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The multivariate interaction between Au and TiO2

colloids: the role of surface potential, concen-
tration, and defects†

Kinran Lau, a Brian Giera, b Stephan Barcikowski *a and
Sven Reichenberger *a

The established DLVO theory explains colloidal stability by the electrostatic repulsion between electrical

double layers. While the routinely measured zeta potential can estimate the charges of double layers, it is

only an average surface property which might deviate from the local environment. Moreover, other

factors such as the ionic strength and the presence of defects should also be considered. To investigate this

multivariate problem, here we model the interaction between a negatively charged Au particle and a negatively

charged TiO2 surface containing positive/neutral defects (e.g. surface hydroxyls) based on the finite element

method, over 6000 conditions of these 6 parameters: VPart (particle potential), VSurf (surface potential), VDef
(defect potential), DD (defect density), Conc (salt concentration), and R (particle radius). Using logistic

regression, the relative importance of these factors is determined: VSurf > VPart > DD > Conc > R > VDef, which

agrees with the conventional wisdom that the surface (and zeta) potential is indeed the most decisive descrip-

tor for colloidal interactions, and the salt concentration is also important for charge screening. However, when

defects are present, it appears that their density is more influential than their potential. To predict the fate of

interactions more confidently with all the factors, we train a support vector machine (SVM) with the simulation

data, which achieves 97% accuracy in determining whether adsorption is favorable on the support. The trained

SVM including a graphical user interface for querying the prediction is freely available online for comparing

with other materials and models. We anticipate that our model can stimulate further colloidal studies examin-

ing the importance of the local environment, while simultaneously considering multiple factors.

1. Introduction

The conventional Derjaguin–Landau–Verwey–Overbeek (DLVO)
theory describes colloidal interactions by balancing the van der
Waals attraction and the electrostatic repulsion between the
double layers. If the resulting energy barrier is larger than the
thermal energy (kT ), then the colloidal suspension is predicted to
be kinetically stable against aggregation,1,2 which is usually the
desired behavior. However, there are occasions when the irrevers-
ible collision of particles is preferred, such as adsorbing metal
nanoparticles onto oxide supports. To facilitate this adsorption, a
common strategy is to mix metal and oxide colloids at a pH value

where the adsorbates and adsorbents are oppositely charged,
such that they are attracted to each other (by both electrostatic
and van der Waals contributions). Experimentally, this condition
is fulfilled when the pH is between the isoelectric points (IEPs) of
the two materials.3 The IEP is the pH when the particle has a net
surface charge/zeta potential of zero. At a pH below the IEP, the
material is positively charged, whereas at a pH above it, the
material is negatively charged.4 Accordingly, by mixing the metal
and oxide particles at a pH value between their IEPs, the two
species are oppositely charged to encourage the electrostatically
induced adsorption, while avoiding their self-agglomeration due
to the repulsion between the same materials. As an example, Pt
and TiO2 have IEPs at around 2.8 and 6.4 respectively, and hence
a pH value of 5 would be appropriate to induce the adsorption
between them with an attractive Coulomb force.5 Importantly, the
IEP is an experimentally measurable quantity reflecting the
surface charges of particles, and hence it is usually a convenient
metric for predicting whether the interaction between particles is
favorable or not.6–10

However, even when both particles are negatively charged
and experience electrostatic repulsion between them, adsorp-
tion might still be possible. Nanoparticles with an absolute
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zeta potential larger than ±30 mV generally possess an electro-
static energy barrier that is large enough to prevent the
agglomeration and aggregation induced by the attractive van
der Waals forces at room temperature.7–10 At 298 K, the
thermal voltage (kTe ), which can be thought of as the potential
equivalence of thermal energy (kT ), is approximately 25.7 mV.
This implies that if the absolute potential is smaller than
25.7 mV, particles following a Boltzmann distribution on
average would possess sufficient kinetic energy to surpass the
energy barrier, leading to coalescence.11 Consequently, the
common criterion of ±30 mV is a conservative estimate, ensur-
ing that the majority of particles in the Boltzmann distribution
do not have adequate energy to overcome the barrier. On the
contrary, with zeta potentials below this threshold, metal col-
loids can still be deposited onto a support because they are
not repulsive enough. In this context, Wagener et al. studied
the interaction between negatively charged Ag colloids and
BaSO4 microparticles. The zeta potential of the BaSO4 support
was kept constant at −2.5 mV, but that of the Ag nanoparticles
was adjusted to more negative values by adding more citrate
ligands to the mixture (−25 mV to −75 mV). It was observed
that the adsorption between Ag and BaSO4 only occurred when
the Ag colloids obtained a zeta potential less negative than
−30 mV.12 However, it is also noted that the inclusion of sur-
factants in this case can complicate the interpretation because
it also adds a small steric contribution to the question.

Although the zeta potential is usually a satisfactory descrip-
tor for the electrostatic interaction between particles, it is only
the weighted average potential at the shear/slipping plane of
all the particles in the dispersion.13 It is known that the
nanoenvironment around nanoparticles is different from the
bulk, and the local surface potential might not be well rep-
resented by the global zeta potential.14 Following the DLVO
theory, Au and P25 TiO2 colloids would have an energy barrier
larger than kT in the electrostatically repulsive regime of pH
8.5, hindering the adsorption between them.3 Nevertheless,
quantitative adsorption of Au onto TiO2 was observed up till
20 wt%,3 suggesting that the zeta potential and the traditional
DLVO theory failed to capture the essence of this interaction. A
possible reason for that is the deviation of the local environ-
ment from the bulk average. As an example, atomic force
microscopy (AFM) experiments performed on single crystals of
rutile TiO2 demonstrated that different facets do not share the
same IEP, e.g. (110): 5.5–4.8 and (100): 3.7–3.2.15

Unsurprisingly, the bulk IEP of rutile TiO2 (5.2–6.8)4 matches
well with the dominant facet of (110). However, it is notable
that while (100) only occupies a small proportion of the
exposed surfaces in rutile, the IEP of (100) is lower than the
bulk value by as much as 2 units. This facet-dependent trend
in IEP was also reported for SrTiO3 (110) and (100) in an inde-
pendent AFM study by Su et al.16 Despite being on the same
particle, (110) and (100) are expected to interact very differently
with metal particles, and these distinctive facets cannot be col-
lectively described by a single metric of zeta potential.
Moreover, even within the same facet, the charge distribution
does not necessarily have to be uniform across the whole

surface due to the presence of point or volume defects. It was
demonstrated by simulation studies that surface heterogeneity
and roughness can significantly reduce the repulsive energy
barrier compared to a perfect surface.17,18 Specifically for TiO2,
defects such as oxygen vacancies are often referred to as the
favorable adsorption sites for Au nanoparticles in the DFT and
catalysis literature due to the distorted electron density near
the surface.19–24 In addition, surface hydroxyls can also serve
as local charge deviations,25–27 as well as affecting short-range
contributions such as hydration forces.28,29 The pH of the
system plays a crucial role in the behavior of surface hydroxyls.
As the pH increases, more surface hydroxyls are deprotonated,
leading to a more negatively charged oxide surface.30–34

However, the surface hydroxyls are only completely deproto-
nated at highly alkaline pH (e.g. 11–12), since the pKa of TiO2

basic hydroxyls is ∼9.35,36 This means that at moderately alka-
line pH (e.g. 8–9), a considerable proportion of hydroxyls are
still protonated and could serve as point defects, since they are
less negative than the rest of the surface (formally neutral for
terminal Ti–OH and positive for bridging Ti–OH–Ti).
Furthermore, it is also suggested that the enriched electron
density near the surface due to Ti3+/oxygen vacancies can
further alter the abundance of surface hydroxyls.37 Clearly, the
local environment exhibits a much more subtle surface poten-
tial than the zeta potential manages to describe, and this
should be considered particularly in the repulsive regime
when the interacting particles carry the same charge sign.

While it might be experimentally challenging to examine
the local environment when the particles come into contact, it
is relatively easier to model particles with local surface charges
deviating from the rest of the surface, and simulate how they
interact. As discussed, when both the adsorbing nanoparticle
and the support are negatively charged, the zeta potential
alone might not be a sufficient predictor for the interaction
outcome. Therefore, other parameters have to be taken into
account, such as the density and potential of defects on the
support. To evaluate the effect of each factor, it is desirable to
perform a parametric sweep across a wide range of physically
realistic conditions. To keep this computationally feasible
while capturing the essence of the interaction, we constructed
an empirical model based on the finite element method. We
specifically consider the Au/TiO2 system, which is a popular
catalyst for reactions such as hydrogen production,38 alcohol
oxidation,39–41 and CO oxidation.42–44 Particularly for CO oxi-
dation, the Au/TiO2 interface has been identified as the active
site for the reaction,45–48 and the strong metal–support inter-
action makes it a good catalyst.49,50 In our model (Fig. 1), we
depict the interaction between a negatively charged sphere
(Au) and a negative surface with positive/neutral defects (TiO2),
where the point defects (e.g. surface OH groups) are local sites
with a surface potential different from the normal surface. To
obtain a comprehensive picture, a total of 6000 unique con-
ditions are simulated by systematically varying the following
parameters: VPart (particle potential), VSurf (surface potential),
VDef (defect potential), DD (defect density), Conc (salt concen-
tration), and R (particle radius). The van der Waals inter-
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actions between typical Au and TiO2 particles are also con-
sidered. Our results show that although the surface potential
(VSurf and VPart) remains to be the most decisive factor, the
defect density and the salt concentration in solution also seem
to play a significant role in the adsorption between Au and
TiO2. Using logistic regression and a support vector machine
(SVM), we also determined the transition boundary between
the “favorable” (below kT ) and “unfavorable” (above kT ) cases.
Hence, it is possible to predict the outcome of the interaction
more confidently by considering multiple parameters at the
same time, rather than only the zeta potential. Our study high-
lights the importance of local surface deviations in colloidal
interactions, and we hope this work will encourage further
research into the effects of local environments.

2. Methods
2.1. Model configuration and parameter space

We consider the interaction between Au and TiO2 in an
aqueous electrolyte solution, with a pH higher than the iso-
electric points of both materials, but only at a mildly alkaline
pH (e.g. 8). Under these conditions, both Au and TiO2 are
overall negatively charged, but not all surface hydroxyls on
TiO2 are deprotonated,30,31,35,51 and hence the remaining pro-
tonated species could serve as local charge deviations, which
we refer to as defects. We model this particular Au/TiO2 system
by a negative sphere coming into contact with a negative
surface containing positive/neutral defects, which is depicted
schematically in Fig. 1. When Au nanoparticles are adsorbed

on TiO2, the former is typically much smaller (at least 10
times) than the latter, and therefore the curvature of TiO2 is
also significantly smaller relative to the Au colloids.
Accordingly, we model the TiO2 surface as a flat plane. More
importantly, TiO2 particles have preferentially exposed facets,
which result in a rod-like or elongated shape rather than being
spherical. For instance, the most stable polymorph rutile TiO2

is mostly terminated by (110) surfaces followed by (011) sur-
faces as predicted by Wulff construction, resulting in shapes
ranging from a needle-like crystal to a short blocky habit,52,53

which can be sufficiently described as a flat plane for Au nano-
particles much smaller than TiO2. We also only consider the
case of diluted Au colloids so Au–Au interactions can be
ignored. On the other hand, the defects are modeled by small
cylinders with a radius (LD) of 0.5 nm and a height of 0.1 nm.
These defects are tiny protrusions in the z-direction because
the oxygen atoms of surface hydroxyls are roughly 0.1 nm
above the remaining (110) surface as measured experimentally
by scanning tunneling microscopy54 and atomic force
microscopy.55 For simplicity, the defects are uniformly
arranged in a 2D primitive square array with a lattice para-
meter of a, where the defect density (DD) is defined as

DD ¼ πðLDÞ2
a2

: ð1Þ

On the idealized rutile (110) surface, the surface oxygen
atoms are ordered in a similar but rectangular fashion.56 By
tuning DD, it is possible to pack the defects more densely or
sparsely to match the more realistic case.

Fig. 1 Model configuration of a negative particle (e.g. Au) interacting with a negative surface (e.g. TiO2) with positive/neutral defects. A defect
density of 0.2 is illustrated in this example.

Paper Nanoscale

2554 | Nanoscale, 2024, 16, 2552–2564 This journal is © The Royal Society of Chemistry 2024

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 7
/2

3/
20

25
 3

:0
7:

12
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3nr06205h


In order to study the interaction between Au and TiO2 over
an extensive range of realistic conditions, a parametric sweep
was performed for these six factors: VPart (particle potential),
VSurf (surface potential), VDef (defect potential), DD (defect
density), Conc (salt concentration), and R (particle radius). A
total of 6000 unique conditions are considered, and the para-
meter space is summarized in Table 1. Temperature is kept
constant at 298 K throughout. Importantly, this parameter
space is chosen to survey a large scope of physically relevant
conditions. For example, both the particle and the flat surface
have VPart and VSurf varied up to −51.4 mV, which is consider-
ably repulsive given that an absolute zeta potential larger than
±30 mV is generally considered to be sufficient to resist par-
ticle agglomeration and aggregation.7–10 Similarly, the
maximum VDef is set to be +51.4 mV for highly charged
defects, while the minimum VDef of 0 mV represents neutral
defects.

The cases with minimal defects and the scenarios with full
defect occupancy (DD = 0.1–0.35) are also considered.
According to our definition of DD (eqn (1)), if all the surface
oxygen atoms are protonated, this would give a DD of ∼0.37.
(The surface density of unsaturated oxygen atoms is 5.2 nm−1

on rutile (110).57 The diameter of an oxygen atom is
∼0.3 nm.56 Therefore the maximum DD is
5:2� π � 0:3

2

� �2¼ 0:37.) However, this extreme case should be
highly unlikely at alkaline pH because the extent of deprotona-
tion of surface OH increases with pH, so more moderate DD
values (0.1, 0.2, 0.25, 0.3) are also investigated. In contrast to
the defective (non-uniformly charged) surfaces, we also separ-
ately simulated a control model with only perfect (uniformly
charged) surfaces (DD = 0). Details of the comparisons are pro-
vided in the ESI (Fig. S2–S6†). The objective is to identify the
conditions where defects exert the largest influence at the
nanoscale. To achieve this, we evaluated the interaction energy
barriers when both perfect and defective surfaces have the
same effective surface potential (VEff, the average potential of
the entire surface). When defects play a more critical role, the
deviations in the energy barriers are expected to be more pro-
nounced between the two scenarios. To quantify this discre-
pancy, the coefficient of determination (R2) is calculated,
where a smaller R2 value indicates a more significant impact
of the defects. The results show that while there are some
instances where the perfect surface offers a reasonable descrip-

tion of the defective surface with the same VEff, a considerable
dispersion in the interaction energy barriers persists in most
other cases, which can only be accounted for when defects are
explicitly considered. Hence, defects are included as local
charge deviations in our model.

Conc spans salt concentrations commonly found in experi-
ments (0.1, 0.5, 1.0 mM), and only symmetric monovalent elec-
trolytes (e.g. NaCl) are considered, which means that the ionic
strength (I) is equal to the salt concentration (c0):

I ¼ 1
2

X
i

cizi2 ¼ 1
2

c0ðþ1Þ2 þ c0ð�1Þ2� � ¼ c0. We also note that it

is the ionic strength which ultimately affects the Debye length,
but not the salt concentration except for the case of symmetric
monovalent salts. For R, the particle radius scales with the
defect radius (R = 1–9 LD = 0.5–4.5 nm, where LD = 0.5 nm), so
the actual physical size of defects is relatively less critical. To
limit the simulation time, only one-eighth of the square prism
is simulated (indicated by the solid black line in Fig. 1), and
the rest of the model is generated by symmetry. Further simu-
lation details and model snapshots can be found in the ESI
(Fig. S1†).

For each particular set of conditions, the particle is moved
progressively towards the defect-containing surface (similar to
how real particles might diffuse) to examine how the system
energy changes (0.1–4.1 Debye lengths, 15 steps). In this work,
only two energy components are considered: the electrostatic
free energy (Fel) stemming from the electrical double layer,
and the van der Waals energy (Evdw) resulting from the
induced dipole interactions. Other contributions (e.g. hydro-
phobic forces and surface energies) are not included. While
hydrophobic forces and surface energies might provide an
additional thermodynamic driving force for the colloids to
interact, they are only significant when the colloids are in close
proximity. In other words, these energies are only crucial if the
colloids have sufficient energy to first overcome the kinetic
barrier to come close to each other. This kinetic barrier is com-
puted by combining Fel and Evdw in this study.

2.2. Electrostatic free energy (Fel)

The electrostatic interaction between colloids in an aqueous
medium is governed by the potential (φ or ψ) of the electrical
double layer. We denote φ as the dimensional potential with a
unit of V, and ψ as the dimensionless potential. The additional

Table 1 Parameter space of simulations, which covers a vast range of physically relevant conditions: 6000 unique combinations of these 6 para-
meters (VPart, VSurf, VDef, DD, Conc, R) are considered. For each condition, the particle is moved towards the surface in 15 steps (D). Another 1260
conditions are simulated for perfect (uniformly charged) surfaces without defects (Table S2†)

Parameter Values Unit

VPart Particle potential −51.4, −38.5, −25.7, −12.8 mV
VSurf Surface potential −51.4, −38.5, −25.7, −12.8 mV
VDef Defect potential 0.0, +12.8, +25.7, +38.5, +51.4 mV
DD Defect density 0.1, 0.2, 0.25, 0.3, 0.35 —
Conc Salt concentration 0.1, 0.5, 1.0 mM
R Particle radius 0.5, 1.5, 2.5, 3.5, 4.5 nm
D Particle–surface separation 0.1–4.1 (15 steps) κ−1 (Debye length)
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subscript of φ0 clarifies that this is the potential at the surface,
but not that in the electrolyte. The potentials can be intercon-
verted by multiplying/dividing by the thermal voltage (eqn (2)).
At 298 K, 1 dimensionless potential translates to approximately
25.7 mV.

ψ ¼ eφ
kT

ð2Þ

For a more intuitive understanding, the dimensional poten-
tial φ is used predominantly throughout the text, which shares
the same unit (V) with the experimentally measured zeta
potential. However, it is often more convenient to express
equations and run simulations with the dimensionless poten-
tial ψ, and therefore we present the equations here with a
mixture of φ and ψ.

We calculate the potential and the corresponding electro-
static free energy following the expressions derived by
Theodoor and Overbeek,58 and adapted by Krishnan.59 Since
no assumptions were made for a particular geometry (e.g.
perfect planes), these equations can be applied to our compli-
cated surface with defects. The detailed derivation can be
found in the above literature and also in the ESI.† Only the
most important equations are presented here. Solving the
Poisson–Boltzmann equation (eqn (3)) yields how the potential
varies in the electrical double layer,

∇2φ ¼ � ρ

ε0εr
ð3Þ

where ρ is the charge density (C m−3), ε0εr is the permittivity of
the medium (F m−1). For a symmetric monovalent electrolyte
(e.g. NaCl), the expression simplifies to eqn (4).

∇2ψ ¼ κ 2 sinh ðψÞ ð4Þ

κ−1 is the characteristic Debye length of an electrical double
layer (eqn (5)),

1
κ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrkT
2e2I

r
ð5Þ

where e is the elementary charge and I is the ionic strength
(number m−3).

In this work, the non-linear Poisson–Boltzmann equation is
solved numerically using the COMSOL Multiphysics® software
via the finite element method,60 which yields a potential map
in three dimensions. An example of that solution is visualized
in Fig. 1, where the potential (φ) is indicated by different
colors (e.g. navy blue when φ = −51.4 mV and light green when
φ = 0 mV). A boundary condition of constant potential (φ = φ0)
is applied to the surfaces of the particle, the normal surface,
and the defects, while the continuity condition (n·∇φ = 0) is
specified on the boundary of the model.

The computed spatial distribution of potential is sub-
sequently used to calculate the electrostatic free energy (Fel),
which is the sum of 3 energy components (eqn (6)).

Fel ¼ Uel � TΔSþ Fchem ð6Þ

The first term is the electrostatic potential energy (Uel) (eqn
(7)), which describes the energy of surface and bulk charges in
the local potential field.

Uel ¼ 1
2

ð
A
σφ0dA� c0kT

ð
V
ψ sinhðψÞdV ð7Þ

The second component is the configurational entropy (ΔS)
(eqn (8)), resulting from the uneven distribution of ions when
mixing a dilute solution of charges.

ΔS ¼ 2c0k
ð
V
½�ψ sinhðψÞ þ coshðψÞ � 1�dV ð8Þ

The last contribution is the chemical free energy (Fchem)
(eqn (9)), accounting for the change in free energy (chemical,
non-electrical) due to the preferential adsorption of ions at the
surface.

Fchem ¼ �
ð
A
σφ0dA ð9Þ

c0, σ, and φ0 are the bulk salt concentration (number m−3),
surface charge density (C m−2), and surface potential (V)
respectively.

Substituting eqn (7)–(9) back to Fel gives eqn (10).

Fel ¼ � 1
2

ð
A
σφ0dAþ c0kT

ð
V
ψ sinhðψÞdV

� 2c0kT
ð
V
½coshðψÞ � 1�dV

ð10Þ

Importantly, Fel consists of a surface integral and two
volume integrals. The surface integral should be performed on
all the surfaces. For our model, this would be the particle, the
defects, and the normal surface. On the other hand, the
volume integrals should be evaluated for the bulk electrolyte.

2.3. van der Waals energy (Evdw)

In addition to the electrostatic free energy Fel, the attractive
van der Waals contributions are also considered. The system
of Au and TiO2 is geometrically modeled by a sphere interact-
ing with a plane. For such geometry, the attractive van der
Waals energy is given by

Evdw ¼ � AHR
6D

ð11Þ

where AH, R, and D are the Hamaker constant, particle radius,
and particle–surface separation respectively.1,61

While the AH of TiO2 in water is fairly consistent in the lit-
erature (∼50 zJ),62,63 that of Au varies considerably depending
on the study (∼100–300 zJ).64,65 For the sake of discussion, we
initially limit ourselves to the mean value of 200 zJ as the AH of
Au, but it is allowed to vary later when fitting the data with a
support vector machine (0–150 zJ for Au/TiO2). Accordingly,
the Hamaker constant describing the interaction between TiO2

and Au can be estimated by taking the geometric mean of the

individual AH, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH;TiO2

� �
AH;Au
� �q

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið50Þð200Þp ¼ 100zJ.

However, it is noted that changing the overall AH slightly does
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not affect the qualitative outcome, as indicated by the distri-
butions of energy barriers with varying AH in Fig. S7.†

2.4. Total interaction energy (Etot) and energy barrier

The total interaction energy (Etot) is given by the sum of the
electrostatic free energy (Fel) and the van der Waals energy
(Evdw) (eqn (12)).

Etot ¼ Fel þ Evdw ð12Þ
For a particular set of parameters (VPart, VSurf, VDef, DD,

Conc, R), Etot is evaluated at 15 distances (0.1–4.1 κ−1) between
the particle and the surface to examine how the energy
changes upon interaction. A representative example of how
each individual energy component constitutes the total energy
is illustrated in Fig. 2 (when VPart = −51.4 mV, VSurf =
−51.4 mV, VDef = +12.8 mV, DD = 0.2, Conc = 1 mM, R =
2.5 nm). The whole dataset can be explored in our GitHub
repository.

Since we are only interested in the relative change in energy
when the particle moves towards the surface, the energy when
the particle and surface are significantly apart (>4 κ−1) and are
essentially non-interacting is defined as zero. The energy
curves for defects and the normal surface in Fig. 2 are fitted to
an exponential expression for better analysis: E = a exp(−bD),
where a and b are the parameters fitted for each curve, with an
average residual standard deviation of 0.14 and 0.16 for the
fitted defective and surface curves respectively. Importantly,
the resultant Etot is in the magnitude of thermal energy (kT, T
= 298 K), and the maximum energy of Etot can be extracted as
the energy barrier for interaction. This operation is repeated
for all the 6000 simulated conditions to acquire the corres-
ponding energy barrier. For the particular example in Fig. 2,

the barrier is larger than kT. Further representative cases of
how Fel and Evdw affect the final Etot are shown in Fig. S8.† It is
also shown that the 15 steps in particle–surface separations
are sufficient to capture the energy barriers (details in ESI,
Fig. S9†).

3. Results and discussion

As depicted in Fig. 1, we consider the interaction between a
negatively charged particle (Au) and a negatively charged plane
with the presence of positive/neutral defects (TiO2). This con-
figuration represents the scenario at mildly alkaline pH (e.g.
8), which is above the IEP of both materials, and therefore
both Au and TiO2 are overall negatively charged. However, this
moderately alkaline pH is only slightly above the IEP of TiO2,
so not all surface hydroxyls on TiO2 are deprotonated.30,31,35,51

Hence, the remaining protonated species could serve as local
positive/neutral charges, and we refer to these local charge
deviations as defects. In our defect-containing model, we sys-
tematically varied a total of six parameters (VPart, VSurf, VDef,
DD, Conc, R) in 6000 different combinations (Table 1). For each
of these 6000 conditions, the total interaction energy is calcu-
lated by considering both the electrostatic free energy and van
der Waals energy, in a fashion similar to the classical DLVO
theory (Fig. 2, details in the Methods section). The resultant
energy barriers are extracted from each case, and the distri-
butions of these 6000 energy barriers are plotted by each para-
meter in Fig. 3(a).

By examining how the energy barriers change in response
to varying parameters, it is possible to evaluate the importance
of VPart, VSurf, VDef, DD, Conc, R. For instance, if a factor is

Fig. 2 The six parameters (VPart, VSurf, VDef, DD, Conc, R) determine the electrostatic free energy (Fel) and the van der Waals energy (Evdw), which are
added up to give the total interaction energy (Etot). A representative example is shown here when VPart = −51.4 mV, VSurf = −51.4 mV, VDef =
+12.8 mV, DD = 0.2, Conc = 1 mM, R = 2.5 nm. The maximum Etot is extracted as the energy barrier for each set of conditions. Further examples of
how Fel and Evdw affect the final Etot are included in Fig. S8.† It is also shown that the 15 steps in particle–surface separations are sufficient to
capture the energy barriers (details in section 5 of ESI†).
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crucial for the interaction, changing its value should also shift
the energy barrier significantly. By contrast, if a parameter has
minimal effect on the outcome, the energy barrier should
remain essentially the same. From Fig. 3(a), it is apparent that
when modifying the value of each parameter, the distributions
of energy barriers are all shifted to lower or higher kT values
substantially, suggesting that all six factors contribute to the
resultant energy barrier, though to a different extent. The
effect of each parameter can be examined by varying it, and
inspecting how the energy barriers change correspondingly:

• VPart, VSurf, VDef: For VPart and VSurf, traversing the surface
potential from −12.8 mV to −51.4 mV results in a broader dis-
tribution of energy barriers and more values above kT, since
there is more electrostatic repulsion when the particle and the
surface are more negatively charged. On the contrary, when
the defects become more positively charged (VDef from 0 mV to
+51.4 mV), the energy barriers are reduced due to more electro-
static attraction.

• DD: Higher defect density (0.1–0.35) lowers the inter-
action energy barrier due to the neutral/positively charged
defects.

• Conc: Higher salt concentrations (and ionic strengths)
(0.1–1 mM) mean shorter Debye lengths and less repulsion
between the surfaces due to the screening of charges.

• R: Larger particles (0.5–4.5 nm) lead to more electrostatic
repulsion but also more van der Waals attraction (eqn (11)).
The van der Waals contribution outweighs the electrostatic
component in this case.

Although the behavior of each parameter follows what one
might expect qualitatively, it would be desirable to quantify
which factors are more decisive than others in determining
the final interaction energy barrier, i.e. the feature importance.
This is estimated by two separate methods here: ANOVA (ana-
lysis of variance) and logistic regression.

ANOVA compares the variances of different distributions
and calculates the F-statistic to evaluate how likely the distri-
butions are from the same population. In other words, a large
F-statistic means the distributions do not resemble each other.
Following this idea, if a parameter is more important, it
should also shift the distributions of energy barriers more sig-
nificantly, leading to more heterogeneous distributions and a
larger value of F-statistic. By performing ANOVA on the distri-
butions of energy barriers in Fig. 3(a), the F-statistics for each
parameter can be obtained and are plotted in Fig. 3(b) in des-
cending order: VSurf > VPart > Conc > DD > VDef > R. We shall
comment on the feature importance estimated by ANOVA in
greater detail after the discussion of logistic regression, but it
is immediately obvious that VSurf (264) and VPart (248) are the
most influential factors as manifested by the largest
F-statistics, which supports the experimental intuition to use
zeta potential as a first hint to infer colloidal stability. In
addition, Conc (226) is also a decisive determinant for colloidal
interactions followed by DD (147). On the contrary, VDef (50)
and R (11) do not seem to affect the outcome significantly.
Instead of comparing several distributions at once with
ANOVA, a pairwise comparison of the distributions was also

Fig. 3 (a) Grouping the same set of 6000 energy barriers by different parameters to examine the effect of each factor. Feature importance deter-
mined by (b) ANOVA and (c) logistic regression.
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carried out by the Tukey’s HSD (honestly significant difference)
test (Fig. S10†), where the q-statistics suggest the effect of each
parameter is even stronger when it is varied towards its
extreme values (minimum or maximum).

While it is useful to calculate the exact interaction energy
barrier, it is only meaningful when compared with the thermal
energy (kT ) available, which ultimately determines whether
the interaction is favorable or not at a particular temperature.
In other words, if the barrier is larger than kT, the interaction
is considered “unfavorable”, and vice versa. However, we also
note that colloids should exhibit a Boltzmann distribution of
energies, and therefore simply comparing the energy barrier
with kT might not be the most comprehensive metric,
especially when they are of similar magnitude. Yet, by splitting
the 6000 computed barriers into either “below kT” or “above
kT” cases, this interaction problem essentially becomes a
simple binary classification task, which is well-modeled by
logistic regression. Similar to multivariate linear regression,
logistic regression adds up all the variables (xi) with appropri-
ate coefficients (βi) together with an intercept term (β0) to give
y (eqn (13)). However, there is an additional step of feeding y
into a sigmoid function to introduce non-linearity (eqn (14)).
The resultant z takes a value between 0 and 1, and is therefore
suitable for predicting the probability when there are only two
distinct scenarios.

y ¼ β0 þ
X6
i¼1

βixi ð13Þ

z ¼ 1
1þ expð�yÞ ð14Þ

Putting this into the context of colloidal interactions, the
calculated z is essentially the probability of “below kT” (and (1
− z) is the probability of “above kT”). The goal of logistic
regression is to take the six parameters (VPart, VSurf, VDef, DD,
Conc, R) as inputs, and predict whether it is more likely to be
“below kT” or “above kT”. This prediction can be optimized by
tuning the coefficients (βi) of the factors. The fitted coefficients
are shown in Fig. 3(c) and eqn (15), where the magnitude rep-
resents the relative importance of each parameter. To prevent
large absolute numbers from potentially dominating the
results, the parameters are scaled by z-score normalization

prior to fitting ( xik k ¼ xi � μi
σi

, μi and σi are the mean and stan-

dard deviation of the distribution). The extra ∥ ∥ symbol is
used to denote a normalized quantity. Further details of logis-
tic regression can be found in the ESI.†

y ¼ 6:572þ 2:516 VSurf þ2:449k kVPartk k þ 1:696 DDk k
þ 1:417 Conck k � 1:382 Rk k þ 1:096 VDefk k

ð15Þ

The feature importance informed by logistic regression is
as follows: VSurf > VPart > DD > Conc > R > VDef. Given that
ANOVA analyzes the absolute energy barriers, while logistic
regression collapses the whole interaction problem into a
binary decision, it is not surprising that the feature impor-

tance estimated by both methods does not match exactly.
Interestingly, although the exact order differs, ANOVA and
logistic regression share the top four factors (VSurf, VPart, DD,
Conc). VSurf and VPart are among the most influential descrip-
tors, which agree well with the common experimental obser-
vation that the zeta potential of colloids is a reasonably good
metric for predicting their stability.6–10 The salt concentration
(Conc) is also an important determinant, which is in accord-
ance with the classical double layer theory that ions screen the
charges in the solution, and therefore a higher salt concen-
tration (and ionic strength) leads to a shorter Debye length
and lower stability of colloids. However, when defects are also
taken into account, it appears that the exact potential of
defects (VDef ) does not play a pivotal role, but the defect
density (DD) is much more crucial to the fate of the inter-
action. Nevertheless, it is noted that the interaction in ques-
tion is ultimately a high-dimensional problem, and therefore
no single factor can predict the outcome confidently, but a
combination of parameters should be considered.

Since the top four factors (VSurf, VPart, DD, Conc) should be
responsible for the majority of the results, it is therefore of
interest to examine whether it is already sufficient to only con-
sider these parameters, i.e. leaving out the two remaining ones
(R, VDef ). A common engineering approach is to handcraft
certain dimensionless numbers out of the parameters in con-
sideration, and visualize the data on a 2D plot to inspect
whether the data points cluster. Several dimensionless

numbers (e.g.
VSurf þ VPartð Þ

VDef
and

κ�1

R
) were constructed in an

attempt to separate the data points into regions of “below kT”
and “above kT” (Fig. S11†). However, none of them yields satis-
factory clustering. Since the formulation of dimensionless
numbers is confined by the intrinsic units of VSurf, VPart, DD,
and Conc, these factors can only be assembled in a limited
number of ways. To solve this problem, we exploit z-score nor-
malization as a general way to combine parameters even
though they do not necessarily have complementary units.
Z-score normalization scales the inputs with respect to their
standard deviations which have the same units, essentially ren-

dering them dimensionless on their own ( xik k ¼ xi � μi
σi

, where

μi and σi are the mean and standard deviation of the distri-
bution respectively). The mean and standard deviation for each
variable are summarized in Table S3.† Importantly, with these
dimensionless, normalized quantities, they can be simply
added up together to construct dimensionless numbers, even
though they might not have compatible units intrinsically.

However, to form a meaningful dimensionless number, the
normalized variables must be combined linearly with appro-
priate weights. A natural choice of such weights is the coeffi-
cients previously fitted by logistic regression (βi, summarized
in (eqn 15) and Fig. 3(c)), since the logistic regression coeffi-
cients were obtained by processing normalized parameters in
the first place. More specifically, we can add up the surface
potential VSurf and the particle potential VPart with the logistic
regression coefficients to construct the “Electrostatics”
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metric (2.516∥VSurf∥+2.449∥VPart∥). Similarly, the defect density
DD and the salt concentration Conc can be considered
together to formulate the “Environment” descriptor
(1.696∥DD∥+1.417∥Conc∥). When these two descriptors
(“Electrostatics” and “Environment”) are used as the selection
criteria and plotted as the x and y axes in Fig. 4, the “below
kT” and “above kT” cases are successfully clustered into dis-
tinctive regions as manifested by the separation of colors
(green for “below kT” and red for “above kT”), which cannot be
achieved if only individual parameters (VSurf, VPart, DD, Conc)
are considered. The color of the data points represents the like-
lihood of “below kT”, which is evaluated by considering the
overlapping points (N = 25 in Fig. 4) in this low-dimensional
space, inevitably existing because only 4 out of 6 parameters
are included here. Each point carries a label of either “below
kT” (1) or “above kT” (0), and by taking the average of the
labels at the overlapping points, the probability of “below kT”
can be estimated. Notably in Fig. 4, the decision boundary
between “above kT” and “below kT” is vividly visualized by the
diagonal transition from red to yellow and eventually to green,
indicating an increasing probability of “below kT” from the
bottom left to the top right of the graph. The diagonal nature
of this shift demonstrates that both the x and y axes are vital
to the fate of colloidal interactions. If the results are mainly
determined by the x-axis (y-axis), the boundary would have
been a vertical (horizontal) one. Given that only ∼9% of the
data points (554 out of 6000) are “above kT”, this graphical
method is proven to be an effective way to separate the “below
kT” and “above kT” cases by considering the top four factors
together. Overall, a prediction for the interaction can be made
by simply inputting the normalized numbers of ∥VSurf∥,
∥VPart∥, ∥DD∥, ∥Conc∥, and reading the color off the diagram:
green for “below kT”, red for “above kT”, and yellow for the
uncertain cases.

Although the graphical method in Fig. 4 manages to
capture the transition from “above kT” to “below kT” by taking
the four most important factors into account, the intermediate
cases with higher uncertainty can only be decided by includ-
ing the remaining parameters. Moreover, throughout the pre-
vious discussion, a constant Hamaker constant (AH) of 100 zJ
is used to represent the average van der Waals attraction
between TiO2 and Au, which might slightly deviate from it
depending on the actual Au system. Consequently, we
expanded the dataset by allowing the Hamaker constant to
vary (0–150 zJ, steps of 10 zJ). Further simulations of perfect
(uniformly charged) surfaces without defects (DD = 0 and VDef
= 0) are also added to the dataset for comparative purposes. As
a result, the extended dataset now encompasses a total of
116 160 conditions of seven parameters including the
Hamaker constant (details in ESI†). To interact with this exten-
sive dataset effectively, we fitted it to a support vector machine
(SVM). The trained SVM model takes the seven factors (VPart,
VSurf, VDef, DD, Conc, R, AH) as inputs, and returns “below kT”
(spontaneous adsorption expected) or “above kT” (no adsorp-
tion expected) as the output, together with a decision function
indicating the confidence of the prediction (a larger absolute
value means higher confidence). An accuracy of 97% is
achieved with a standard train/validation split of 80%/20%.
Importantly, since our parameter space covers a large land-
scape of realistic conditions, and the SVM is trained based on
these simulation data, it is also possible to predict the inter-
action between colloids for unseen but physically feasible
cases, for perfect and defective surfaces. To facilitate the
usability of the trained SVM, we prepared a Google Colab note-
book with a simple graphical user interface, where users can
enter a specific set of the seven parameters, and obtain a pre-
diction for whether the interaction is favorable or not. This is
made available in our GitHub repository.

Fig. 4 Decision boundary between “below kT” (green) and “above kT” (red) as predicted by logistic regression, visualized on a 2D plot. The yellow/
orange points indicate uncertain cases at the boundary. The “Electrostatics” (2.516∥VSurf∥+2.449∥VPart∥) and “Environment”
(1.696∥DD∥+1.417∥Conc∥) descriptors are constructed by combining the top four factors (VSurf, VPart, DD, Conc) using the weights fitted by logistic
regression. For each dot on this low-dimensional plot, there are 25 overlapping points (N = 25) which can only be differentiated if the remaining two
parameters (R and VDef ) are also considered. P (below kT ) is estimated by the fraction of “below kT” at the overlapping points.
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While it might be a neat approach to treat the colloidal
interaction as a simple problem of binary classification
(“below kT” or “above kT”), it is worth noting the limitations of
our model. First, the simulations are based on the Poisson–
Boltzmann equation (eqn (3)), which means that our model
also suffers from the inadequacies inherited from the theory.
For instance, it is only a mean-field method with no ion-ion
correlations considered.66 In addition, the Poisson–Boltzmann
theory also tends to fail for highly charged regimes and multi-
valent electrolytes.67 Consequently, a symmetric monovalent
salt (e.g. NaCl) has been deliberately assumed throughout this
work, and hence the terms “salt concentration” and “ionic
strength” are used interchangeably in the text. For simplicity,
the Stern layer is also neglected, but it might be included in a
similar way as described by Biesheuvel.68 Apart from the short-
comings of the Poisson–Boltzmann theory, we have only con-
sidered the effect of seven parameters (VPart, VSurf, VDef, DD,
Conc, R, AH), and other factors which might potentially influ-
ence the outcome are not captured in our model, such as the
morphology beyond a spherical particle. Despite these
limitations, we employed this parametrized model based on
the Poisson–Boltzmann theory due to its efficiency, where a
simulation only took roughly ten seconds to run on
average (details in ESI†). This enables a parametric sweep
across a wide range of physically interesting conditions, which
cannot be easily accomplished by more sophisticated yet com-
putationally expensive methods (e.g. molecular dynamics and
Monte Carlo).

Furthermore, it has to be noted that surfactants are not
considered in our model, which are often used to stabilize
the metal colloids against aggregation. Although our model
can possibly account for the electrostatic contribution from
the surfactants, the additional steric component of the sur-
factants might still prevent adsorption from happening.
Therefore, to encourage the favorable interaction between
metal and oxide particles, surfactant-free colloids should be
used. Common approaches to remove surfactants include
thermal treatment and repeated centrifugation with a
mixture of good and poor organic solvents.69,70 However, it is
not always trivial to eliminate the surfactants without chan-
ging the structure and keeping the colloids stable. An
alternative method is to synthesize particles without the use
of surfactants from the beginning. This can be done by tech-
niques such as laser ablation in liquid, where a bulk metal
target (e.g. Au) is irradiated by a pulsed laser to create nano-
particles in water which are only stabilized electrostatically.71

When comparing our model to experiments, it is expected
that these surfactant-free particles would follow the pre-
dicted adsorption behavior better than the surfactant-stabil-
ized counterparts.

Until now, we have limited ourselves to Au/TiO2 systems.
However, since the factors (e.g. VSurf, DD, AH) are all empirical,
it is expected that our model should largely generalize to
similar metal/oxide materials, which could help understand
the effect of the local environment on colloidal interactions.
Experimentally, the zeta potential has always been the indi-

cator of colloidal stability due to its ease of measurement. Yet,
the zeta potential is only a weighted average of the potentials
at the shear/slipping plane of all the particles in the dis-
persion.13 This global metric might not fully represent the
local surface potential, which ultimately determines the
adsorption behavior. As an example, it has been shown by
AFM that the major (110) and minor (100) facets of rutile TiO2

have disparate IEPs separated by about two units, i.e. (110):
5.5–4.8 and (100): 3.7–3.2.15 This means that the surface (and
zeta) potentials of these two facets are not the same at a par-
ticular pH, and are expected to interact differently with col-
loids. This facet-dependent interaction was demonstrated evi-
dently by Su et al.16 when adsorbing silica nanoparticles on
SrTiO3 supports. With dual scale AFM, the authors established
that the IEPs of major (110) and minor (100) on SrTiO3 are ∼4
and ∼6 respectively. At a pH below their IEPs (3.5), negatively
charged silica colloids were adsorbed on both facets which
were positively charged. At a pH above their IEPs (10.8), no
adsorption happened since all the silica, SrTiO3 (110) and
(100) were negatively charged. Interestingly, in the intermedi-
ate pH range (4–6) between the IEP of (110) and (100), nega-
tively charged silica colloids selectively adsorbed on the posi-
tively charged (100), but not the negatively charged (110). The
bulk IEP value of SrTiO3 (∼3.5) would not have predicted this
facet anisotropy. In our model, different facets can be poten-
tially described by two separate cases: (110) with a lower IEP
and VSurf, and (100) with a higher IEP and VSurf. Instead of only
considering the case when (110) is negatively charged and
(100) is positively charged, it would also be possible to predict
the adsorption when both facets are slightly negatively
charged.

Moreover, even within the same facet, the local surface
potential does not necessarily have to be uniform across the
entire surface due to the presence of defects, such as surface
hydroxyls having a different charge than the rest of the
surface. Using an OH-functionalized AFM tip, Wagner et al.72

directly probed the proton affinity of surface oxygen atoms
on In2O3 (111), where the proton affinity of surface oxygen
atoms is strongly correlated with the acidity (pKa) of the
resultant surface hydroxyls. It was found that the four types
of surface hydroxyls on In2O3 (111) had varied degrees of
acidity. This means that they are likely to be protonated/
deprotonated to a different extent at the same pH. In our
model, this local environment of surface hydroxyls at
different pH values could be captured by modifying the
defect density (DD) and defect potential (VDef ), and predic-
tions can be made on whether a particular colloidal inter-
action is favorable. Overall, although the zeta potential is
usually a reasonable initial estimate for colloidal inter-
actions, it is the local environment which ultimately
dictates the interaction outcome. We hope that our model
will encourage further studies on examining the effect of
facets and surface defects with well-defined methodology
(e.g. quartz crystal microbalance and single crystals), as well
as achieving the desired adsorption behavior by controlling
the surface chemistry.
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4. Conclusion

Colloidal interaction is ultimately a high-dimensional
problem. Conventionally, the zeta potential is the most fre-
quently used metric for predicting the stability of colloids in
line with the established DLVO theory. The salt concentration
and ionic strength are also known to affect the interaction fol-
lowing the Debye length relationship and the Schulze–Hardy
rule. To gain more insights beyond the current understanding,
it is important to consider all these well-studied factors
together with other contributions which are relatively less
explored, such as the effect of local defects.

Herein, we simulate the interaction between negatively
charged Au and TiO2 particles in the electrostatically repulsive
regime based on the Poisson–Boltzmann equation and the
finite element method, while varying a total of six parameters:
VPart (particle potential), VSurf (surface potential), VDef (defect
potential), DD (defect density), Conc (salt concentration), and
R (particle radius). Defects were treated as local charge devi-
ations compared to the regular surface. A possible identity of
such defects is the surface hydroxyls on TiO2, which are less
negative than the rest of the surface when protonated. The van
der Waals contribution was included by using a mean value of
Hamaker constant (AH) for Au/TiO2. A wide range of experi-
mentally relevant conditions is covered by simulating 6000
unique combinations of these six parameters, and the inter-
action energy barrier for each case is extracted. By analyzing
the distribution of interaction energies with ANOVA and logis-
tic regression, the relative importance of each factor is
inferred: VSurf > VPart > DD > Conc > R > VDef. The results
demonstrate that the top four factors are VSurf, VPart, DD, and
Conc, which agrees well with the conventional wisdom that the
surface (and zeta) potential and the salt concentration (ionic
strength) play a decisive role in the stability of colloids.
Interestingly, when defects are included, it appears that the
energy barrier can also be significantly lowered by a higher
defect density (DD), while the defect potential (VDef ) seems to
have a minimal impact on the interaction outcome.

To examine whether it is sufficient to consider only the top
four factors, the interaction can be framed as a classification
problem: for Au colloids to adsorb on the TiO2 support, the
energy barrier has to be smaller than the thermal energy (kT ).
Accordingly, the interaction energy barriers from the simu-
lations can be divided into two groups relative to kT: “below
kT” for favorable interactions and “above kT” for unfavorable
interactions. This essentially simplifies the interaction
problem to a binary classification task, which is well-modeled
by logistic regression. Using the weights from logistic
regression, the top four factors are combined to construct the
“Electrostatics” (2.516∥VSurf∥+2.449∥VPart∥) and “Environment”
(1.696∥DD∥+1.417∥Conc∥) descriptors, which successfully
cluster the data points into regions of unfavorable (red), uncertain
(yellow), and favorable (green) cases. However, even when com-
bining the top four parameters, certain scenarios remain uncer-
tain (yellow), and can only be confidently classified by taking the
remaining parameters (R and VDef) into account. Hence, it is

crucial to consider all the six parameters including the particle
radius R and the defect potential VDef for an accurate prediction.

In the preceding discussion, the van der Waals Hamaker
constant (AH) was fixed at the mean value for Au/TiO2 (100 zJ).
However, to improve the generalizability of this model towards
other materials, AH was also allowed to vary across the entire
range of 0–150 zJ, yielding an expanded dataset with 116160
conditions encompassing seven parameters and their corres-
ponding interaction energies. To predict the fate of the inter-
action while considering all parameters, a support vector
machine (SVM) is trained with the extended dataset, which
determines a decision boundary between “below kT” and
“above kT” cases with 97% accuracy using a standard train/vali-
dation split of 80%/20%. The trained SVM model takes a total
of seven variables (VPart, VSurf, VDef, DD, Conc, R, AH) as the
input, and returns “below kT” or “above kT” as the output,
together with a decision function indicating the confidence of
the prediction. It is also noted that the model can be used for
both seen and unseen cases, perfect and defective surfaces. To
facilitate the usability of the trained SVM, we prepared a Google
Colab notebook with a simple graphical user interface for
querying the prediction given a set of parameters, where users
can easily change different parameters and examine the effect.

Although the simulations are modeled after Au/TiO2

systems, the factors (e.g. VSurf and Conc) are all empirical, and
therefore the model should largely generalize to similar metal/
oxide materials. We anticipate that our results and tools can
encourage further experimental and theoretical investigations
into the effect of local surface chemistry (e.g. facets and
defects) on colloidal interactions, rather than only assessing
the established bulk metrics (e.g. zeta potential).

Abbreviations

β0 Logistic regression intercept (—)
βi Logistic regression coefficient (—)
n Normal (—)
ΔS Configurational entropy (J K−1)
ε0 Vacuum permittivity (F m−1)
εr Relative permittivity (—)
κ−1 Debye length (m)
μi Mean of distribution (—)
ψ Dimensionless potential (—)
ρ Charge density (C m−3)
σ Surface charge density (C m−2)
σi Standard deviation of distribution (—)
φ Dimensional potential (V)
φ0 Dimensional surface potential (V)
a Lattice parameter of defect array (nm)
AH Hamaker constant (J)
c0 Number concentration of salt (number m−3)
Conc Salt concentration (mM)
D Particle–Surface separation (κ−1)
DD Defect density (—)
e Elementary charge (C)
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Etot Total interaction energy (J)
Evdw van der Waals energy (J)
Fchem Chemical free energy (J)
Fel Electrostatic free energy (J)
I Ionic strength (number m−3)
k Boltzmann constant (J K−1)
LD Defect radius (0.5 nm)
R Particle radius (nm)
T Temperature (K)
Uel Electrostatic potential energy (J)
VDef Defect potential (mV)
VPart Particle potential (mV)
VSurf Surface potential (mV)
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