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Electronic redistribution through the interface of
MnCo,0,;—-NizN nano-urchins prompts rapid In
situ phase transformation for enhanced oxygen
evolution reactiont
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One of the most coveted objectives in the realm of energy conversion technologies is the development
of highly efficient and economically viable electrocatalysts for the oxygen evolution reaction. The com-
mercialization of such techniques has thus far been impeded by their slow response kinetics. One of the
many ways to develop highly effective electrocatalysts is to judiciously choose a coupling interface that
maximizes catalyst performance. In this study, the in situ electrochemical phase transformation of
MnCo,04-NizN into MnCo,0O4—NiOOH is described. The catalyst has an exceptional overpotential of
224 mV to drive a current density of 10 mA cm™2. Strong interfacial contact is seen in the MnCo,0O4—NizN
catalyst, leading to a considerable electronic redistribution between the MnCo,0,4 and NizN phases. This
causes an increase in the valence state of Ni, which makes it an active site for the adsorption of *OH, O*,
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and *OOH (intermediates). This charge transfer facilitates the rapid phase transformation to form NiOOH
from NizN. At a higher current density of 300 mA cm™2, the catalyst remained stable for a period of 140 h.
DFT studies also revealed that the in situ-formed NiOOH on the MnCo,04 surface results in superior
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Introduction

We have never been more susceptible to the potentially disas-
trous repercussions of climate change than we are right now. A
dramatic change in both the temperature and the pattern of
the weather has resulted as a direct consequence of severe
human activities such as warfare, vast space exposition, and
numerous other steps that emit greenhouse gases. This has
resulted in significant dangers to all forms of life on the
planet.” Hence, it is vital to solve the ever-increasing petro-
chemical energy crises and environmental pollution concerns
by creating sustainable and green energy sources.>” For
oxygen/hydrogen production, electrocatalytic water splitting
has attracted great attention. However, the sluggishness of the
reaction kinetics of the oxygen evolution reaction (OER) and
its complex reaction mechanism are barriers to the water split-
ting reaction.®”® In general, the OER entails a multi-step four-
electron transfer.”** It is still difficult to speed up the electron
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OER kinetics compared to that of NIOOH alone.

transfer process in the OER at the same time by merely chan-
ging the charge of the electrocatalyst."'* Recently, first-row
transition metal-based spinel oxides have been widely investi-
gated as potential materials for OER due to their excellent
durability under elevated anodic potential and the interaction
of their inner multivalent states.">'® The existence of tetra-
hedral and octahedral sites in the spinel structure offers
numerous locations for accommodating various transition-
metal cations in a variety of valence states to generate a sub-
stantial number of oxides.’”° In all the spinel oxides, the
intrinsic conductivity is very low due to their semiconducting
nature and the small number of active sites.”"** Recent theore-
tical and experimental investigations have already shown that
Ni;N is a very intriguing material in this scenario, since it has
certain surface terminations and crystal facets that can provide
optimal energetics for water dissociation.**”>* Different fabri-
cations of metal-nitride-based electrocatalysts have been devel-
oped to further increase the effectiveness of the water splitting
performance of metal nitrides such as Ni;N-NiMoN/CC, Ru/
Ni;N-Ni and Co-Ni;N.?°% In all these materials, the Ni atoms
have a low oxidation state, which makes them electron-rich
with a filled e, orbital. However, the activity of the Ni-based
materials can be further enhanced by the enhanced valence
state of the Ni atoms. Higher-valent Ni metal atoms can
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tremendously enhance the OER by enhancing the rate of
adsorption of intermediates (OH*, O* and OOH*) on the active
sites.>®? Interface coupling has a significant effect on electro-
catalytic behaviour through electronic modulation of the
surface atoms present at the interface, adjusting the overlap of
orbitals between different atoms, and ultimately optimizing
the attachment of the intermediates on the electrode
surface.>*%’

Meanwhile, the findings of theoretical simulations and
experimental characterizations have shown that the in situ
formed metal oxyhydroxides on the outermost layer of metal
nitrides are active species that accelerate the OER kinetics.*®3°
As an illustration, Schuhmann and his coworkers demon-
strated that the conversion of Co,N into more active CoOOH
can boost the OER kinetics.*® Therefore, choosing the appro-
priate solid for NizN to develop a composition in which the
interfacial interaction can significantly enhance the phase
transformation of the Niz;N phase to construct the more-active
NiOOH phase.

Herein, using the interfacial interaction technique, we
formed novel heterointerfaces of MnCo,0,-Ni;N over nickel
foam (Scheme 1). The electrodeposition technique was used
for the synthesis of Ni(OH), nanosheets over MnCo,0, nano-
wires. Further nitridation in the presence of ammonia pro-
duces the NizN nanosheets over the MnCo,0, nanowire
scaffold. The heterostructure undergoes rapid phase trans-
formation to generate more efficient NiOOH species. This
heterostructure shows impressive OER activity, achieving an
overpotential of 224 mV (@ 10 mA cm™?). The durability of the
catalyst is also excellent, with no change in current density
(300 mA cm™?) even after 140 h of stability testing. Charge
transfer from Niz;N to MnCo,0, has been observed and charac-
terized using X-ray photoelectron spectroscopy (XPS). The pres-
ence of high-valent Mn** and Co*" in MnCo,0, makes it of
high polarity, which results in electronic uptake from the NizN
phase through the interface. This reallocation of electrons
through the interface leads to the enhancement of the Ni
valence state and enhances the adsorption of OH™ ions, which

Nickel
Nitrate

MnCo,0,/NF

MnCo,0,-Ni(OH),/NF
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simultaneously increases the catalytic performance towards
the oxygen evolution reaction (OER) by reconstructing the
phase to form more active NiOOH species. We have also
carried out DFT calculations of the MnCo,0,-NiOOH hetero-
structure, and the results showed that the NiOOH that is
created over the surface of MnCo,0, possesses a higher level
of activity compared to NiOOH alone.

Experimental section
Materials

All chemicals are purchased from a variety of sources and uti-
lised in their original forms. Manganese(u) chloride tetrahy-
drate (MnCl,-4H,0, 99.9%), cobalt(i) nitrate hexahydrate (Co
(NOj3),-6H,O, 98%), nickel(u) nitrate hexahydrate (Ni
(NO3),-6H,0, 98%), ammonium fluoride (NH4F, 99.9%), urea
(NH,CONH,, 99.5%), potassium hydroxide pellets (KOH) and
ruthenium(wv) oxide (RuO,, 99.9% trace metal basis) were pur-
chased from Sigma Aldrich. Nanoshel was the supplier of
nickel foam (NF). For every step of the preparation, Milli-Q
water with a conductivity of 0.056 S cm™" was used.

Synthesis of MnCo0,0, nanowires on NF

To cleanse the surface and remove any unwanted coatings, the
NF was gently washed with DI water and acetone after being
cleaned with a 3 M HCI solution that was ultrasonically agi-
tated. The cleaned NF was divided into small pieces with a
1 cm x 1.5 cm cross-sectional area. The hydrothermal method
was used to grow nanowires of MnCo,0,. A homogeneous
solution of 0.280 g Co(NOj;),-6H,0, 0.088 g MnCl,-4H,0,
0.068 g NH,F, and 0.051 g urea was made using 5 mL of
ethanol and 25 mL of DI water. The above-described solution
was placed in a Teflon-lined stainless-steel autoclave, and one
piece of NF was placed in the autoclave. The autoclave was
heated at 120 °C for 12 h. The as-synthesized MnCoLDH/NF
was removed from the autoclave and rinsed with ethanol and
DI water. After washing, the electrode was dried at 60 °C over-

MnCo,0,-NiOOH/NF

MnCo,0,-Ni;N/NF

Scheme 1 Formation of MnCo,04—NiOOH nano-urchins over nickel foam.
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night. Finally, the as-prepared MnCoLDH/NF electrode was cal-
cined in air for 2 hours at 350 °C to form MnCo,0, over nickel
foam.

Synthesis of MnCo,0,-Ni;N

Nickel hydroxide nanosheets were electrodeposited over
MnCo,0,/NF. The fabrication of Ni(OH), was done using a
three-electrode setup in which MnCo,0,/NF, Ag/AgCl, and
graphite rod were used as the working, reference, and counter
electrodes, respectively. The electrolyte was prepared using an
aqueous solution of 0.2 M Ni(NO3),-6H,0. The deposition
potential was kept at —2.0 V for 600 seconds. Following this
step, the deposition of Ni(OH), onto the MnCo,0,/NF sub-
strate occurred. This MnCo,0,-Ni(OH), electrode was heated
in a furnace at 350 °C under a constant NH; flow for 2 h. Ni
(OH), was transformed into NizN sheets over the MnCo,0,
nanowire. The obtained MnCo,0,-NizN catalyst was washed
with DI and ethanol several times and used as a working elec-
trode. The synthesis of MnCo,0, and Ni;N individually, along
with the physical characterization and electrochemical analysis
details, are provided in ESI S1.1 and 1.2.F

Synthesis of MnCo0,0,-NiOOH

MnCo,0,-NiOOH was fabricated in situ through anodic oxi-
dation of the MnCo,0,-NizN. A three-electrode setup was
used, in which a graphite rod was the counter electrode, Ag/
AgCl was the reference electrode and MnCo,0,-Ni;N was used
as a working electrode. In addition, 1 M KOH was used as the
electrolyte. The catalyst was formed by conducting 50 LSV
cycles in the potential range of 0 to 1 V (vs. RHE). The scan
rate was kept at 5 mV s™'. The phase transformation of
MnCo,0,-Ni;N occurred to give MnCo,0,-NiOOH.

Results and discussion

As shown in Scheme 1, the catalyst MnCo,0,-NizN was pro-
duced using the temperature-controlled nitridation of
MnCo0,0,-Ni(OH), under the indicated conditions. Electron
transport between Niz;N and MnCo,O, is facilitated by the pres-
ence of a heterointerface between the two materials. NiOOH is
produced from Niz;N upon electrochemical activation and can
catalyse the oxygen evolution reaction (OER). Structural eluci-
dation of all the catalysts was conducted using PXRD analysis.
The PXRD pattern of MnCo,0,4-Ni;N is shown in Fig. 1a. This
pattern confirms the formation of MnCo,0, and Ni;N with a
set of obvious diffraction peaks corresponding to the cubic
and hexagonal phases of MnCo,0, (JCPDS No. 23-1237) and
NizN (JCPDS No. 70-9598), respectively.*’** The electronic
structure, chemical states, and electronic redistribution in
MnCo,0,4-NizN, MnCo,0, and, NizN were investigated using
X-ray photoelectron spectroscopy analysis (XPS). The wide-scan
XPS spectra of MnCo0,0,-NizN, MnCo,04, and Ni;N can be
found in ESI S2.1 Fig. S1.f We observed three peaks in the Ni
2p spectrum of MnCo0,04-Ni;N (Fig. 1b), with centres located
at 853.2, 856.3, and 860.7 eV, respectively. These peaks are

This journal is © The Royal Society of Chemistry 2024
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attributed to the existence of Ni-N and Ni-O, in addition to
one satellite peak of Ni 2p;,,. Furthermore, the presence of all
three peaks is also evident in the context of Ni2p,,, splitting at
870.5, 873.6, and 878.6 eV.””** These peaks can also be seen
in the Ni 2p XPS spectra of Ni;N alone (Fig. 1b), but at a some-
what lower binding energy. The increased binding energy of Ni
2p in MnCo,0,-NizN implies that charge is being transferred
from Ni to another atom. The N 1s spectrum (Fig. 1c) for
MnCo,0,-NizN shows a peak at 398.7 eV, which is attributed
to the metal-nitrogen bond.*>*® The N 1s spectra of NizN exhi-
bits the peak for the M-N bond at a significantly lower
binding energy.

The investigation was further extended to the Mn2p XPS
spectra of MnCo,0,-Ni;N and MnCo,0,. We observed four
peaks in the Mn2p spectrum of the catalyst at 640.0, 641.3,
652.1, and 652.2 eV corresponding to the Mn>* and Mn**
peaks of Mn2p;, and Mn2p,, splitting (Fig. 1d). All four
peaks are also detected in the Mn2p spectrum of MnCo,0,
alone, but at higher binding energy. Similarly, in the Co2p XPS
spectrum of MnCo,0,-Ni;N, we observed three peaks at 779.1,
781.6, and 785.7 eV for Co’", Co®", and one satellite peak of
Co2ps, splitting (Fig. 1e). The other three peaks at 795.0,
796.9 and 801.7 eV correspond to Co®*, Co** and one satellite
peak of Co2py, splitting.*”*® Similarly, the Co2p spectra of
pure MnCo,0, show all six peaks, but with a higher binding
energy. Even the O 1s spectrum showed this same pattern
(Fig. 1f). The O 1s spectrum of MnCo,0,-Ni;N shows three
peaks labelled as O1, 02, and O3 at 528.8, 530.4, and 532.0 eV.
The peaks O1 and O2 correspond to the presence of O*7,
which is indicative of the formation of spinel MnCo0,0,.*°>!
The peak O3 corresponds to the presence of chemisorbed
oxygen. These three peaks are consistent with the O 1s spectra
of pure MnCo,0,, but are found at higher binding energies.
The shift towards higher binding energies for Ni and N and
the shift towards lower binding energy in the case of Mn, Co,
and O confirms the charge transfer from Niz;N to MnCo,0,. As
a result of the valence-state enhancement of Ni caused by the
transfer of charges, the Ni surfaces become excellent adsorp-
tion sites for O*, *OH and HOO* intermediate species. This
rapid adsorption of intermediates is responsible for the rapid
phase transformation of NizN into NiOOH, which further
enhances the reaction kinetics for the OER. The conversion of
Ni;N to NiOOH was further confirmed from the XPS spectra.
The peak corresponding to the existence of Ni-N disappeared
(Fig. 1g). The XPS spectra of Co2p (Fig. 1h) and Mn2p (Fig. 1i)
remained the same, as there was no change in the MnCo,0,
phase. The XPS spectra of O 1s is provided in ESI S2.2 Fig. S2.7

To understand the morphology of the MnCo,0,-Ni;N cata-
lyst, FESEM analysis was carried out at each step. We observed
the fine nanowires of MnCo,0, collectively formed a nano-
urchin-like morphology (Fig. 2a and b). Subsequently, fine
nanosheets of NizN were grown over the surface of the
MnCo,0, nanowires. The MnCo,0,-Ni;N nano-urchins are
depicted in Fig. 2¢ and d. During the OER, the Ni;N phase was
converted into NiOOH, and the surface of the nano-urchins
also became rough due to the presence of more exposed
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(a) PXRD pattern of MnCo,04—NizN. High-resolution (b) Ni2p present in MnCo,0,4—NizN and NizN. (c) N1s present in MnCo,04—NizN and

NizN. (d) Mn2p, (e) Co2p and (f) O1s present in MNCo,04—NizN and MnCo,04. (g) Ni2p (h) Co2p and (i) Mn2p XPS spectra of MNCo,0,4—NiOOH.

NiOOH on the surface. The SEM images of MnCo,0,-NiOOH
are provided in Fig. 2e and f.

Examination with a transmission electron microscope
(TEM) was also carried out to gain additional understanding
regarding the shape and microstructure of the MnCo,0,-
NiOOH catalysts. Fig. 3a shows the TEM image of a MnCo,0,
nanowire, whereas the presence of NiOOH nanosheets over the
surface of MnCo,0, nanowires can be seen in Fig. 3b and c.
To confirm the presence of MnCo,0, and NiOOH in the cata-
lyst, HRTEM analysis was carried out. Fig. 3d-f show an
HRTEM image of the catalyst with fringe widths of 0.25 and
0.22 nm corresponding to the (311) plane of MnCo,0, and
(102) plane of NiOOH.**

The phenomenon of superhydrophilicity, which is charac-
terized by a the strong affinity of a surface for water, resulting

10666 | Nanoscale, 2024, 16,10663-10674

in a thin dispersion of water and the absence of droplet for-
mation, can exert a substantial impact on the electrocatalytic
processes. Efficient contact between the catalyst surface and
the electrolyte is crucial for electrolysis and other electro-
chemical reactions. The impact of superhydrophilicity on elec-
trocatalysis can explained by the enhanced surface wettability,
increased mass transport and reduction in concentration
polarization.>** The contact angle of the surface of bare
nickel foam was measured to be 116.7°, making it hydro-
phobic (ESI S3 Fig. $3.11). On the other hand, the surface of
MnCo,0,-NiOOH was found to have a contact angle of 0°,
making it superhydrophilic (Fig. 3g and h). We also analyzed
the surface behaviour of the MnCo,0, and NiOOH; the
MnCo,O, was found to be hydrophobic, whereas the surface of
the NiOOH was found to be superhydrophilic (ESI S3.2
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Fig. 2 (a) and (b) FESEM images of MnCo,04 nano-urchins at different magnifications. (c) and (d) NizN grown over MnCo,04 nano-urchins. (e) and

(f) NiOOH grown over MnCo,04 nano-urchins.

Drop
adsorbed

Fig. 3 (a) TEM images of a MnCo,04 nanowire and (b) and (c) NiOOH nanosheets grown over a MnCo,0O4 nanowire. (d) HRTEM image of
MnCo,0,4—NiOOH confirming the presence of (e) MnCo,0O4 and (f) NiIOOH. (g) and (h) Hydrophilicity analysis using drop shape analysis for
MnCo,0,4—NiOOH. (i) Image on which elemental mapping was carried out and the fine distributions of (j) Mn, (k) Co, (1) Ni and (m) O.

This journal is © The Royal Society of Chemistry 2024

Nanoscale, 2024, 16, 10663-10674 | 10667


https://doi.org/10.1039/d4nr00560k

Published on 08 May 2024. Downloaded on 10/18/2025 10:31:34 PM.

Paper

Fig. S471). The even distribution of Mn, Co, Ni, and O over the
catalyst scaffold was verified using FESEM elemental mapping

(Fig. 3(i)-(m)).
Electrochemical

After the catalysts were developed, further studies were carried
out in an aqueous electrolyte using a three-electrode setup to
investigate the electrocatalytic capabilities of the catalysts in
the oxygen evolution reaction (OER). The catalyst was gener-
ated in situ by conducting linear sweep voltammetry in the
potential range of 1 to 2 V (vs. RHE). The MnCo,0,-Ni3N elec-
trode was transformed rapidly into the MnCo,0,-NiOOH elec-
trode as soon as the OER process started. This rapid phase
modification of MnCo,0,-Ni;N into MnCo,0,-NiOOH is due
to the strong interfacial contact within the MnCo,0, and Niz;N
phase. We confirmed this by the position of the oxidation
peak of Ni (Ni*" — Ni*"). The position of the oxidation peak is
at 1.40 V (vs. RHE) for the oxidation of the bare Ni;N electrode,

View Article Online
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whereas for the heterostructure MnCo,0,-Ni;N it is at 1.33 V
(vs. RHE) (Fig. 4a). This shows that the potential required for
the oxidation of the Ni;N present in MnCo,0,-Ni;N is much
lower than that of the pure Ni;N phase. Fig. 4b shows the
polarization curves of MnCo,0,-NiOOH, MnCo,0,, NiOOH
and commercially available RuO,.

At a current density of 10 mA cm™2, an overpotential of 224,
270, 300, and 350 mV was obtained for MnCo,0,~-NiOOH,
Ru0O,, MnCo,0,4, and NiOOH, respectively. The MnCo0,0,-
NiOOH heterostructure outperforms RuO, as well as all the
supporting catalysts at all current densities. Fig. 4c provides an
insightful comparison of the overpotential at a current density
of 10 mA cm™? for all the catalysts. To gain a deeper compre-
hension of the kinetics of the catalysts, the value of the Tafel
slope was determined by linear fitting of the polarization curve
(Fig. 4d). A Tafel slope value of 111 mV dec™" is obtained for
the MnCo,0,~NiOOH heterostructure, which is lower than
those of RuO, (115 mV dec™'), NiOOH (142 mV dec™") and
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Fig. 4

(a) Polarization curve showing the position of the oxidation peak. (b) Polarization curve for the OER activity of MNnCo,04—NiOOH and other

supporting catalysts. (c) Overpotential at 10 mA cm™2 of current density. (d) Tafel slope values of all the catalysts. (e) EIS Nyquist plots and (f) double
layer capacitance of MnCo,04,—NiOOH, NiOOH and MnCo,0,. (g) Faradic efficiency of MnCo,0,—NiOOH. (h) Stability study using chronoampero-

metry. (i) Overpotential comparison with recently reported catalysts.
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MnCo,0, (194 mV dec™"). The smaller Tafel slope value of the
catalyst implies that the heterostructure likely exhibits quicker
reaction kinetics than the separate phases.

Electrochemical impedance spectroscopy was used to
assess the charge transfer resistance to estimate the interfacial
interaction necessary for quicker electron transfer over the
interface of electrode and electrolyte. The Nyquist plots of
MnCo,0,-NiOOH, NiOOH and MnCo,0, at 200 mV of overpo-
tential are provided in Fig. 4e. The MnCo,0,-NiOOH hetero-
structure exhibited a lower R, value. This lower value of R
implies that there are a significant number of electrochemi-
cally active sites on the surface of the electrode, and that there
is also a significant amount of interfacial charge transfer.
These outcomes from the Nyquist plot indicate that there is a
considerable increase in OER activity as well. We examined the
electrochemical Cy4; of the MnCo,0,-NiOOH catalyst to obtain
an accurate evaluation of the OER activity that is inherently
present in the reported catalyst. The Cq was calculated using
cyclic voltammetry scans performed between 0.01 to 0.1 V (V
vs. Ag/AgCl) with varying scan rates of 20 to 200 mV s~ (ESI
S4.1 Fig. S47). The obtained Cgq; values for MnCo,0,-NiOOH,
NiOOH, and MnCo,0, are 30, 8.1, and 5.8 mF cm™2, respect-
ively (Fig. 4f). The significance of the electrochemical active
surface area (ECSA) in the realm of electrocatalysis is under-
scored by various important factors. Gaining understanding of
these concepts can offer valuable perspectives on the develop-
ment and assessment of electrocatalysts. ECSA is a measure
that accurately reflects the actual surface area of an electrode
that is accessible for electrochemical processes. A higher ECSA
value corresponds to an increased number of accessible sites
for reactant molecules to adsorb and undergo the intended
electrochemical transition. The pace at which these reactions
occur is directly influenced by this factor, thereby impacting
the overall efficiency and performance of the electrochemical
system.

The electrochemically active surface area (ECSA) was com-
puted from the Cq4 values, and the obtained ECSA values for
MnCo,0,-NiOOH, NiOOH, and MnCo,0, were 75, 20.25, and
14.5 cm®, respectively. A high ECSA value signifies that the
catalytic surface contains a significant number of active sites.
We also normalized the LSV curves of all the catalysts using
ECSA, and the heterostructure is still highly active than that of
the individual MnCo,0, and NiOOH phases (ESI S4.2
Fig. S6t1). By comparing the amount of oxygen (O,) evolved
experimentally with the theoretical amount of oxygen (O,)
evolved, we can estimate the faradic efficiency using the water-
gas displacement method. Our catalyst has a faradic efficiency
of 98.5% (Fig. 4g). The chronoamperometry technique was uti-
lized to investigate the long-term durability of the MnCo,0,-
NiOOH catalyst for the OER. As can be observed in Fig. 4h, a
continuous durability test lasting 140 hours was conducted
with chronoamperometry at a very high current density of
300 mA cm> Based on the results of this experiment, the
MnCo,0,-NiOOH catalyst is exceptionally stable even when
subjected to harsh conditions. Comparing the activity of the
majority of the reported MnCo,0,- and NizN-based catalysts
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(Fig. 4i), we observed that the present catalyst exhibits signifi-
cantly low overpotential. The details of the catalyst documen-
ted here are provided in ESI S4.3 Table S1.}

To investigate the surface of the catalyst after a long-term
durability test, we used the TEM and SEM techniques. The
TEM image (Fig. 5a) shows the presence of MnCo,0, nano-
wires wrapped by NiOOH sheets. HRTEM analysis (Fig. 5b-d)
also confirms the presence of MnCo,0, and NiOOH phases.
The SEM images confirm the retention of the nano-urchin
morphology (Fig. 5e-g). The elemental mapping of the catalyst
after stability testing confirms the presence of Ni, Mn, Co, and
O after the long-term durability tests (Fig. 5h-1). We also ana-
lysed the valence state of the elements present in the catalyst
after the stability test. We did not find any change in the XPS
spectra after the long-term durability test (ESI S4.4 Fig. S77).

DFT calculations

DFT modelling was used to provide an understanding of the
precise mechanism underlying the OER. A theoretical model
was constructed, as illustrated in Fig. 6a and b, to more effec-
tively depict the synergistic action in MnCo,0,-NiOOH. Fig. 6¢
shows the OER process in an alkaline medium, which com-
prises four intermediates: (i) OH* is adsorbed on the metal
active site; (ii) O* is formed; (iii) OOH* is produced; (iv) O, is
evolved; and the active site is left unoccupied, which is
employed for more oxygen evolution. In the ESI (ESI) section
S5, Tables S2-S51 contain a description of how the adsorption
energy was calculated. The projected orbital density of state
(DOS) plots for the d-orbitals are shown in Fig. 6d. The area
under the curve embodies the number of occupied electronic
states at each energy level. It was observed that MnCo,0,-
NiOOH exhibits a considerably larger density of states at the
Fermi level as compared to MnCo,0,4 and NiOOH individually.
This substantial increase in the density of states of the d-orbi-
tals at the Fermi level after introducing NiOOH into MnCo,0,
leads to faster and more efficient charge transfer. Additionally,
the significant active site in the process of catalyzing the OER
was identified by computing the change in Gibbs free energy
(AG) of each elementary step of the catalyst. Fig. 6e and f
present the AG value (at U = 1.23 V and 0 V) of the catalyst. It
was found that the AG value of the rate-limiting step (RLS) is
lower in the case of MnCo,0,-Ni*OOH (1.03 V) as compared
to those of Mn*Co,0, (2.55 V), MnCo*,0, (1.63 V), and
Ni*OOH (1.23 V) (* signifies the catalyst site). The analysis
revealed that the incorporation of NiOOH into the MnCo,0,
decreased the AG value of the RLS, and the rate of reaction
increased.

Overall water splitting activity

Motivated by the favourable oxygen evolution reaction (OER)
activity, the MnCo0,0,~NiOOH composite was utilized as an
anode, and Pt/C was used as the cathode, in order to evaluate
the water splitting performance. Fig. 7a shows a schematic rep-
resentation of the Pt/C||MnCo,0,-NiOOH cell. We obtained a
very low cell potential of 1.46 V to drive a current density of
10 mA cm™?, which is superior to that of Pt/C||RuO, (Fig. 7b).
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(a) Schematic representation of the cell for overall water splitting. (b) LSV curve in two-electrode setup. (c) Durability test using chronoam-

perometry. (d) Comparison of cell potential with the cell potentials of recently reported catalysts.

The catalyst was also stable for 50 h, showing a continuous
current density of 100 mA cm ™2 (Fig. 7c). Additionally, this per-
formance surpasses the majority of recently reported catalysts
that do not contain noble metals (Fig. 7d). The details of the
catalyst documented here are provided in ESI S6 Table S2.

Conclusions

In summary, the heterostructure MnCo,0,-Ni;N shows rapid
phase transformation to form MnCo,0,-NiOOH. The rapid
phase transformation was governed by the strong coupling
effect between MnCo,0, and Ni;N, which results in electronic
reallocation through the interface. The catalyst MnCo,0,—
NiOOH exhibits an overpotential of 224 mV and is far superior
to MnCo,0, or NiOOH alone. The electronic reallocation was
extensively examined using X-ray photoelectron spectroscopy
(XPS), which revealed a shift towards higher binding energy
for Ni and N and towards lower binding energy for Mn, Co,
and O. The MnCo,0,-NiOOH heterostructure shows stability
for up to 140 h at a high current density of 300 mA cm™>. The
DFT studies also revealed that the NiOOH formed over the
MnCo,0, nanowires is more active than that of NiOOH alone.
Nanostructures with carefully engineered interfaces are a
necessary step in developing cutting-edge methods for energy
conversion.
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