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1. Introduction

Mechanistic study of the competition between
carbon dioxide reduction and hydrogen evolution
reaction and selectivity tuning via loading
single-atom catalysts on graphitic carbon nitride¥

Joel Jie Foo,*” Sue-Faye Ng,>® Mo Xiong* and Wee-Jun Ong () *P-d.ef

In the context of catalytic CO, reduction (CO,RR), the interference of the inherent hydrogen evolution
reaction (HER) and the possible selectivity towards CO have posed a significant challenge to the gene-
ration of formic acid. To address this hurdle, in this work, we have investigated the impact of different
single-atom metal catalysts on tuning selectivity by employing density functional theory (DFT) calculations
to scrutinize the reaction pathways. Single-atom catalysts supported on carbon-based systems have
proven to be pivotal in altering both the activity and selectivity of the CO,RR. In this study, a series of
single-atom-metal-loaded g-C3N4 monolayers (MCN, M = Ni, Cu, Zn, Ga, Cd, In, Sn, Pb, Ag, Au, Bi, Pd
and Pt) were systematically examined. Through detailed DFT calculations, we explored their influence on
reaction selectivity between the *COOH and *OCHO intermediates. Notably, NiCN favors the reaction via
the *OCHO route, with a significantly lower rate-determining potential of 0.36 eV, which is approximately
73.5% lower than that of the CN system (1.36 eV). Most importantly, the Ni single-atom catalyst with lower
coordination significantly enhances CO, adsorption, promoting CO,RR over HER. Overall, this study,
guided by DFT calculations, provides a theoretical prediction of how the selection of single-atom metal
catalysts can effectively modulate the reaction pathway, thereby offering a potential solution for achieving
high product selectivity in CO,RR.

CO, emissions and development of alternative green and sus-
tainable fuels are urgently needed to address the deteriorating

The development of green and sustainable energy is particu-
larly important in the contemporary era to address devastating
environmental issues such as the ever-increasing atmospheric
CO, concentration due to emissions from the combustion of
the depleting fossil fuel by the energy sector. In fact, CO, emis-
sion is the main reason that drives global climate change
towards an irreparable state, gradually reshaping ecosystems to
uninhabitable environments."” Thus, technologies to reduce
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environmental conditions. Tremendous research efforts have
been devoted to capturing and containing greenhouse gases,
such as carbon capture and reformation strategies and cataly-
sis technology. However, the conventional hydrogenation of
CO, is highly detrimental from the environmental perspective
due to the carbon emission from this thermally activated reac-
tion. Besides, the conventional reaction requires precious
metals such as Rh and Ru as the catalyst, thus lowering the
profitability of the technology.*” Whereas, sustainable cata-
Iytic technologies such as electrocatalysis and photocatalysis
that convert CO, into value-added fuels (such as CO,*”°
HCOOH,'*™"® CH;0H"*® and even C, products'®>?) are ideal
solutions to reduce the atmospheric CO, concentration and
simultaneously generate sustainable fuels using CO, as the
raw material to replenish the depletion of the fuel, killing two
birds with one stone.”*® Among carbonaceous products,
formic acid/formate has received considerable attention due to
its potential to serve as a green energy carrier. The high
density of formic acid (1.22 g mL™") endows it with a consider-
able volumetric H, capacity (53 g L"), which boosts its poten-
tial as a liquid H, carrier for hydrogen fuel-cell vehicles.””
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In addition, formic acid is also one of the significant inter-
mediates formed during the synthesis of oxygen-containing
compounds such as alcohol, ester and acids in the field of
syngas production.®*°

Yet, the industrial application of catalytic CO, reduction
reactions (CO,RR) is greatly restrained by the inert and linear
geometry of CO,, which requires —1.9 V vs. NHE for CO,RR
activation.>® The second challenge is the multiple-electron
kinetics, which makes it less competitive to the hydrogen evol-
ution reaction (HER), which only requires two electrons.”
Thirdly, the complex reaction pathway and low product selecti-
vity can lead to endless possibilities of carbonaceous
products.®*** Thus, the selectivity of the reaction to specific
carbon products is highly dependent on the interactions
between the catalyst and the key intermediate, which is gov-
erned by the energy barrier of the transition state evolution
step in each of the proton-coupled electron transfer processes.

Graphitic carbon nitride (g-C3N,) is an emerging material
in the field of catalysis owing to its extraordinary electrical con-
ductivity and low internal resistance, which allows the gener-
ated charge carriers to spontaneously transmit to the active
sites.**® The high thermal and chemical stability demon-
strate the robust stability of the catalyst under harsh reaction
environments. Its low toxicity ensures safer handling and oper-
ation while lowering the destruction risk of the ecosystem.
Most importantly, its semiconducting properties, with a band
gap of 2.7 eV,*” allow photon harvesting in the visible-light
region (which accounts for roughly 43% of the solar spec-
trum),®® signifying that it can potentially serve as a
photocatalyst.

The recent advent of nanomaterials with engineered shapes
and dimensions presents promising modification strategies
for advancement in the realm of catalysis. Among various
classes of nanoarchitectures, 2D g-C3N, has emerged as one of
the prominent materials owing to its intrinsic properties that
significantly enhance the catalytic performance in CO,RR. (1)
The 2D nanostructure endows ample active sites for the
adsorption and activation of the CO, reactant. It eases the
modification strategies, such as defect engineering and hetero-
junction engineering with another catalyst, by presenting
highly exposed surface atoms, which can be removed or
substituted.>®?° (2) 2D materials generally have a less light-
shielding effect and hence can maximize the light absorption
ability.’® (3) The short diffusion distance of the generated
charge carrier to travel to the active sites reduces charge
recombination before reaching the active sites.**' Despite the
intrinsic advantages of 2D g-C;N,, carbon nitride is unable to
deliver satisfactory catalytic CO,RR performance owing to the
poor activation of adsorbed CO,.

Recently, there has been a surge in the investigation of
single-atom catalysts (SAC) for maximum atomic utilization to
lower the cost and simultaneously overcome the large energy
barrier of the first protonation steps of the CO,RR.**™** The
introduction of foreign atoms was found to alter the reaction
pathway with a lowered energy barrier and redistribute the
electrons on the surface of the catalyst.”>*® He et al. found
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that the addition of Pd SAC enhances CO, to CO conversion,
with the Pd-N, moiety sites leading to the *HOCO key inter-
mediate reaction pathway.”” Liu et al. reported that the loading
of Co SAC on the graphdiyne system induced charge redistribu-
tion; the Co SAC induced a negative net charge of —3.76e, and
the neighboring C atoms exhibited positive values of around
0.5-0.7¢, indicating that the charge transfer from the substrate
contributes to the adsorption and activation of CO, mole-
cules.”® As such, graphitic carbon nitride with a tri-s-triazine
structure has a large interstitial void surrounded by 6 unsatu-
rated nitrogen atoms, which represents a potential anchoring
site for SAC."° Although machine learning and compu-
tational studies of SAC-loaded g-C;N, have been done
previously,”’® these studies involve either non-CO,RR appli-
cations or the metal selection used for calculations is only
limited to one or two SAC(s). Therefore, there is a lack of
understanding of the effect of different metal SAC (M-SAC) on
the underlying reaction mechanism and selectivity of the
complex CO,RR toward the formation of formic acid.

By leveraging the idea of combining SAC and 2D g-C3N,, in
this work, we investigated the effect of different M-SACs on the
two-proton-coupled CO,RR electron transfer pathway that
leads to the formation of formic acid. The formation energy
calculation served as the first layer of screening to evaluate the
feasibility of the system before the reaction, followed by the
evaluation of CO,RR selectivity between HCOOH and CO, HER
competition, density of states and Bader charge analysis to
unravel the effects of various metals on the product selectivity
of the CO,RR via density functional theory (DFT) calculations.
Among the studied SACs, Ni SAC was found to be the optimal
sample owing to strong CO, adsorption and a significant
reduction in the rate-determining potential (0.36 eV) required
for the formation of formic acid via the *OCHO key intermedi-
ate. Besides, the findings demonstrate that NiCN is selective
towards the CO,RR despite the inevitable competition from
the HER of the water splitting process.

2. Methodology

In this study, all theoretical calculations were performed based
on DFT by employing the Vienna Ab initio Simulation Package
(VASP) with the post-processing VASPKIT package.>
Generalized gradient approximation with the Perdew-Burke-
Ernzerhof (GGA-PBE) exchange-correlation functional was
adopted in the calculations. The projected augmented wave
(PAW) pseudopotentials and the plane-wave basis functions
with a plane wave energy cut-off of 500 eV were used.®* A 3 x 3
x 1 Monkhorst-Pack grid k-point mesh was used to sample the
surface Brillouin zone.®® For geometric optimization and ionic
self-consistent calculation, the energy convergence criterion
was set to 1.0 x 10™* eV per atom, and force convergence at
0.05 €V A~ was considered. A 2 x 2 x 1 supercell was con-
structed with a vacuum space of 15 A in the z-direction to
minimize the interlayer interactions. Furthermore, the thermo-
dynamic stability of the selected SAC was studied by ab initio
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molecular dynamics (AIMD) simulation with a time step of 1.5
fs. Charge distribution in the form of net Bader net atomic
charge was calculated using the code provided by the
Henkelman group.®®

The formation energy of the loading of M-SAC on the
g-C3N, host material is an important indicator of the stability
of M-SAC in the system. The following eqn (1) was employed to
define the formation energy (E) of the SAC-loaded system:

E¢ = Esac-cn — Esac — Ecx (1)

where Egac_cn, Esac and Ecy represent the total energy of the
M-SAC-loaded g-C;N, system, the chemical potential of the
single metal atom (from the stable metal bulk system), and
the energy of the 2 x 2 x 1 g-C;N; monolayer system,
respectively.

The Gibbs free energy changes in the reaction coordinate
are based on the relative energy changes of the transition
state. The Gibbs free energy denotes the energy required to
overcome the barrier towards the formation of the next tran-
sition state, which directly indicates the likelihood of the for-
mation of the transition state from the energy perspective. Eqn
(2) was used to define the adsorption energy (E.qs) of the reac-
tant and the energy of the intermediate-product-loaded
system:

Eads = Etotal - (ECN or MCN — Eadsorbate) (2)

where Etotal; EcN or MoN and Eadsorbate represent the total ener-
gies of the molecules in the catalytic system, the isolated cata-
lyst and the absorbate molecule (that is adsorbed or removed
from the system), respectively.'

Screening of Metal SAC in g-C:N, for
CO.RR

Noble Metal: Ag, Au, Pd, Pt
Transition Metal: Ni, Cu, Zn, Cd
P-block Metal: Ga, In, Sn, Pb, Bi

Level 1: Stability
Ef<0eV
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A screening process (Fig. 1) was developed to screen the
optimal M-SAC to be loaded on the g-C;N, system to catalyze
the CO,RR via the two-proton coupled electron transfer
process. The process consisted of 4 evaluation levels: (1) the
thermodynamic and dynamic stability of the M-SAC-loaded
system, (2) the CO,RR activity and product selectivity (the com-
petition between the formation of CO and HCOOH), as well as
H, evolution reaction activity, (3) the competition between
CO,RR and HER and (4) the optical properties and charge dis-
tribution of the M-SAC-loaded system.

3. Results and discussion
3.1 Geometries and the stability of SACs on g-C;N,

It is known from the widely reported nitrogen-coordinated
metal-single-atom-loaded graphene-based catalysts®”~"* that
the unique tri-s-triazine architecture of g-C;N, exhibits a large
internal cavity between the triazine structures and the unsatu-
rated nitrogen atoms, which is particularly suitable for the
loading of atoms with large atomic radii. As such, this work is
focused on loading various M-SACs at the center of the six-fold
cavity of g-C;N, and evaluating their role in lowering the rate-
determining potential of the CO,RR. The well-optimized
monolayer structure of g-C3N, with C-N bond lengths of
around 1.33-1.40 A and 1.47-1.5 A in the six-membered ring
and the heptazine bridging C-N, respectively, and the lattice
size of 7.14 A (a = b) are in good agreement with previous
theoretical results.”>””* The formation energies of different
M-SACs were calculated to evaluate their stability in the inter-

Level 2: CO2RR
Epds(CO2RR). MCN

Level 2: HER

Epds(HER). MCN

Level 3: HER Competition
Epas, cozrr < |Epas, nerl

Level 4: DOS (Eg,MCN < Eg,CN)

Yes

Level 4:

Charge Distribution

Optimal Metal SAC

Fig. 1 Process flow chart for screening M-SAC to be loaded on g-C3N, for catalyzing the CO,RR.

This journal is © The Royal Society of Chemistry 2024
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stitial space of the heptazine structure of g-C;N,, as shown in
Fig. 2(a). Apart from the Cd and Zn SACs, the formation ener-
gies of all other M-SACs had negative values ranging from
—0.39 to —2.54 eV. This implies that the loading of the M-SACs
is thermodynamically favorable and spontaneous except for
the Cd and Zn SACs, as shown in Fig. 2(b). Therefore, the Cd
and Zn SACs were excluded from further investigations.
Besides evaluating the thermodynamics of the loading of
M-SACs, it is generally known that the N atoms at the edge of
the triazine ring serve as the active sites of graphitic carbon
nitride due to the unsaturated coordination of the N atoms.””
Hence, the interaction between the M atoms and the neighbor-
ing unsaturated N atoms plays an important role in retaining
the structural integrity and constructing a favorable coordi-
nation environment for the activation of CO,.”® Even though
all the metals can be spontaneously loaded onto the intersti-
tial space of the tri-s-triazine allotrope except for Cd (0.57 eV)
and Zn (0.85 eV) (Fig. 2(c)), it is expected that elements that
exhibit poor interaction with the N atoms are unlikely to
exhibit good reduction performance owing to the structural
deformation during the activation of the CO, molecules (In,
Ag, Cd and Ga SACs). On the other hand, the M-SACs with
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larger atomic radii, including Bi, Sn, and Pb SACs, were
strongly bonded to g-C;N, with M-N distances ranging from
2.49-2.76 A while residing in the center of the 6-fold cavity.
Therefore, the loaded SACs were less likely to aggregate.
Meanwhile, the M-SACs with smaller radii (Cu, Ni, Zn, Pd and
Pt) tended to shift from the middle of the interstitial space to
one of the corners of the heptazine ring, forming bonds with
the two neighboring N atoms (M-N distances of 1.89-2.23 A)
and resulting in a structure with a lower coordination number.

The thermodynamic stability of an M-SAC is generally rep-
resented by the formation energy, and it is correlated with the
dynamic stability of the MCN system. Thus, to ensure that the
M-SAC has been successfully loaded to the six-fold cavity of the
CN system, the Au system with the lowest formation energy
was tested. In order to verify the stability of the SAC-loaded CN
system, we performed an AIMD simulation of the AuCN system
at T = 300 K for 4 picoseconds (4 ps). In the simulation, there
was no obvious geometry deformation of AuCN (Fig. S1%), and
most importantly, the metal atoms did not escape the 6-fold
cavity of g-C3N, throughout the duration of the AIMD simu-
lation, manifesting its stability in the six-fold cavity. This veri-
fies that the interaction between the metal single atom and the
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Fig. 2

(a) The optimized corrugated g-C3N4 structures and the M-SAC binding sites of the six-fold cavity. Brown and blue indicate C and N atoms,

respectively. (b) The computed formation energy of different M-SACs supported on the six-fold cavity. (c) Optimized structures of the six-fold cav-

ities in the investigated MCN samples.
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CN system can stabilize the metal in its atomic form without
aggregation.

3.2 CO,RR pathways

In the first stage of reaction analysis, it is important to identify
the relevant reaction pathway of the CO,RR. The first transfer
of the proton-electron pair to CO, will lead to the formation of
a carboxyl (*COOH) species or formate species (*OCHO),
which can be further reduced to various carbonaceous pro-
ducts.”” In this study, we particularly investigated the role of
SAC in tuning the elementary CO,RR steps towards governing
the product selectivity of the reaction. Therefore, we limited
this study to only the 2-proton/electron CO,RR pathway (i.e.,
CO, to HCOOH and then to CO). The scope of the study was
narrowed down to the competition between the formation of
CO and HCOOH from CO, via the carbonate or the formate
reaction route.

First, the CO, molecule is adsorbed to the surface of the
system and is reduced to one of the key intermediates, namely
*COOH (carbon-bond configuration) or *OCHO (oxygen-
bonded configuration), which initiates the reduction reaction.
Subsequently, the second transition state is formed with a
further reduction of *COOH or *OCHO to *CO or *HCOOH via
the 3 reaction pathways given below (eqn (3)-(5)). These are
desorbed from the surface, producing CO and HCOOH as the
end products of CO,RR, respectively (Fig. 3).

CO, — *CO, — *COOH — *CO — CO (3)
CO, — %C0O, — *COOH — *HCOOH — HCOOH  (4)

CO, — *CO, — *OCHO — *HCOOH — HCOOH  (5)

3.3 CO,RR activity and selectivity analysis

As mentioned above, only the two-proton coupled electron
transfer process was studied in this investigation. The first pro-

H
| o
O
o
l
0o=c=o0
*COOH
H
M-SAC |
— Z°
co, o T

*OCHO
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tonation of CO, is generally known as the potential-limiting
transition state, which governs the effectiveness of the system
in catalyzing the CO,RR. The loading of heteroatoms, particu-
larly SAC, is one of the effective methods to alter the catalytic
surface chemistry and enhance the catalytic activity of the
system by lowering the energy barrier. Hence, noble metals
(Ag, Au, Pt and Pd), post-transition metals (Ni, Cu, Zn and Cd)
and p-block metals (Ga, In, Sn, Pb and Bi) SAC were loaded
onto the surface of g-C;N, and investigated for their effect on
tuning the key intermediates to yield different carbon pro-
ducts. The findings suggest that the loading of SACs stabilized
the *COOH and *OCHO key intermediates, with all samples
showing significantly lower relative free energy changes in
comparison with the pristine CN system (Fig. S3(a, b) and
Table S2t). Owing to the oxophility of p-block metals, all the
p-block metals (Ga, In, Sn, Pb and Bi) favored the formation of
the O-bonded intermediate *OCHO (over the *COOH inter-
mediate), with the relative Gibbs free energy changes of 0.37,
0.50, —0.82, —0.56 and —0.40 eV, respectively. *OCHO proved
to be the key intermediate in the formation of formic acid
(Fig. S3(c)f). Unlike transition metals, the post-transition
metals possessed p-block-metal-like behavior and mostly
showed lower free energy for the formation of the O-bonded
intermediate than the C-bonded intermediate.

In order to identify the active reaction sites of the MCN, a
few potential active sites were investigated to locate the feasi-
bility of the CO,RR. The unsaturated edge nitrogen is not only
a potential anchoring spot for the M-SAC; it is also a com-
monly studied catalytically active site in pristine g-C;N,. Thus,
the CO, molecules were first adsorbed on the unsaturated N
atoms on g-C3N, and the MCN system. In the pristine CN
system, the CO, molecules were adsorbed on the saturated N
atoms, and thus the edge N atoms on the heptazine framework
were selected as the active sites of the CN system. However, the
CO, reactant is less likely to be adsorbed on the same spots
owing to electron redistribution after the loading of the

O
7
C/ co
I

|
e ... . AW A

\ *CO co

H Cc
\O/ \O

S

I HCOOH

I
e ., 4. — _ 4

*HCOOH 11 HCOOH

Reaction Pathway I: *CO, — *COOH — *CO — CO
Reaction Pathway II: *CO, — *COOH — *HCOOH — HCOOH
Reaction Pathway lll: *CO, —» *OCHO — *HCOOH — HCOOH

Fig. 3 CO,RR mechanism. I: CO, to CO via the *COOH intermediate; 1l: CO, to HCOOH via the *COOH intermediate; Ill: CO, to HCOOH via the

*OCHO intermediate.
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M-SAC. Hence, after the adsorption of CO, molecules on the
M-SAC, it was found that the SAC not only favors the adsorp-
tion of CO, molecules, but it also significantly lowers the
energy barrier by destructing the linear and stable structure of
CO,.

It has been found previously that the lone electron pair on
the oxygen of CO, tends to interact with the metal single atom,
and the molecular behavior is similar to the other M-SAC sup-
ported on graphene.”® However, the distance between
adsorbed CO, and the metal single atom (actives) ranged from
1.9 to 3.4 A due to the weak van der Waals interaction between
CO, and the M-SAC-loaded carbon nitride surface, which is
also reflected in the CN structure (Fig. S2(a)f). A similar
phenomenon has been observed by Maihom and group who
employed empirical correction in Gimme’s scheme
(DFT-D3).”> Moreover, the Ni SAC, which was shifted to the
corner position with lower coordination, exhibited more active
CO, chemisorption because of its strong electron-donating
ability. Evidently, the activation of CO, was revealed by the
dimensional changes of the CO, molecule, with the C-O bond
length increasing from 1.17 to 1.21 A when adsorbed on the
surface of the NiCN catalyst.”>"®* Another apparent evidence of
CO, activation was observed since the linear angle of CO,
(180°) was significantly reduced to 143.4° after the geometry
optimization of CO, adsorbed on the NiCN catalyst (Fig. S21).

For the formation of CO, in most cases, the rate-determin-
ing step is the first hydrogenation step of CO,, but several
exceptions like catalysis on AuCN, CuCN, NiCN, PdCN and
PtCN have been reported as they are restricted by the desorp-
tion of CO. Hence, it is highly unlikely for the end product of
the CO,RR to be CO, which will be further reduced into other
products, such as CH,;, HCOOH, C,,, and even Cs., which
align with the following discussion on HCOOH.*'>83-8¢

From the coordination environment perspective, it was
observed that the coordination number of the M-SAC plays a
significant role in modulating the potential-limiting steps of
the reaction. As mentioned above, due to poor interaction
between the M-SAC and neighboring N atoms, M-SACs with
lower coordination numbers (InCN, AgCN and GaCN) had a
huge increment in the first protonation step of the CO, mole-
cule towards forming both *COOH and *OCHO intermediates.
This originates from the deformation of the structure due to
weak bonding between the M-SAC and the unsaturated N
atoms, causing the structures to heavily deform (i.e. away from
the original plane of the monolayer) and form a bond with the
intermediates. On the other hand, the highly coordinated
M-SACs (BiCN, CdCN and PbCN) generally had difficulty in the
adsorption of the CO, molecule, while the *CO desorption
process was easy owing to the weak interaction between the
SAC and the intermediate. This phenomenon is caused by the
dangling and available bonds on the M-SACs that tend to form
bonds with the neighboring N atoms. Interestingly, the 6-co-
ordinated M-SACs aid the activation of CO, and the formation
of *OCHO intermediates. Unlike the M-SACs with high coordi-
nation, the low-coordinated SACs (AuCN, CuCN, NiCN and
ZnCN) were exquisite in the protonation of CO, to form the
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*COOH intermediate while exhibiting difficulty in the CO de-
sorption process as a trade-off.

In this analysis, a comparison of the rate-determining
potential between the CO,RR and HER served as an indicator
of reaction selectivity; this was evaluated based on the thermo-
dynamic reaction free energy of the CO,RR step involving the
formation of either CO or HCOOH and the reduction of water
to hydrogen. Among noble metals, Au SAC showed a signifi-
cantly low thermodynamic reaction free energy of 0.63 eV, and
therefore, <0.63 €V was chosen as the passing criterion for the
M-SAC that can substitute the cost-inefficient noble metals. In
this stage, there were only 7 metals SACs that met this cri-
terion, namely Bi, In, Cu, Ga, Ni, Pb and Pd SACs. Among
them, only 4 SACs exhibited energy barriers less than 0.45 eV,
including Ga, Pb and Ni SACs with energy barriers of 0.21,
0.36 and 0.44 eV, respectively. Yet, Ga SAC had poor CO,
adsorption on the surface, which is higher than any of the
transition states in the evolution of CO,. Thus, it is excluded
from property evaluation in the later discussion. Thus, NiCN
showed optimal performance among the 13 metal SACs
studied. This showcases the potential of Ni SACs supported on
carbon nitride as an efficient catalyst for reducing CO, to
formic acid (Table 1).%”

3.4 HER competition

The CO,RR is usually conducted in the liquid-gas phase or the
solid-gas (moist CO,) phase, where the interaction between
the catalyst and water is inevitable. Hence, the competition
between the HER and CO,RR is detrimental to the catalytic
progression of the CO,RR. Both HER and CO,RR will consume
the generated h" + e~ pairs during the protonation process. In
addition to that, the H atoms will occupy and cause an active
site poisoning effect, demoting the CO,RR efficiency. Hence, a
comparison between the free energy barriers of HER and
CO,RR serves as a great selectivity descriptor in understanding
which reaction is more likely to occur on the surface of the
MCN system. The reaction with a lower free energy barrier is
more favorable than the reaction with a higher free energy
barrier owing to the large overpotential requirement in driving
the latter reaction (Table 2).

Table 1 Relative free energy of the first protonation of CO,

Systems AG [*COOH] (eV) AG [*OCHOY] (eV)
CN 1.36 2.44
BiCN 0.32 —0.40
InCN 1.24 0.50
SnCN 0.77 -0.82
AgCN 0.73 0.63
AuCN -0.82 -0.93
CuCN 0.23 -0.13
GaCN 0.87 0.37
NiCN 0.45 0.22
PbCN 0.51 —-0.56
PACN 0.64 0.53
PtCN -0.45 -0.95
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Table 2 Dominant product, PDS and free energy barrier of CO,RR in
the MCN systems based on the lowest rate-determining potential of
PDS based on the relative Gibbs free energy changes in completing
Pathway 1, 2 or 3 to form CO and HCOOH

Reaction Potential-limiting energy
Systems  path PDS barrier (eV)
CN Torll *CO, — *COOH 1.36
BiCN TorlIl *CO, — *COOH 0.32
InCN 111 *CO, - *OCHO 0.50
SnCN Torll *CO, - *COOH 0.77
AgCN 111 *CO, — *OCHO 0.63
AuCN I *COOH — HCOOH 1.11
CuCN II or III *HCOOH — HCOOH 0.52
GaCN 111 *CO, = *OCHO 0.37
NiCN 111 *OCHO — *HCOOH  0.36
PbCN 111 *OCHO — *HCOOH  0.44
PACN 111 *CO, — *OCHO 0.53
PtCN I *COOH — *HCOOH  0.75

*PDS = potential-determining steps (the transition state that requires
the highest potential in the entire reaction path).

By comparing the HER and the two CO,RR (two-proton/
electron pairs) reaction pathways, it was found that there is a
strong correlation between the *H and *COOH intermediates,
which is similar to the previously reported DFT work.*® A
similar trend was observed for the formation of CO through
the carboxyl (*COOH) intermediate, with the inevitable and
strong HER competition causing the formation of CO to be
less competitive to the formation of H,. A majority of CO-selec-
tive MCN systems (BiCN, SnCN, CdCN, ZnCN) had strong HER
competition, as exemplified by the much lower free energy
barrier of the HER reaction. A similar phenomenon was found
in the noble metal systems AuCN, PACN and PtCN, which had
rate-determining potentials of 0.87, 0.39 and 0.28 eV, respect-
ively. On the other hand, the CO,RR pathway with the formate
intermediate (*OCHO) was found to retain selectivity towards
the CO,RR over the HER (Table 3).

Table 3 Rate-determining potentials of the CO, HCOOH formation
reactions and HER on the CN and MCN systems and their selectivity to
CO2RR or HER. The values in the table correspond to Fig. 4

Systems AGpgs HER (eV) AGpgs CO,RR (eV) Selectivity
CN 1.80 1.36 CO5RR
BiCN 0.18 0.31 HER
InCN 1.02 0.50 CO,RR
SnCN 0.51 0.77 HER
AgCN 0.67 0.63 CO5RR
AuCN 0.87 1.11 HER
CdCN 0.16 0.32 HER
CuCN 0.42 0.52 HER
GaCN 0.88 0.37 CO5RR
NiCN 0.75 0.36 CO5RR
PbCN 0.59 0.44 CO,RR
ZnCN 0.43 0.45 HER
PACN 0.39 0.53 HER
PtCN 0.28 0.75 HER

*HER = Hydrogen evolution reaction, CO,RR = Carbon dioxide
reduction to carbon monoxide via *COOH as the key intermediate or
to formic acid via *OCHO as the key intermediate (depending on
which has a lower free energy barrier).
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3.5 Property investigation and charge distribution

For an emerging photocatalytic material, the bandgap indi-
cates its capability to harvest light and the absorption range of
the light to induce the formation of electron-hole pairs for the
photocatalytic redox reaction. The bandgap of g-C;N, was cal-
culated to be 1.85 eV, which is way below the experimental
value, when the PBE functional was formulated to obtain the
ground-state properties of atoms, molecules and condensed
matter. However, it could not predict the exact bandgaps of
semiconductors. The fundamental bandgap of a system with N
electrons is given by the differences in the total ground-state
energies of systems with different numbers of electrons. The
ground-state total energy can be estimated by DFT but this
does not imply that the bandgap of the Kohn-Sham system is
the fundamental gap of the interacting electron system.
Correction using HSE03 can be implemented to rectify the

(@) 15
ol e —OCN
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— 0.5 ——SnCN
d *+12H AgCN
= i 2 AuCN
2 / —— CdCN
2 ——CuCN
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159 ——PtCN
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O s PdCN >iUCN *oosy InCN
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0.0 0.5 1.0 1.5 2.0

AG,q, HER (eV)

Fig. 4 (a) Free energy diagram of HER on the SAC-loaded CN systems
(M = Bi, In, Sn, Ag, Au, Cd, Cu, Ga, Ni, Pb and Zn). (b) Competition
between CO,RR and HER based on the rate-determining potentials of
the CN and MCN systems. The area below the linear lines indicates
CO,RR-selective catalysts, whereas the area above the linear line indi-
cates HER-selective catalysts.
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underestimation of the bandgap, but it requires a lot of com-
putational resources and is less suitable for calculating a 2 x 2
x 1 supercell to compare the pristine and the metal-loaded
systems. Yet, the PBE generated can serve well to compare the
relative bandgap changes between pristine CN and the metal-
loaded counterpart. In our analysis, the N 2p orbital domi-
nated the valence band maximum (VBM), while the conduc-
tion band minimum (CBM) was mainly composed of a combi-
nation of the 2p orbitals of C and N atoms, similar to that
reported in the literature.”> Two M-SACs, namely Pb and Ni
SACs, had narrower bandgaps, indicating that the metal-

100
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—
O
~
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loaded systems have better light adsorption capability than
pristine CN (Fig. 5). Furthermore, it was observed that the
mid-gap state, which is also known as the impurities state of
the metal-loaded SAC, was located closer to the CB. As such,
the impurity states will serve as the electron capture sites and
thus active sites for the reduction process, once again verifying
the better adsorption of the reactant and other molecules to
the M-SAC. Besides, the loading of M-SAC was found to have a
band-shifting effect that governs the reducibility of the catalyst
system. All three M-SAC-loaded CN samples had upshifted
peaks, indicating the stronger reduction potential of the

L

Fig. 5 The density of states of the metal-loaded CN systems: (a) pristine CN, (b) PbCN and (c) NiCN. Bader net atomic charges on the catalytic
systems: (d) pristine CN, (e) PbCN and (f) NiCN. The brown balls represent carbon atoms; the light blue balls represent nitrogen atoms; the black ball

represents the Pb atom and the silvery grey ball represents the Ni atom.
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systems. The two M-SAC-loaded systems PbCN and NiCN
appeared to have strong light harvesting ability with lowered
bandgaps of 1.51 and 1.71 eV, respectively.

Bader charge analysis was conducted to investigate the
charge distribution on the catalyst surface to elucidate the
charge transfer process after the loading of the M-SACs. It was
observed that the loading of different metal-SACs leads to
different charge redistribution on the catalyst and that the
neighboring N atoms contribute electrons to the M-SACs,
which is in coherence with the discussion on the density of
states of the system that the M-SAC serves as the electron-trap-
ping zone. Both the systems showed charge migration effect
on the Pb and Ni SAC sites with positive charges at +0.79 |e|
and +0.60 |e|, respectively, while the total charge changes in
the surrounding N atoms were +0.38 |e| and +0.10 |e| in com-
parison with the pristine CN system (Fig. 5). This reflects that
charges are contributed by the neighboring N atoms to the
loaded M-SAC, easing the adsorption of the CO, molecule, as
reflected by the lowered energy barrier in the previous discus-
sion. Electron transfer from the metal atoms to g-C3N, leads to
a more positive charge value on the metal single atoms, once
again confirming the strong covalent interactions between the
metal single atoms and g-C3;Nj.

4. Conclusion

In summary, we applied periodic DFT calculations to investi-
gate how CO, is adsorbed and reduced to formic acid in the
MCN systems. The metal active sites attract CO, through the
electron withdrawal from the neighbouring N atoms and
accumulation on the metal active sites. From the reaction kine-
tics perspective, NiCN showed outstanding CO, activation
ability, as observed from the bent structure of CO, from 180°
to 143.3° and the lengthened C-O bond from 1.17 to 1.21 A
after adsorption on the catalyst surface. This is mainly because
of the electrons that migrate from the neighboring N atoms to
the Ni atoms (0.60 |e/), which drastically improve the adsorption
and activation of the CO, molecule on the surface. By compar-
ing the potential-determining steps across various pathways
leading to the formation of carbon monoxide and formic acid, it
was found that NiCN shows optimal performance with the
lowest Gibbs Free reaction energy change of 0.36 eV, which is
approximately a 73.5% improvement compared with pristine
CN. Moreover, NiCN is also selective towards the formation of
formic acid, with a significantly lowered rate-determining poten-
tial of <0.5 eV; It selectively converts CO, to formic acid in two
steps (Pathway 3): (i) CO, is first hydrogenated to the formate
intermediate state; (ii) the formate intermediate is then further
reduced to formic acid. The hydrogenation of the formate inter-
mediate to formic acid is the potential-determining step of the
NiCN system. The lower activation energy of the hydrogenation
steps in NiCN is due to the greater electron delocalization
between the catalyst active site and the C-O bond of CO,, which
leads to a more stable transition state. Apart from that, the free
energy change of the CO,RR potential-determining step to gene-
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rate formic acid (0.36 eV) is lower than that of the highly com-
petitive HER (0.75 eV), thus inferring that the catalytic system
favors CO,RR over the HER. In conclusion, our results have
established an inspiring framework based on CO, adsorption
and hydrogenation to produce formic acid on graphitic carbon
nitride with metal-single-atom modifications for advancing the
design of future catalysts.
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