjusts it until a user-defined percentage of the cluster
localizations fits in it, and finally, (3) ensures that the distance

between each cluster centroid is at least the user-defined
distance.

As a result of the quality filters, some clusters identified by
DBSCAN are discarded, and only potential nanoparticles
remain, marked by a black circle and an ID number in Fig. 4a.
Additionally, nanoFeatures plots the selected nanoparticles
from all nine sections, color-coded based on the localization
channel. This way, users can identify co-localizing ligand
populations on a nanoparticle (Fig. 4b).

At this point, within the GUI “Graphs” tab, nanoFeatures
generates histograms providing an overview of nanoparticles’
characterization (Fig. 3d). For a more comprehensive analysis,
users can plot the features from the generated CSV file, as
showcased in Fig. 4c–f. For instance, these plots show features
from a sample of 200 nm spherical nanoparticles.

Fig. 4c shows a wide distribution of nanoparticle diameters,
peaking around 200 nm. Similarly, Fig. 4d shows the aspect
ratio for the same sample, with its distribution mostly encom-
passed between 1 and 1.5, where 1 is a perfect sphere. These
results align with the heterogeneous nature of nanoparticles,
as described in the literature.10

2.6 qPAINT

Finally, if the sample was obtained following a DNA-PAINT
protocol, users have the option to perform a quantitative
PAINT (qPAINT) analysis33 (Fig. 2e). qPAINT allows researchers
to determine the molecular abundance of the target in ques-
tion. We used a previously published dataset17 to exemplify
nanoFeatures’ usage. The sample is extensively described in
section 4.1. Briefly, this consists of antibody-functionalized
silica nanoparticles where the antibodies are targeted with
DNA strands, enabling the counting and identification of anti-
bodies on the nanoparticles’ surface. However, this method is
not limited to DNA-based probes. For example, Riera et al.
demonstrated the use of glycans as probes in a PAINT setup.39

By using super-resolution microscopy,40 and specifically
PAINT, nanoparticles can be accurately characterized at the
single-molecule level with a variety of probes,41–43 whereas
other techniques like Scanning Electron Microscopy (SEM)
provide excellent surface morphology imaging but lack the
ability to quantify the presence of antibodies or other mole-
cular components.

First, the qPAINT filter generates a binary time trace for
each identified cluster: bright (1), for each frame in which the
fluorophores are active, or dark (0) when they are inactive.

Next, the user introduces the minimum number of frames
that a cluster needs to be on (not dark), for the localizations to
be merged into a single event. This number, the “frames
threshold to merge”, needs to be optimized per sample, and it
prevents false dark times.44 The duration of each dark time is
then calculated by taking the derivative of the nanoparticle
time traces and finding the difference between consecutive
negative and positive changes. Clusters formed by non-specific
localizations can be filtered by checking the corresponding
checkbox within the GUI. Clusters will then be removed if

Fig. 4 Selection of different figures obtained from nanoFeatures. (a)
DBSCAN identified clusters and nanoparticles selected by the quality
filters. (b) Selected nanoparticles colored based on the channel that
each of the localizations was identified in. (c–f ) Histograms showing the
distribution for a few of the different features obtained from
nanoFeatures. Graphs generated in MATLAB (a and b) and OriginLab (c–
f ), based on a 200 nm spherical nanoparticles sample.
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their bright times do not comprise at least 50% of the total
imaging time between their first and last binding events.

Furthermore, nanoFeatures constructs a cumulative distri-
bution function (CDF) of the dark times for each remaining
cluster, which is fitted with eqn (1), to obtain its mean dark
time (τd*), where P represents the probability of a binding
event at time t after a previous binding event (ESI Fig. 5†).
Moreover, clusters are filtered on their CDF shape. When 90%
of dark times are smaller than 10% of the longest dark time,
the cluster is discarded.

PðtÞ ¼ 1� e�t=τd� ð1Þ

Binding sites ¼ 1
τd* � kon � Ci

: ð2Þ

Then, τd*, in milliseconds, is used in eqn (2) to determine
the number of binding sites per cluster (Fig. 4f). The associ-
ation constant (kon) for each docking-imager pair and the
imager concentration (Ci) are experiment-dependent.

Lastly, nanoFeatures will create a folder named “results” on
the user’s current Matlab path. This folder contains, for each
file analyzed, most of the figures plotted by Matlab (ESI
Fig. 4†) and a CSV file containing the number of binding sites,
statistics of the bright and dark times, and R-squared for the
exponential fit. A detailed list of all the features exported by
nanoFeatures can be found in ESI, Table 2.†

3 Conclusion

nanoFeatures aims to fill the gap in standardizing nano-
particle characterization, particularly by analyzing super-
resolution microscopy images. nanoFeatures achieves this by
integrating multiple SMLM techniques, commercial micro-
scopes and hardware set-ups, and diverse file formats. These
can all be analyzed within the same algorithm, generating fea-
tures organized in a unified data structure.

In addition, nanoFeatures is an open-source platform,
meaning that users can download and edit the source code of
the app to add personalized functions and filters and even
contribute to the public GitHub repository. Moreover,
nanoFeatures is an app used daily within the research group;
therefore, it is constantly updated (i.e., big fixing, new metrics,
more plots, improved execution…), and will add more func-
tionalities as they come.

Finally, despite being a Matlab-based application, the stan-
dalone version can be installed via MATLAB Runtime (without
the need for a license), on multiple platforms like Linux,
macOS, and Windows.

In this way, the many files generated from diverse experi-
ments can be directly used in further analyses, minimizing or
eliminating the need for extensive data pre-processing. For
instance, employing machine learning to analyze various
nanoparticle samples could provide valuable insights into the
interrelationships of these features, thus aiding in the future
design of nanoparticle formulations.

4 Materials and methods
4.1 Datasets

The results were obtained by analyzing two different datasets.
The main dataset used depicts the different orientations of
antibodies, fragment crystallizable (Fc) and antibody-binding
fragment (Fab), on both carboxylic acid-activated silica
(COOH) nanoparticle surface, and amino-functionalized silica
(NH2) nanoparticle surface. Cetuximab (Ctx), an antibody tar-
geting growth factor receptor, was conjugated to the COOH
nanoparticles, resulting in a random orientation of the anti-
bodies. On the other hand, to control the orientation of the
antibodies in the NH2 nanoparticles, Fc-binding protein G and
Fab-binding protein M were added to the nanoparticle’s
surface in different ratios, and then Ctx was immobilized on
them in the selected orientation. Both Fab and Fc antibody
orientations were imaged simultaneously with two different
fluorophores (two color channels). The structure of this
dataset consists of a list of localizations with information on
their specific coordinates, frame number, and photon inten-
sity. For more information on the synthesis and imaging of
these nanoparticles, please refer to the article published by
Marrit M. E. Tholen et al. (2023).17 To test the channel align-
ment filter, a DNA PAINT dataset consisting of both 300 nm
polystyrene nanoparticles with conjugated ssDNA and 40 nm
gold nanorod fiducials was used. The sample was measured at
three different time points in multiple fields of view. These
datasets, together with the nanoFeatures results, can be found
in our online repository in Zenodo.

Fig. 2b and e are based on the exchange PAINT files in the
“tripleColor” folder. Fig. 4a and b are based on the file
“210714_COOH_200_loc2_merge.csv” from Marrit Tholen’s
dataset and Fig. 4c–f are based on the combination of all files
from sample “COOH_200nm”. These files can be found in the
“dualColor” folder.

4.2 Drift correction

Fiducial markers can be used for drift correction due to the
fact that they are stationary and permanently in an ‘on’ state.
This was done in thunderSTORM, using a ‘minimum marker
visibility ratio’ of 0.5, which means they should be on for at
least half of the total frames to be considered as a fiducial
marker. The ‘max distance [units of x, y]’, or the lateral toler-
ance for identification as a marker is usually set to 60.0 nm.
The ‘trajectory smoothing factor’ is set to 0.5. When no fidu-
cial markers are used, a cross-correlation function can be
used.

4.3 Fiducial localization files

Similarly, fiducials can also be identified by making use of the
fact that they are permanently in an ‘on’ state. By applying an
extreme density filter of 9000 minimum neighbors in a 50 nm
radius, all nanoparticle clusters are filtered out and only the
fiducials remain. This way, we can obtain the fiducial coordi-
nates to be used within the channel alignment option.
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4.4 Density filter

Prior to analyzing the images in nanoFeatures, we used the
thunderSTORM plug-in for ImageJ34 to remove the background
noise. The settings are 100 nm radius and 60 minimum neigh-
bors for sample COOH_100, 100 nm radius and 50 minimum
neighbors for sample COOH_200, 100 nm radius and
100 minimum neighbors for sample COOH_300, and 100 nm
radius and 50 minimum neighbors for sample NH2_200. Table 1
shows the files that were filtered with different settings.

4.5 Hardware and software

In this work, nanoFeatures was run on MATLAB v. 2022b,45 on
an AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz with 32 GB
RAM and a 64-bit Windows 10 Enterprise machine (Version
10.0.19045 Build 19045).
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