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Resolving the dynamic properties of entangled
linear polymers in non-equilibrium coarse grain
simulation with a priori scaling factors†

Yihan Nie,a Zhuoqun Zheng,b Chengkai Li,c Haifei Zhan, *a,d,e Liangzhi Kou, d,e

Yuantong Gu *d,e and Chaofeng Lüf,a

The molecular weight of polymers can influence the material properties, but the molecular weight at the

experiment level sometimes can be a huge burden for property prediction with full-atomic simulations.

The traditional bottom-up coarse grain (CG) simulation can reduce the computation cost. However, the

dynamic properties predicted by the CG simulation can deviate from the full-atomic simulation result.

Usually, in CG simulations, the diffusion is faster and the viscosity and modulus are much lower. The fast

dynamics in CG are usually solved by a posteriori scaling on time, temperature, or potential modifications,

which usually have poor transferability to other non-fitted physical properties because of a lack of funda-

mental physics. In this work, a priori scaling factors were calculated by the loss of degrees of freedom and

implemented in the iterative Boltzmann inversion. According to the simulation results on 3 different CG

levels at different temperatures and loading rates, such a priori scaling factors can help in reproducing

some dynamic properties of polycaprolactone in CG simulation more accurately, such as heat capacity,

Young’s modulus, and viscosity, while maintaining the accuracy in the structural distribution prediction.

The transferability of entropy–enthalpy compensation and a dissipative particle dynamics thermostat is

also presented for comparison. The proposed method reveals the huge potential for developing custo-

mized CG thermostats and offers a simple way to rebuild multiphysics CG models for polymers with good

transferability.

Introduction

The molecular weight of linear polymers can influence the
transport and mechanical properties. However, for full-atomic
simulations, the molecular weight at the experimental level
can be a huge burden on the computational resources. For
example, polycaprolactone (PCL) used in 3D printing usually
has a molecular weight Mw of around 50 000 g mol−1, corres-

ponding to approximately 8000 atoms in one single chain.1,2

For full-atomic simulations, building a model for the
entangled PCL network at the same molecular weight requires
a lot of computational resources. Meanwhile, the relaxation
time τ required for the simulation of long-chain molecules
increases with the molecular weight, i.e., τ ∝ Mw

2,3 suggesting
a significant increase of the computational resources. Because
of such restrictions, most of the current MD simulations
usually use short polymer chains. However, according to
several recent research studies, the mechanical and rheological
properties of polymer nanocomposites are influenced by the
chain length dispersity4 and the relative size of the polymer
chains and nanofillers.5–7 Thus, investigating the material pro-
perties of a large system with molecular structures has its sig-
nificance in polymer physics and materials science.

Coarse grain (CG) simulations map a group of atoms into
one bead. By decreasing the total number of particles in the
system, the computation efficiency can increase significantly.
Thus, CG simulation has become a promising method to
investigate the properties of large molecules, such as
proteins,8,9 DNA,10 and polymers,11 or ensembled into large
systems, such as virus12 and nuclear pores.13 To maintain the
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prediction accuracy in CG models, many works have empha-
sized on the CG potentials developed by a top-down or bottom-
up approach, i.e., the potentials are built by referencing the
experimental data or full-atomic simulations, respectively.
Both approaches can be adopted simultaneously, like the
general-purpose potential Martini.14,15 However, CG potentials
usually have limitations on representability and transferability,
and for general-purpose applications, expanding bead types
and continuous reparameterization are required. As for the
customized potential, the bottom-up approach is usually pre-
ferred but still faces the problem of transferability when
expanding the temperature range16 or predicting non-fitted
physical properties, especially for the dynamic properties.

The commonly used bottom-up method is the iterative
Boltzmann inversion (IBI), which can reproduce identical
probability distribution functions as the full-atomic simulation
in each degree of freedom (DOF). However, as the distributions
in the CG model are sampled from the mass centres of the
atom groups, the distributions are wider and with larger var-
iance compared with the atom-level distribution. Thus, the
interactions from IBI are usually weaker than full-atomic simu-
lations, leading to a mismatch in dynamic properties, such as
diffusion rate,17 viscosity,18 and Young’s modulus.19 On the
other hand, the force matching (FM) method gives up the
accuracy for structural distribution but targets to reproduce
the same force profile as the full-atomic simulation.20 With
the FM potentials, the mechanical properties of the CG model
for the bulk material can be reproduced accurately as the full-
atomic results, and such a method has been applied to the
polymer and its nanocomposites.21 However, the transferabil-
ity to other thermodynamic properties requires further investi-
gations. Recently, with the development of machine learning
techniques, neural networks (NNs) have been applied to the
reconstruction of the CG potential for force matching and
beyond. The loss functions are built according to the force and
energy difference between the prediction and ground
truth.22–25 Although the machine learning potential from NNs

can rebuild the free energy surface, the prediction on diffu-
sions and other dynamic properties and the transferability to
other properties still need further investigation. Meanwhile,
the machine learning potential can include more information
into the loss function for optimization, and with NNs complex
enough, the CG predictions can be tolerable for all fitted pro-
perties. However, the computation efficiency may be reduced,
which can deviate from the original aim of CG simulation.

Simply building the CG potential from the bottom-up
energy, force, or distribution profile can overlook the thermo-
dynamic problems caused by the loss of entropy. The entropy
loss is the intrinsic consequence of the loss of the DOF during
the CG mapping process. However, as the calculation for the
entropy by definition is too complex for macromolecules in
the full-atomic simulation,26 the loss of the entropy has not
been quantified in most CG simulations. Some previous
investigations use the estimations for the upper bound for con-
figurational entropy to evaluate the loss in the CG system.27,28

However, the influence of such entropy loss on other physical
properties is still under investigation,29 especially for the non-
equilibrium state.30 Some recent studies used excessive
entropy scaling to predict the acceleration in the CG
dynamics,31,32 but the conclusions are not transferred to physi-
cal properties like heat capacity, modulus, and viscosity.

To rebuild the mismatched dynamic behaviour empirically,
the simulation results can be rescaled or the potential para-
meters can be optimized according to the target thermo-
dynamic properties while sacrificing the accuracy of structural
properties, known as the a posteriori method. Several a poster-
iori scaling methods have been brought out to align the mean
squared displacement (MSD) in CG simulation with the full-
atomic simulation. The most direct way is to rescale the time,
assuming that the time in the CG simulation corresponds to a
longer time in the full-atomic simulation.33 However, time
rescaling conflicts with the traditional kinetic theory, where
extending the time lowers the velocity of the molecules and
decreases the temperature. Whether such time rescaling can
be transferred to other dynamic properties, such as the strain
rate effect on the modulus and viscosity, is not guaranteed.
Moreover, the time rescaling factor does not have a monotonic
relationship with the CG level17 and temperature.34 Scaling
down temperature can also suppress diffusion in CG simu-
lation.35 However, performing CG simulation at a lower temp-
erature can lead to a mismatch in the structural distribution.
With the sacrifice on the distribution accuracy, the energy
renormalization (enthalpy compensation) method can also
slow down the diffusion by increasing the non-bonding
interaction.36–38 However, the scaling factor has poor tempera-
ture transferability and needs to be temperature dependent by
a posteriori fitting, suggesting that potential depends on the
kinetic energy, which brings more processes when dealing
with the local velocity gradient in non-equilibrium MD
simulation.

Except for potential development and a posteriori scaling,
some theoretical works focused on the thermostat by adding
the friction force to slow down the diffusion, like the
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traditional thermostat in dissipative particle dynamics (DPD),
the Lowe-Andersen thermostat,39 or the Langevin equation.40

The friction coefficient is determined a posteriori to match the
diffusion coefficient or relaxation time, but with only one fric-
tion coefficient, the accuracy of other dynamic properties is
not guaranteed. In dynamic force matching, the friction par-
ticles are added to introduce the friction force.41 The friction
force can also be calculated according to the memory kernel in
non-Markovian dynamics.42 The equation of motion is derived
from the generalized Langevin equation (GLE) following the
Mori–Zwanzig formalism43,44 or machine learning tech-
niques.45 The velocity autocorrelation functions are usually
presented to show that the CG dynamics can well fit the MD
simulation results. Such methods are more reliable physically
and have huge potential in future applications, as long as the
computation efficiency is promising.

In this work, a novel a priori scaling method was attempted
to resolve the multiple dynamic properties of PCL by bottom-
up CG simulation. Both the thermostat and potentials were
modified to resolve the dynamic problem caused by the loss of
entropy in the CG model. The temperature scaling factor l was
calculated from the loss of DOF in the CG model, which is
applied to the IBI process when building the CG potentials.
The proposed methods were tested on three different CG levels
of PCL and compared with other common a posteriori scaling
methods. With the scaling factors grounded in fundamental
physics principles, the proposed method shows better transfer-
ability toward the heat capacity and Young’s modulus at
different strain rates while maintaining accuracy in structural
distribution prediction. The transferability towards other
material properties, such as MSD, thermal expansion, and vis-
cosity, is also presented and compared with other a posteriori
methods.

Methodology
CG mappings for PCL and the system setup

CG models were built at three different CG levels, where the
repeat unit of the PCL was simplified to three beads, two
beads, and one bead, named 3BD, 2BD, and 1BD models,
respectively (Fig. 1a). The coordinates of the beads were
sampled from the mass centre of the corresponding atom
groups. The interactions include all the bond, angle, dihedral,
and non-bonding interactions. Taking 3BD as an example,
there are 6 types of non-bonding interactions (CM&CM,
CM&M1, CM&M2, M1&M1, M1&M2, M2&M2), 3 types of bond
interactions (CM–M1, M1–M2, M2–CM), 3 types of angle inter-
actions (∠CM, ∠M1, ∠M2), and 3 types of dihedral interactions
(2∠M1CM, 2∠CMM2, 2∠M2M1).

The studied system comprises 40 polycaprolactone (PCL)
chains, each consisting of 50 repeat units, resulting in an
approximate molecular weight of 5700 g mol−1 per chain.
There are 36 120 atoms in total. Initially, a full-atomic model
was constructed, where PCL chains were intricately mixed and
entangled using the amorphous cell packaging feature in

Material Studio 2018 (depicted in Fig. 1b). Following this
initial packing, the system undergoes a relaxation process over
1 ns in the isothermal–isobaric ensemble to attain a stable
density, maintaining a temperature of 300 K and a pressure of
1 bar. After relaxation, the side length of the box is around
7 nm. Subsequently, an additional 5 ns of relaxation in the
canonical ensemble ensures equilibrium state attainment. MD
simulations for PCL utilize the Optimized Potential for Liquid
Simulation (OPLS) force field,46 known for accurately reprodu-
cing PCL’s mechanical and rheological properties compared to
experimental data.5,6 The initial configurations of CG models
were directly mapped from the relaxed structures. Each CG
model then undergoes relaxation using the same procedure as
the full-atomic model, employing the corresponding potentials
and thermostats, as detailed in the subsequent sections. The
resulting post-relaxation CG configurations are depicted in
Fig. 1c–e.

Fig. 1 (a) Different mapping strategies illustrated using a PCL tetramer.
(b) Atomic configurations of the full-atomic model with each chain
depicted in a different color. For clarity, only 20 out of the 40 chains are
shown. The relaxed CG models of 3BD, 2BD, and 1BD mappings are pre-
sented in (c), (d) and (e), respectively.
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Iterative Boltzmann inversion

The target distribution functions of the interactions are
acquired from the MD simulation. The initial guess of the
potential can be acquired by Boltzmann inversion with the fol-
lowing equation:

UðqÞ ¼ �kBTln PðqÞ
where U is the potential, kB is the Boltzmann constant, T is

the temperature, and P is the probability distribution; q can be
both bonding and non-bonding interactions. The potential
can be determined according to the difference between
current and target distribution: Un+1 = Un + λΔUn, where
ΔUn ¼ �kBT ln Pn

Ptar
. λ is the damping factor to stabilize the

system. Un and Pn are the potential and distribution in the nth
iteration, and Ptar is the target distribution. In this work, the
IBI process was conducted by the Versatile Object-oriented
Toolkit for Coarse-graining Application (VOTCA).47 The MD
and CG simulations were run using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS).48 A Nosé-
Hoover thermostat and a barostat were used to control the
temperature and pressure.

IBI at scaled temperature: a priori scaling

The a priori temperature scaling factor l was calculated accord-
ing to the loss of the degrees of freedom (DOF). For the long-
chain polymer, the loss of DOF is complex to calculate pre-
cisely, so l was estimated from the number of beads instead.
In the repeating unit of the PCL, there are 18 atoms. Thus, the
scaling factors l for 3BD, 2BD, and 1BD models are 6, 9, and
18, respectively. According to the definition of Gibbs free
energy G = H − TS, for the CG model, when the entropy S
decreases as the system DOF decreases by l, the temperature T
should scale up by l to compensate for the entropy loss and
keep the free energy the same. Meanwhile, scaling up the
temperature can maintain the system’s total kinetic energy the
same, as l, and the number of particles N decreases by l.
However, an increase in the temperature indicates that the
kinetic energy of each bead increases. Thus, the interactions
between the beads would be stronger to keep the distribution
the same. For the modified IBI process, the temperature in the
initial guess, update term, and sampling CG simulations are
all scaled up by l, which is called high-temperature IBI (HIBI)
in the following paragraphs. Theoretically, HIBI can produce
the structural distribution accurately as the traditional IBI.

Since the kinetic energy of each bead increases in the HIBI,
the diffusion could be even faster than the traditional IBI. The
temperature in the CG simulation shows opposite rescaling
requirements for the entropy compensation and the diffusion
properties. Thus, to slow down the diffusion, the opposite
scaling approach was attempted for comparison, i.e., the temp-
erature is scaled down by l in the low-temperature IBI (LIBI).
By scaling down the temperature, the kinetic energy of the CG
beads decreases, which has the potential to align the dynamic
properties in the CG simulation without losing the accuracy in
the structural distribution. However, the interaction force

would be weaker and the difference in entropy would be even
larger than the traditional IBI. In the LIBI and HIBI, the Nosé-
Hoover thermostat and barostat were adopted for consistency
with the traditional IBI and full-atomic simulations.

Energy renormalization for IBI potential: a posteriori scaling

Inspired by previous work on the energy renormalization
method for CG simulation,36–38 the forces from the IBI for the
non-bonding interactions are scaled up by α. Different from
previous work, the tabulated potentials from the IBI were used
as the base, instead of the Lennard-Jones (LJ) potential. In pre-
vious work, the scaling factors α are different at different temp-
eratures, resulting in different potentials. For the equivalence
in comparison with other methods for transferability and to
avoid the conflict on the conservative of potentials, the energy
renormalization potential was only developed at 300 K in the
current work. Considering the difference with previous work,
the method is called energy-renormalization IBI (EIBI) in the
following paragraphs. As the system pressure will change after
force rescaling, the simple pressure correction method was
applied by adding a linear attractive potential.49 A constant
force was added Δf = −Δp × A × 0.1 × kB × T/rc, where Δp is the
pressure difference, A is the scale factor, and rc is the cut-off
distance. The density for all models was controlled at 1.07 g
cm−3 under 1.01 bar pressure, according to previous MD simu-
lations with the OPLS potential for amorphous PCL.5 The
pressure correction method may shift the position of the
potential well slightly, which is similar to β in the previous
energy renormalization method. The final potentials were
acquired by numerical integration of the force. The force
scaling factor α was set a posteriori so that the MSD of the
mass centre of the PCL chains in the CG simulation matches
with the full-atomic simulation results. Except for the non-
bonding force, all other simulation settings are similar to the
traditional IBI simulation.

Dissipative particle dynamics thermostat: a posteriori fitting

For the dissipative particle dynamics, additional dissipative
force FD and random force FR were added to the equation of
motion to slow down the diffusion. The dissipative force Fij

D =
−γω2(rij)(eij·vij) can add viscous force to the particles according
to the relative velocity, while the random force FR

ij ¼
σijωðrijÞζijdt�1

2eij adds random force to each particle and main-
tains the Langevin thermostat with the dissipative force. In
these equations, γ is the friction coefficient; ω is the weighting
factor, depending on the relative position, ω(rij) = 1 − rij/rc, rij <
rc; eij is the unit vector; vij is the relative velocity; σij is the
amplitude of the noise, σij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
; kB is the Boltzmann con-

stant and T is the temperature; ζij is a uniformly distributed
random number; dt is the time step. In the DPD simulations,
the conservative forces are the traditional IBI results. The fric-
tion coefficient was set a posteriori to fit the viscosity from full-
atomic simulation. Except for the thermostat, other settings
are identical to the IBI simulations.
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Results and discussion
Structural distribution functions

The target distributions were sampled from the full-atomic
simulations every 1 ps during the relaxation simulation at
300 K in the canonical ensemble for 1 ns using the Nosé-
Hoover thermostat. The structural distribution functions
reflect the structural characteristics of the material, such as
the neighbouring atom distances, bond length, angles, and
the corresponding distributions. All the structural distribution
functions can be reproduced accurately by the traditional IBI
method (Fig. 2). Although the temperature is rescaled in the
HIBI and LIBI for both CG simulations and potential develop-
ment, the algorithm optimizes the potential to fit the distri-
bution. Thus, the structural distribution predictions of both
methods are as accurate as the traditional IBI (Fig. 2). The dis-
tribution predictions from the 3BD models are presented in
Fig. 2, including all bonding interactions and the non-bonding
interactions. The distributions for the 2BD and 1BD models
can also match with the full-atomic results (ESI S1†). For the
higher CG level, the bead number is smaller for the same
system, thus more sampling frames are used in the IBI process
to increase the dataset. The upscaling of the CG level does not
have a significant influence on the distribution accuracy.
Meanwhile, for the EIBI method, as the non-bonding forces
are increased, the distributions cannot match the full-atomic
result (ESI S2†). The distributions become more focused and
the peak values have a slight shift because of pressure
correction.

Switching to the DPD thermostat, the distribution functions
have a slight change but can match the full-atomic results in
general for all 3BD (ESI S3†), 2BD, and 1BD models (ESI S4†).
The slight mismatch is more likely to appear in angle and di-
hedral interactions. Since the conservative forces are from the
IBI results, such alignment in the distribution is within expec-
tation, showing that switching the thermostat algorithm has
an ignorable influence on the distribution functions. As for
the slight mismatch in the angular interactions, the frictional
force in the DPD thermostat was calculated according to the
relative linear velocity, and the angular velocity is not con-
sidered, which may underestimate the friction force for the
rotational motion. Thus, the distributions for the angle inter-
actions are slightly wider than the full-atomic results.
Although the distribution mismatch could be eliminated by
further potential update iteration in the IBI process, the
updated potential requires resetting the friction coefficient to
fit the viscosity a posteriori. Thus, another iteration loop needs
to be built to update the potential and the friction coefficient,
which seems not worthwhile as the distribution mismatch is
not significant.

Mean squared displacement

The accuracy of the structural distribution cannot guarantee
consistency in dynamic properties. The MSD curves can reflect
the diffusion and relaxation properties. Thus, the MSD history
was recorded during the relaxation simulation in the canonical

ensemble at 300 K. As the particles in different CG models and
full-atomic models are different, comparing the MSD of the
particle can be inappropriate. Thus, the MSD of the mass
centre of the PCL chains was compared. The outcomes for the
initial 100 ps are depicted in Fig. 3. Detailed MSD curves for
both atoms and CG beads throughout the entire relaxation
process are available in ESI S5.† All interactions were not opti-
mized according to the MSD, except for EIBI methods.

Compared with the full-atomic results, the traditional IBI
method generates larger MSD, causing fast diffusion for all CG
levels, especially for the 1BD model. Such fast dynamics are
commonly observed in CG simulation with IBI potentials,
which can be caused by the weak interactions generated from
the mass centre distribution. As mentioned previously, the
interactions in the HIBI are stronger to keep the same distri-
bution. However, such an increment in interactions cannot
suppress the diffusion, and the MSD for the HIBI is even
higher than that for the IBI. The kinetic energy increment
caused by temperature upscaling has a more significant
impact on the diffusion characteristics than force increment
when the distribution is kept the same. The difference
between CG levels becomes more significant. In contrast, for
the LIBI, the MSD decreases significantly and the difference
between CG levels gets smaller.

The general shapes of the MSD curves from the IBI, HIBI,
and LIBI are similar, but different from the full-atomic results.
Although the LIBI method slows down the diffusion, compared
with the full-atomic MSD curve, the MSD for the LIBI is lower
in the first 1 ps, but exceeds the full-atomic MSD afterwards.
The slope of the MSD for the LIBI is steeper at the sub-
diffusion stage after 1 ps. Such results suggest that it is
impossible to acquire the same diffusion curve by tuning the
scaling factor for temperature, as the shape of the MSD cannot
be altered by changing from l to l−1 in the HIBI and LIBI.
Moreover, as the slopes of the IBI MSD curves are different
from the full-atomic results in different regions, it is imposs-
ible to use a single time-scaling factor to align the MSD curves
for all diffusion stages.

The DPD thermostat can decrease the MSD with the friction
force while using the IBI potential as the conservative potential
field, but the shape is still different from the full-atomic result.
The slope of the DPD MSD curve within the first picosecond is
lower, but becomes higher in the sub-diffusion stage com-
pared with the full-atomic MSD. Changing the friction coeffi-
cient cannot influence the shape of the MSD curve, thus it is
impossible to fit the MSD by optimizing the friction coeffi-
cient. Thus, the friction coefficient γ was set a posteriori to fit
the viscosity of the PCL in full-atomic simulation, which
equals 0.025, 0.036, and 0.26 eV ps Å−2 in the 3BD, 2BD, and
1BD models, respectively. As observed in Fig. 3, when the visc-
osities are the same, the MSD curves for all CG levels are iden-
tical in the DPD model.

Compared to the ratios of fiction coefficients
(γ3BD : γ2BD : γ1BD = 2 : 2.88 : 20.8) and the loss of DOF
(l3BD : l2BD : l1BD = 2 : 3 : 6), the ratio of γ is close to the ratio of l
for the 3BD and 2BD models, while the γ of the 1BD model
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increases significantly. Recalling the results of MSD curves
from other IBI methods, all the results show that the 1BD
model may have different dynamic characteristics from the
2BD and 3BD models. For the 1BD model, the length of the

bond is larger and the non-bonding interaction is weaker.
Thus, the bonds are more likely to pass through each other
when the time step is the same. Such bond passing can result
in less entanglement of the chains and faster diffusion and

Fig. 2 Distributions of all the interactions in the 3BD model can match well with the target distributions from the full-atomic simulation with the
traditional IBI, LIBI, and HIBI potentials.
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requires additional friction force to slow down the diffusion pro-
perties. The segmental repulsive potential (SRP) can add repul-
sive force between the bonds to avoid the bonds passing
through each other.50 However, such modification can add extra
repulsive force to the system and increase the pressure, which
will lead to the density mismatch when running in the isother-
mal–isobaric (NPT) ensemble. Thus, the SRP is not used for the
1BD model in this work but should be considered for high CG
levels where one bead presents more than 8 heavy atoms.

Compared with the other methods, the EIBI can reproduce
the most accurate MSD compared with the full-atomic simu-
lation for all CG levels. One apparent reason is that the scaling
factor α was set a posteriori to fit the MSD curve. However, for
the other CG methods, changing the scaling factor cannot
change the shape of the MSD curves and is impossible to
match the full-atomic MSD. Such results indicate that the non-
bonding force is the dominant factor influencing the MSD
curve. The force rescaling factor α is 6, 7.2, and 10.8 for the
3BD, 2BD, and 1BD models, respectively, which equals to l3BD,
0.8l2BD, and 0.6l1BD. The force rescaling factor α increases with
the CG level but slower than the increase of l by ratio.

Among all CG models, the EIBI can give the best estimation
of MSD with the most sacrifice of the accuracy in the distri-
bution predictions. For the IBI- and other IBI-derived
methods, the shape of the MSD is not the same as the full-
atomic simulation. Thus, it is impossible to reproduce the
same MSD by simple temperature scaling or time scaling.
Changing the thermostat to DPD can reduce the MSD, but it is
still impossible to reproduce an accurate MSD curve by chan-
ging the friction coefficient.

Entropy, enthalpy, and heat capacity

In the previous energy renormalization method or current
EIBI, the force rescaling factor was not set a priori according to

the loss of entropy, but a posteriori according to the MSD. In
the HIBI, the loss of entropy is compensated by the a priori
temperature rescaling factor l, while the enthalpy is also
altered in the CG potential. Thus, it is interesting to check the
entropy and enthalpy values of all the CG models. All the CG
models were relaxed in the canonical ensemble for 1 ns at
temperatures ranging from 1 K to 450 K. The enthalpy H was
calculated as H = U + pV, where U is the total energy of the
system, p is the pressure, and V is the volume. The calculation
of the absolute entropy according to the distribution can be
extremely complex, especially for the full-atomic simulation
where the number of atoms is large and the interaction types
vary.26 Thus, the change of the entropy was estimated as

ΔS ¼ Ð T2

T1

Cv

T
dT , where Cv is the heat capacity of the system and

can be approximated by Cv ¼ @U
@T

� �
V
.51

For all CG models, the total energies were recorded at
different temperatures. Generally, the total energy U increases
linearly when the temperature increases, indicating that the
heat capacity Cv is almost a constant and does not change with
temperature (Fig. 4a). Thus, the comparison between the
entropy increment ΔS can be simplified to the comparison of
heat capacity Cv. Compared to the full-atomic result, the Cv of
most CG models are much smaller, except for the HIBI, which
has a similar slope as the full-atomic simulation.

The total energy increment is the sum of the potential
energy increment ΔSp and the kinetic energy increment ΔEk,

ΔU = ΔEp + ΔEk, and ΔEk ¼ 3
2
NkBΔT. As the number of par-

ticles N is scaled down by l in the CG model, the ΔEk is scaled
down by the same scale. As for the potential energy increment
ΔEp, in the IBI process, the distribution is wider than that of
each atom, and the force is generally weaker than in the full-
atomic simulation. Thus, the potential increment will be
smaller if the distribution prediction has good temperature
transferability. Both factors result in a smaller ΔU and Cv for the
traditional IBI method. As for the LIBI, the ΔEk is scaled down
by l two times, and the smaller kinetic energy also makes the
interactions weaker to produce the same distribution. The ΔU of
the LIBI is even smaller than the IBI. In contrast, by scaling up
the temperature by l in the HIBI, the ΔEk of the CG model is the
same as the full-atomic simulation. As the kinetic energy is
increased, the interactions need to be stronger to keep the same
distribution, and thus ΔEp also increases. The a priori scaling
factor l not only compensates for the entropy loss but also
increases the interaction strength. As a result, the prediction of
Cv from the HIBI is closer to the full-atomic simulation.

As for the DPD simulation, as the conservative potential is
the same as the IBI, the total energy U is the same as the IBI
method. Such results show that adding non-conservative force
does not influence the total energy of the system. For the EIBI
method, by increasing the non-bonding interactions, the total
energy is lower than the IBI results. The kinetic energy is the
same as the IBI with the same thermostat, but the ΔEp is
smaller. As a result, the ΔU and Cv of the EIBI are a bit smaller
than the IBI results.

Fig. 3 Averaged MSD for the mass centre of PCL chains in different CG
models compared with the full-atomic simulation (pink curve).
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The enthalpy of the CG model generally has a similar trend
to the total energy (Fig. S6†). To acquire the similar Gibbs free
energy (G = H − TS) in the CG simulation as the full-atomic
simulation, as the entropy S is smaller in the CG simulation,
the enthalpy H should be smaller to have the same free energy.
However, as can be seen in Fig. S6,† most CG models can have
a smaller H at 300 K compared to the full-atomic results, but
because the ΔH is smaller, the H of the CG model gradually
exceed the H of the full-atomic simulation when temperature
decreases, except for the HIBI. Such results suggest that other
CG models cannot reproduce the same free energy as the full-
atomic simulation, when transferring to other temperature
ranges, even for the EIBI method. It is important to mention
that for the previous energy renormalization method, the force
needs to be scaled with different factors at different tempera-
tures to improve the transferability. However, having different
potentials at different temperatures means that the potential is
influenced by the kinetic energy, which brings a challenge to
the traditional MD algorithm dealing with potential as a con-
servative quantity, especially for the velocity (or temperature)
gradient in the non-equilibrium simulation.

As the heat capacity Cv is almost a constant in the studied
temperature range, the relative entropy increment can be esti-
mated from the relative heat capacity,

ΔSCG
ΔSFull

¼
Ð T2

T1

CvCG

T
dT

Ð T2
T1

CvFull

T
dT

� CvCG

CvFull
. The HIBI can give the most accu-

rate predictions on Cv and entropy increment (Fig. 4b).
Generally, the relative Cv for the CG model decreases when the
CG level upscales, even for the HIBI, where the entropy loss
has been compensated by l. To see the relationship between
the relative Cv and the loss of DOF more obviously, the relative
Cv is scaled up by l for the IBI, EIBI, and DPD, and by l2 for the
LIBI. The scaled Cv can give better predictions (Fig. 4c). For the
1BD model, the error of scaled Cv is smaller than 5%.

However, the error increases when the number of beads
increases. The accuracy should increase with the number of
beads by common sense. Such results indicate that the esti-
mation of loss of DOF by l is not accurate at a lower CG level.
For lower CG levels, the bonding interactions are stronger and
more complex. Thus, simply estimating the loss of DOF by l
may cause larger error.

Density and thermal expansion

To further investigate the temperature transferability of
different CG methods, the entangled amorphous PCL models
were relaxed in the isothermal–isobaric (NPT) ensemble, where
the pressure was controlled at 1.01 bar. The Nosé-Hoover baro-
stat was used for the IBI, HIBI, LIBI, and EIBI. For the DPD
simulation, the Berendsen barostat was used to avoid double
integration in LAMMPS. The density results for all the CG
models are presented in Fig. 5. As the potentials were built from
the full-atomic results at 300 K, all the methods can predict the
density within ±2% error at 300 K. Extending the temperature
range, for the 2BD and 3BD models, most density predictions
fall in the region within ±2% error, except for the EIBI method.
As the non-bonding forces are increased in the EIBI, the
thermal expansion rate is generally lower, and thus the density
prediction is less accurate when transferring to other tempera-
tures. If different force scales and potentials are optimized at
different temperatures, the density prediction from the EIBI
could be better, which is the same logic as all other methods.

For the 1BD model, the density predictions from the IBI,
LIBI, HIBI, and DPD at a lower temperature are much higher
than the full-atomic results. As the IBI-related CG method is
based on the structural distribution, when the CG level scales
up to 1BD, the information from the distribution is limited
and could be insufficient for the transferability of temperature.
Recalling the MSD result of the IBI, the difference in the
diffusion characteristics and possible bond crossing could be

Fig. 4 (a) Total energy growth with temperature for each CG model compared with the full-atomic simulation results (pink curve). (b) Relative heat
capacity for each CG model. (c) Scaled heat capacity of each CG model.
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other reasons, causing disentanglement and poor temperature
transferability. Adding the repulsive force between the bonds
could be helpful for the 1BD model to improve such transfer-
ability. For the EIBI, as the non-bonding force is increased,
especially for the 1BD model, density prediction is less influ-
enced by the CG level.

Young’s modulus

In the presented CG methods, the dynamic properties are
improved compared to the traditional IBI method at the equili-
brium state. It is interesting to check how these methods

perform in the non-equilibrium simulations and influence the
mechanical response of the amorphous entangled polymer
chains. Tensile tests were conducted for each PCL model at
300 K with different strain rates. The initial state is the equili-
brium result after isothermal–isobaric relaxation. While bulk
PCL exhibits isotropy, the polymer model at the nanoscale
introduces local anisotropy due to different entanglement
states in each direction. Thus, the moduli were averaged across
all three dimensions to accommodate this intrinsic anisotropy.
The modulus was determined using a dynamic approach invol-
ving stretching at a constant rate, rather than employing the
quasi-static method,52 which is better suited for polymers in a
glassy state. Meanwhile, as there are fewer atoms in the CG
model, the pressure fluctuation is larger, which leads to a
larger fluctuation in the modulus predictions. The relationship
between moduli and strain rates was fitted to the exponential
functions, and the fitted results are presented in Fig. 6. The
original data in different tensile directions can be found in ESI
S7 and S8.† Generally, for all the tested models, the modulus
increases with the strain rate. As the strain rates are much
higher than the experiment, the fitted results need extrapol-
ation to compare with the experiments.

For the traditional IBI method, the modulus is lower than
the full-atomic results at the same strain rate for all CG levels.
Because the interactions acquired from the IBI are generally
weaker than the full-atomic interaction, for the homogeneous
deformation without diffusion, the stress increment will be
lower. Thus, when the CG level increases, the modulus
decreases in the IBI CG model. At the same time, the diffusion
can influence the modulus, as the sliding of the polymer
chains can cause strain and relaxation of stress. For the IBI CG
model, the diffusion is faster than the full-atomic model
(Fig. 3). Thus, for the same strain rate, more diffusion happens
in the CG model, which can reduce the modulus further.

As for the LIBI, although the diffusion is slower, the
modulus is generally lower than the traditional IBI caused by

Fig. 5 Density of each CG model at the corresponding temperature.
The pink area is the density from the full-atomic simulation with ±2%
error.

Fig. 6 (a) Fitted curves for the Young’s modulus acquired from different CG models at different strain rates compared with the full-atomic simu-
lation results. The pink belt is the modulus from the full-atomic simulation with ±10% error. (b) Relative slope of each CG model compared with the
full-atomic simulation.
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the weaker interactions from the LIBI potential. The modulus
decreases when the CG level increases for the LIBI model.
Such results suggest that for the amorphous entangled
polymer system, the modulus is dominated by the interaction
strength and the influence from the diffusion is weaker.
However, for the 3BD LIBI model, the modulus at a slower
strain rate is higher than the IBI results, indicating that at a
slower strain rate, the diffusion rate could have a more signifi-
cant impact on the modulus than the interaction strength.
However, such a phenomenon is not observed in the 2BD and
1BD models, suggesting that their diffusion may be not slow
enough to enhance the system modulus.

The modulus predicted by the HIBI is close to the full-
atomic results for all CG levels. The interaction in the HIBI is
much stronger than in the IBI so that the distribution is the
same with larger thermal noise. As a result, the modulus is
much higher than the traditional IBI. As the thermal noise
scales up with the CG level in the HIBI, the force also scales
up to keep the distribution, which compensates for the weak
interactions caused by the wider distribution at the higher CG
level. With such compensation, the modulus predictions from
all CG levels are similar and close to the full-atomic results.
Meanwhile, the fast diffusion results in an earlier yielding
during the tensile deformation.

The EIBI method gives the second closest modulus predic-
tion. By increasing the non-bonding force, the interaction
strength is increased and the diffusion is slowed down. Thus,
the modulus is higher than the traditional IBI method. The
force scale factors were set to fit the MSD curve, which was not
optimized for the Young’s modulus. Generally, the moduli of
the 1BD and 2BD models are close to the modulus in the full-
atomic simulation. The moduli of the 3BD model are higher
than the full-atomic simulation. Such results suggest that the
EIBI has the potential to fit the diffusion properties and the
mechanical properties at the same time. The overestimation of
the 3BD model may be caused by the large force scale factor. A
smaller force scaling factor could give a lower modulus predic-
tion while sacrificing a bit on the accuracy of the MSD predic-
tion. Meanwhile, the MSD curves have slight fluctuations
(Fig. 3), which brings some room to adjust the force scaling
factor α.

As for the DPD results, as the extra dissipative force is
added to increase the friction, the modulus is significantly
higher than the Nosé-Hoover thermostat, although the poten-
tials are from the IBI. When the strain rate increases, the rela-
tive velocity between the particles increases and the dissipative
force increases. Thus, the Young’s modulus shows stronger
connections with the strain rate and the slope for the Young’s
modulus versus the strain rate is larger than the IBI method.
Compared with the full-atomic results, the dynamic response
of Young’s modulus is more significant in the DPD simulation
than the full-atomic results. As the friction coefficient was
fitted according to the viscosity only at the strain rate of
0.003 ps−1, such a coefficient cannot guarantee the modulus
prediction accuracy at various strain rates. For the 3BD model,
the closest modulus estimation is around 0.003 ps−1 strain

rate, but the strain rate for the closest estimation decreases
when the CG level increases. The modulus predictions increase
when the CG level is upscale, suggesting that the modulus is
influenced by the friction coefficient significantly. However,
the modulus of the 3BD model is the most sensitive to the
strain rate change. Thus, applying the DPD thermostat to the
non-equilibrium tensile test requires further modifications in
the algorithm for the entangled polymer chains in the future.

Viscosity

The shear viscosity was also acquired for each model by the
non-equilibrium simulation. The simulation box has shear
deformation with a constant shear strain rate ðγ̇ ¼ 0:003 ps�1Þ.
The shear viscosity η was calculated as η ¼ � Pxy

γ̇xy
, where Pxy is

the element of the pressure tensor in the shearing direction.
The temperature was kept at 400 K with the SLLOD equation of
motion.53 As the thermal expansion rates are different for
different CG models, the densities of the CG models were kept
the same as the full-atomic simulation at 400 K by deforming
the simulation box for comparison. The pressure history was
recorded after 1 ns of shearing simulation when the steady vel-
ocity gradient is formed. The viscosity was calculated as the
average value sampled from pressure history for 1 ns. For each
model, the shear deformation was conducted in three direc-
tions (xy, yz, and xz). The result is the average value from the
simulations in these three directions. The relative viscosity
values from each CG model compared to the full-atomic result
are presented in Fig. 7. As the friction coefficient in the DPD is
adapted according to the viscosity value, DPD can give the
most accurate prediction of the viscosity.

For the traditional IBI method, the viscosity is 10 times
smaller than the full-atomic results, as the diffusion is faster
and the interaction is weaker in the CG models. The results
from the 2BD and 3BD models are similar, but the 1BD model
has a much lower viscosity. In the LIBI, the diffusion is slowed
down, but the viscosity is even lower than that of the IBI. Such

Fig. 7 Relative viscosity of each CG model compared with the full-
atomic model. The error bars are the relative standard deviation sampled
from the shear simulation in the three directions.
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results indicate that the interaction strength has a larger influ-
ence on the viscosity compared to the diffusion when the dis-
tributions are kept the same. For the HIBI, as the interaction
strength is increased, the viscosity increases about five times
compared to the IBI results. However, the viscosity is still
lower than the full-atomic prediction, which may be caused by
the fast diffusion in the HIBI model. For the EIBI, the viscosity
is higher than the HIBI and close to the full-atomic value. The
predicted viscosity has an error of 25% compared to the full-
atomic model. The accuracy increases when the number of
beads increases in the CG model. As the MSD curves of the
EIBI are close to the full-atomic model, it is not surprising that
the EIBI can provide the most accurate prediction of the vis-
cosity with the cost of the accuracy of the structural
distribution.

Conclusions and outlooks

In this study, three levels of coarse-graining were employed.
Given that the coarse-grained potentials entail two-body inter-
actions, similar to full-atomic simulations, the computational
expense increases linearly with the number of particles in the
simulation box. As a result, simulations using the 3BD, 2BD,
and 1BD models are 6, 9, and 18 times faster than those using
the full-atomic model, respectively. Different rescaling
methods were adopted to resolve the dynamic properties of
entangled PCL chains by CG simulation. A novel a priori temp-
erature rescaling method is proposed, which compensates for
the entropy loss by rescaling the temperature. The HIBI pro-
posed can give an accurate prediction for the heat capacity and
Young’s modulus while maintaining the accuracy of structural
distribution and thermal expansion. The viscosity predicted by
the HIBI is better than that by the traditional IBI but still lower
than the full-atomic results, which can be caused by the fast
diffusion. Switching the thermostat to DPD gives an extra fric-
tion coefficient to fit the viscosity a posteriori, without influen-
cing the conservative force. However, the predictions on other
properties, such as MSD and modulus, require further
improvement. As for the modified energy renormalization
method (EIBI), multiple dynamic properties can be reproduced
at the same time, such as MSD, modulus, and viscosity.
However, the EIBI has poor temperature transferability on
density and cannot present the structural distribution accu-
rately. Based on the current findings, the HIBI emerges as a
superior approach capable of simultaneously replicating mul-
tiple physical properties, encompassing structural, thermal,
mechanical, and rheological aspects, showing the strength for
integrating CG thermostat scaling with CG potential develop-
ment. With its solid physical foundation and ease of acqui-
sition, the a priori scaling method can be extended to other
polymer systems or even more complex systems such as nano-
composites. Looking ahead to the future of CG modelling,
using machine learning techniques has the potential to repro-
duce more physical properties at the same time with a higher
computational cost. On the other hand, building a modified

thermostat for CG simulation, which can produce the same
averaged kinetic energy but with larger fluctuations according
to the loss of entropy, could be useful to improve the transfer-
ability towards the dynamic properties for the potentials
acquired from the IBI process. Such an approach holds
promise for investigating fracture-related properties, where the
influence of diffusion is paramount.
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