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Diffusioosmotic flow reversals due to ion–ion
electrostatic correlations

Shengji Zhang a and Henry C. W. Chu *b

Existing theories of diffusioosmosis have neglected ion–ion electrostatic correlations, which are impor-

tant in concentrated electrolytes. Here, we develop a mathematical model to numerically compute the

diffusioosmotic mobilities of binary symmetric electrolytes across low to high concentrations in a

charged parallel-plate channel. We use the modified Poisson equation to model the ion–ion electrostatic

correlations and the Bikerman model to account for the finite size of ions. We report two key findings.

First, ion–ion electrostatic correlations can cause a unique reversal in the direction of diffusioosmosis.

Such a reversal is not captured by existing theories, occurs at ≈ 0.4 M for a monovalent electrolyte, and at

a much lower concentration of ≈ 0.003 M for a divalent electrolyte in a channel with the same surface

charge. This highlights that diffusioosmosis of a concentrated electrolyte can be qualitatively different

from that of a dilute electrolyte, not just in its magnitude but also its direction. Second, we predict a sep-

arate diffusioosmotic flow reversal, which is not due to electrostatic correlations but the competition

between the underlying chemiosmosis and electroosmosis. This reversal can be achieved by varying the

magnitude of the channel surface charge without changing its sign. However, electrostatic correlations

can radically change how this flow reversal depends on the channel surface charge and ion diffusivity

between a concentrated and a dilute electrolyte. The mathematical model developed here can be used to

design diffusioosmosis of dilute and concentrated electrolytes, which is central to applications such as

species mixing and separation, enhanced oil recovery, and reverse electrodialysis.

1. Introduction

Diffusioosmosis refers to the deterministic fluid motion over a
surface induced by a solute concentration gradient.1–7

Diffusioosmosis comprises a chemiosmotic and an electroos-
motic component. The chemiosmotic flow is generated by the
osmotic pressure gradient induced by the solute gradient,
which acts to drive fluid from a region of high to low solute
concentration. The electroosmotic flow is generated by an elec-
tric field, which is induced by the ionic solute gradient to
ensure no net ionic current in the bulk. The electroosmotic
flow may drive fluid up or down the ionic solute gradient,
depending on the diffusivities of ions and the charge of the
surface. The diffusioosmotic flow velocity follows the
‘log-sensing’ relation, u = M∇ log n,8 where n is the ion concen-
tration and a positive (negative) diffusioosmotic mobility M
corresponds to fluid driven up (down) the solute gradient.
Diffusioosmosis has received much attention in recent years

due to its impact on a wide range of applications, such as
mixing and separation,9–36 reverse electrodialysis,37–42 and
enhanced oil recovery.43–47

The main objective of this article is to demonstrate that
ion–ion electrostatic correlations can lead to a unique reversal
in the direction of diffusioosmosis of a binary, symmetric, con-
centrated electrolyte solution, relative to diffusioosmosis of the
same but dilute electrolyte solution. Existing theories of diffu-
sioosmosis have focused on dilute electrolyte
solutions4,8,11,12,48–54 and cannot capture this reversal. In a
dilute electrolyte solution, the electric potential is typically
modeled by the Poisson equation, where ions respond to the
average potential in the electric double layer and the space
charge density decays monotonically from the charged surface.
The Poisson equation neglects electrostatic correlations
between ions. Ion–ion electrostatic correlations are prominent
in concentrated electrolytes and cause overscreening of
charges on a surface, where the space charge density oscillates
in sign near the charged surface.55–57 By using molecular
dynamics simulations and other non-local approaches,58–67 it
has been demonstrated that the causes of overscreening are
ion–ion electrostatic correlations. Although these approaches
can capture overscreening accurately, the high computational
cost largely restricts their use to model equilibrium systems.
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Building on the work of Santangelo68 and Hatlo and Lue,66

Bazant et al.69,70 derived a continuum-level, modified Poisson
equation to robustly model overscreening. The equation is
applicable to dilute and concentrated electrolyte solutions,
room-temperature ionic liquids, and molten salts. For a binary
electrolyte, the modified Poisson equation reads69–71

εðl2c∇4ϕ� ∇4ϕÞ ¼ ρ ¼ enþzþ þ en�z�; ð1Þ

where ε is the solution permittivity, ϕ is the electric potential,
ρ is the space charge density, e is the proton charge, n+ and n−
are the number densities of the cations and anions, respect-
ively, and z+ and z− are the valence of the cations and anions,
respectively. For a symmetric electrolyte, z+ = −z− = z. The
lower and upper bounds of the electrostatic correlation length,
lc, is set by two comparable length scales, namely, the hydrated
ion diameter, a, and z2lB, where lB = e2/(4πεkT ) is the Bjerrum
length with k the Boltzmann constant and T the absolute
temperature. Because of its continuum nature, the modified
Poisson equation can be coupled with other continuum-level
transport equations and used to analyze dynamical problems
efficiently. For instance, the modified Poisson equation can
successfully capture non-equilibrium phenomena that follow
from overscreening, including electroosmotic flow reversal,70

electrophoretic mobility reversal,72 dielectrophoretic polariz-
ation reversal,73 and ionic current rectification reversal.74

In this article, we develop a mathematical model that pre-
dicts the diffusioosmotic mobilities of binary symmetric elec-
trolytes across low to high concentrations in a channel com-
prising two charged parallel plates. We use the modified
Poisson equation69 to model the electric potential and electro-
static correlations. We incorporate the Bikerman model75 to
account for the finite size of ions. We report two key findings.
First, we compute the diffusioosmotic mobilities of common
electrolytes and demonstrate that the direction of diffusioos-

mosis of a monovalent electrolyte reverses as the electrolyte
concentration increases beyond ≈ 0.4 M. This unique diffu-
sioosmotic flow reversal is not captured by existing theories
and we identify its origin to be overscreening of channel
surface charges by ion–ion electrostatic correlations. In a
channel with the same surface charge, we show that the diffu-
sioosmotic flow reversal occurs at a much lower concentration
of ≈ 0.003 M for a divalent electrolyte. Second, we present flow
direction diagrams of diffusioosmosis as a function of the elec-
trolyte concentration, valence, diffusivity, and channel surface
charge. The diagrams predict a separate diffusioosmotic flow
reversal to that shown in prior work.4,8,50,52 This reversal is not
due to electrostatic correlations but the competition between
the chemiosmosis and electroosmosis that constitute diffu-
sioosmosis. The reversal can be realized by varying the magni-
tude of the channel surface charge without changing its sign.
However, due to electrostatic correlations, this reversal has a
distinct dependence on the product of the channel surface
charge and ion diffusivity between a concentrated and a dilute
electrolyte.

The rest of this article is outlined as follows. In section 2,
we formulate the problem by presenting the governing
equations and boundary conditions for the electric potential,
induced electric field, and diffusioosmotic flow field and
mobility. In section 3, we present our results and elaborate on
the two above-mentioned key findings. In section 4, we sum-
marize this study and offer ideas for future work.

2. Problem formulation

Consider a channel that comprises two parallel plates of con-
stant surface charge density q (or constant surface potential ζ)
and a length L separated by a distance of 2H (Fig. 1). A con-
stant concentration gradient of a binary, symmetric electrolyte
∇ni∞ is applied across the channel, where i = (+) and i = (−) are
the cationic and anionic species, respectively, and n+

∞(x) =
n−

∞(x) = n∞(x). Following prior work,4,8,12,48–54 we focus on
typical regimes of diffusioosmosis, where the electrolyte con-
centration gradient across the channel length is much smaller
than the background concentration, L|∇n∞|/n∞ ≪ 1 with n∞ =
n∞(0). A diffusioosmotic flow with a constant velocity u is
induced parallel to ∇ni∞ along the x-direction. The velocity u
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Fig. 1 A constant concentration gradient of a binary, symmetric elec-
trolyte ∇ni∞ induces a diffusioosmotic flow in a channel that comprises
two parallel plates of constant surface charge density and length L sep-
arated by distance 2H. The diffusioosmotic flow is parallel to ∇ni∞ along
the x-direction.
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is an unknown. In the following, we will determine the electric
potential inside the channel in section 2.1 and the electric
field induced by the electrolyte gradient in section 2.2. We will
use this information to determine u in section 2.3.

2.1. Electric potential

The Bikerman model75 describes the electrochemical potential of
each ionic species as μ± = kT log n± + z±eϕ − kT log[1 − a3(n+ +
n−)], where the first two terms represent an ideal solution and the
last term accounts for the steric effect of the finite size of ions.
The steric effect is controlled by the bulk volume fraction of ions,
ν = 2a3n∞. At equilibrium, ∇μ± = 0, the ion concentration follows
the Fermi-like, modified Boltzmann distribution as14,52,76

n+ ¼ αn1e�
z+eϕ
kT with α ¼ 1� νþ ν cosh

zeϕ
kT

� �� ��1

: ð2Þ

Substituting eqn (2) into (1) yields a Poisson–Fermi equation
that governs the electric potential accounting for both the
finite size of ions and ion–ion electrostatic correlations69,70

ε l2c
d4ϕ

dy4
� d2ϕ

dy2

� �
¼ ρ ¼ �2αn1ez sinh

zeϕ
kT

� �
: ð3Þ

We non-dimensionalize eqn (3) using the following schemes:
ŷ = y/H, ϕ̂ ¼ ϕ= kT=eð Þ, κ̂ ¼ κH, and ρ̂ ¼ ρ= n1ezð Þ, where quan-
tities with carets are non-dimensional and the Debye length
κ�1 ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkT= 2e2n1z2ð Þp

is the length scale over which the space
charge density varies. The non-dimensionalized eqn (3) reads,

δ2c
d4ϕ̂

dŷ4
� κ̂2

d2ϕ̂

dŷ2
¼ � ακ̂4

z
sinh zϕ̂

� �
; ð4Þ

where δc = κlc characterizes the importance of electrostatic cor-
relations and is expected to be prominent when δc ≳ O(1).77

Eqn (4) is subject to the following boundary conditions:69,70

dϕ̂
dŷ

¼ �q̂ or ϕ̂ ¼ ζ̂; and
d3ϕ̂

dŷ3
¼ 0 at ŷ ¼ 0; ð5Þ

ϕ̂ ¼ 0 and
dϕ̂
dŷ

¼ 0 at ŷ ¼ 1: ð6Þ

In eqn (5), the first two conditions indicate that the channel
surface charge density q̂ = qeH/(εkT ) or the channel surface
potential ζ̂ ¼ ζe= kTð Þ is specified. The third condition is
demanded by the Poisson–Fermi equation. In eqn (6), the con-
ditions indicate that the electrostatic potential and its deriva-
tive approach zero smoothly away from the channel surface.
The first condition is guaranteed, where our analyses focus on
electrolyte solutions with n∞ ≥ 10–3 M (κ−1 ≲ 10–8 m) in typical
microscale channels with H ≳ 10–7 m so that κ̂ � 10 and ϕ̂ ¼ 0
at ŷ = 1. When δc = 0 (lc = 0) and α = 1 (ν = 0), eqn (4) reduces to
the classical Poisson–Boltzmann equation for a dilute electro-
lyte solution, where the last condition in eqn (5) and (6) is not
required.

2.2. Induced electric field

In diffusioosmosis, the electric field E is generated by the
imposed electrolyte concentration gradient to ensure no net
ionic current in the bulk:8

J ¼ zþejþ þ z�ej� ¼ 0; ð7Þ
where the flux of individual species accounting for the finite
size of ions is14,52,75

ji ¼ � Di∇ni � Dizie
kT

ni ∇ϕ� Eð Þ þ niu

� νDini ∇nþ þ ∇n�ð Þ
2n1 � ν ∇nþ þ ∇n�ð Þ ;

ð8Þ

with Di the diffusivity of the i-th ionic species. Substituting
eqn (8) into (7) gives

E ¼Exex ¼ kT
ze

∇n1j j
n1

1þ zβð Þe�zϕ̂ � 1� zβð Þezϕ̂
1þ zβð Þe�zϕ̂ þ 1� zβð Þezϕ̂

" #(

� 1

1� αν coshðzϕ̂Þ

 !
þ Pe sinhðzϕ̂Þ

1þ zβð Þe�zϕ̂ þ 1� zβð Þezϕ̂ û
)
ex;

ð9Þ
where β = (D+ − D−)/z(D+ + D−) is the ion diffusivity ratio, ex is
the unit vector in the positive x-direction, the Peclet number
Pe = 4n∞U/[(D+ + D−)|∇n∞|] describes the strength of the diffu-
sioosmotic convection relative to ion diffusion, U =
εk2T2|∇n∞|/(ηe2z2n∞) is a characteristic velocity, and û = ux/U is
the non-dimensionalized x-component of u.

2.3. Diffusioosmotic flow field and mobility

Inertial forces are negligible in microscale transport. The fluid
dynamics is described by the continuity equation, ∇·u = 0, in
addition to the Stokes equation with an electric body force, 0 =
η∇2u − ∇p + ρ(E − ∇ϕ). For a fully developed flow, ux = ux(y)
and the continuity equation suggest that the y-component of u
is zero. Thus, the y- and x-components of the Stokes equation
are written as

0 ¼ � @p
@y

� ρ
dϕ
dy

; ð10Þ

0 ¼ η
d2ux
dy2

� @p
@x

þ ρEx; ð11Þ

where η is the dynamic viscosity of the electrolyte solution. The
pressure p can be obtained by substituting eqn (2) into (10) and
integrating with the boundary condition ϕ̂ ¼ 0 at ŷ = 1,

p ¼ p1 � 2kTn1

ν
log α; ð12Þ

where p∞ is a constant in the absence of an imposed pressure
gradient. Finally, substituting eqn (12) into (11) gives the gov-
erning equation for the diffusioosmotic flow

0 ¼ 1
κ̂2

d2û

dŷ2
� log α�1

ν
þ ρ̂Ê

2
; ð13Þ
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where –(log α−1)/ν and ρ̂Ê=2 are the chemiosmotic and electro-
osmotic driving forces to the diffusioosmotic flow, respectively,
and Ê = Ex/(kT|∇n∞|/zen∞). Eqn (13) is subject to the no-slip
condition at the channel walls and the symmetry condition
about the channel centerline

û ¼ 0 at ŷ ¼ 0; and
dû
dŷ

¼ 0 at ŷ ¼ 1: ð14Þ

We further define the mean diffusioosmotic velocity as

ûm ;
um
U

¼
ÐH
0 uxdy

� �
=H

U
¼
ð1
0
ûdŷ ¼ M̂: ð15Þ

Note that ûm is equivalent to the non-dimensionalized
diffusioosmotic mobility M̂ = Mηe2z2/(εk2T2), which together
recover the dimensional log-sensing relation um = M∇log n∞.
In sum, we solved eqn (4)–(6) for ϕ̂. The potential ϕ̂ is then
used to compute ρ̂ via eqn (3) and is substituted into eqn (13)
and (15) to solve for û and ûm. We use a combination of the
finite difference method and Newton’s method in Wolfram
Mathematica to solve these equations and converged solutions
are obtained with mesh size Δŷ = 10–5. Details of the numeri-
cal scheme are given in Appendix A. We validated our model
by recovering the results of prior work50,52 in Appendix B.

3. Results and discussion

In this section, we compute the non-dimensionalized diffu-
sioosmotic mobilities M̂ of common binary, symmetric electro-
lytes. Their cation diffusivity, anion diffusivity, diffusivity ratio,
and saturation concentration are listed in Table 1. In section
3.1, we present the mobilities as a function of the bulk molar
concentration of the electrolyte C, which relates to the bulk
number density of ions via n∞ = 103AC, where A is the
Avogadro constant. In section 3.2, we present flow direction
diagrams that show the direction of the diffusioosmotic flow
as a function of the electrolyte concentration, valence, diffusiv-
ity, and channel surface charge. In section 3.1 and 3.2, we
account for the fact that varying C varies ν, κ̂, and δc; see
section 2.1 for parameter definitions. We set T = 298 K, a =
0.3 nm,70,76 lc = z2lB,

77 and Pe = 4n∞U/[(D+ + D−)|∇n∞|] = 1,
which is justified by typical diffusioosmosis with U ∼ 10–6

ms−1, n∞/|∇n∞| ∼ 10–3 m, and D± ∼ 10–9 m2 s−1.10,50

3.1. Variation of diffusioosmotic mobilities with bulk
electrolyte concentrations

3.1.1. Monovalent electrolytes ignoring electrostatic corre-
lations (δc = 0). First, we show and discuss the diffusioosmotic
mobilities of monovalent electrolytes obtained by ignoring
electrostatic correlations in Fig. 2. This will facilitate discus-
sions in the next section on how electrostatic correlations can
cause a unique diffusioosmotic flow reversal that is manifested
in a sign reversal in the mobilities. As shown in Fig. 2(a), we
compute the mobilities M̂ of five monovalent electrolytes: HCl
(β = 0.64), CH3COOK (β = 0.29), KCl (β = −0.02), NaCl (β =
−0.21), and NaOH (β = −0.60). The channel height H =
100 nm. Thus, κ̂ � 10 at C = 10–3 M and κ̂ � 10 as C increases.
The channel surface charge density q = 0.014 C m−2 (q̂ = 78.4)
corresponds to a channel surface potential ζ = 100 mV ðζ̂ ¼ 4Þ
at C = 10–3 M. We use the same q̂ to compute the mobilities at
other electrolyte concentrations. Fig. 2 includes the effect of
finite-ion-size, i.e., ν is non-zero, but ignores electrostatic cor-
relations by setting δc = 0. By definition (Fig. 1), a positive
(negative) mobility corresponds to a diffusioosmotic flow from
a region of low (high) to high (low) electrolyte concentration.

The first observation from Fig. 2(a) is that, at a low electro-
lyte concentration C = 10–3 M for a strongly negative β = −0.60
(grey line), the diffusioosmotic mobility is positive. That is, the
diffusioosmotic flow is from a region of low to high electrolyte
concentration. To understand this observation, we show the
chemiosmotic driving force –(log α−1)/ν in Fig. 2(b) and the
electroosmotic driving force ρ̂Ê=2 in Fig. 2(c) and (d) [see eqn
(13)]; panel (d) is a zoom-in of panel (c). Fig. 2(b) shows that
the chemiosmotic driving force is negative, meaning that a
chemiosmotic flow is generated from a region of high to low
electrolyte concentration, consistent with prior work.8 The che-
miosmotic driving force is independent of β, which explains
the overlap of data for five different β values. Fig. 2(c) and (d)
show that, for β = −0.60, the electroosmotic driving force is
always positive away from the channel surface (ŷ = 0), meaning
that an electroosmotic flow is generated from a region of low
to high electrolyte concentration. The positive electroosmotic
driving force ρ̂Ê=2 for β = −0.60 is confirmed by its negative
components ρ̂ and Ê as shown in Fig. 2(e). To sum, since the
magnitude of the electroosmotic driving force [Fig. 2(c)] is
larger than the chemiosmotic driving force [Fig. 2(b)], the
direction of the resulting diffusioosmotic flow is governed by

Table 1 Cation diffusivity D+, anion diffusivity D−, diffusivity ratio β, and saturation concentration of common binary, symmetric electrolytes in
water at temperature T = 298 K78

Electrolyte D+ [×10
–9 m2 s−1] D− [×10–9 m2 s−1] β Saturation concentration [M]

Hydrogen chloride (HCl) 9.31 2.03 0.64 19.7
Potassium acetate (CH3COOK) 1.96 1.09 0.29 27.4
Potassium chloride (KCl) 1.96 2.03 −0.02 4.61
Sodium chloride (NaCl) 1.33 2.03 −0.21 6.16
Sodium hydroxide (NaOH) 1.33 5.27 −0.60 25
Zinc sulphate (ZnSO4) 0.72 1.07 −0.10 3.57
Magnesium chromate (MgCrO4) 0.71 1.13 −0.12 5.15
Beryllium sulphate (BeSO4) 0.60 1.07 −0.14 3.81
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Fig. 2 Diffusioosmosis of monovalent electrolytes ignoring electrostatic correlations (δc = 0). For panels (a)–(h), the red solid line denotes HCl (ion
diffusivity ratio β = 0.64), the green solid line denotes CH3COOK (β = 0.29), the blue solid line denotes KCl (β = −0.02), the purple solid line denotes
NaCl (β = −0.21), the grey solid line denotes NaOH (β = −0.60), and the dotted line is for referencing zero of the y-axis. The channel height H =
100 nm and the channel surface charge density q = 0.014 C m−2. Panels (b)–(e) and (f )–(h) are computed at a bulk electrolyte molar concentration
C = 10–3 M and C = 1 M, respectively. (a): The diffusioosmotic mobility M̂ versus C. (b) and (f ): The chemiosmotic driving force −log α−1/ν versus the
distance from the bottom channel wall ŷ. (c) and (g): The electroosmotic driving force ρ̂Ê=2 versus ŷ. (d): A zoom-in of panel (c) for showing a sign
change of ρ̂Ê=2. (e) and (h): The space charge density ρ̂ (right y-axis; black solid line) and electric field Ê (left y-axis; all other lines) versus ŷ.
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the former, which goes from a region of low to high electrolyte
concentration, i.e., a positive mobility.

The second observation from Fig. 2(a) is that, at a low elec-
trolyte concentration C = 10−3 M for a strongly positive β =
0.64 (red line), the diffusioosmotic mobility is negative. That
is, the diffusioosmotic flow is from a region of high to low
electrolyte concentration. This can be understood by the
same reasoning as in the above paragraph. Specifically,
Fig. 2(b) shows that the chemiosmotic driving force –

(log α−1)/ν is negative, meaning that a chemiosmotic flow is
generated from a region of high to low electrolyte concen-
tration. Fig. 2(c) and (d) show that, for β = 0.64, the electro-
osmotic driving force ρ̂Ê=2 is positive near the channel wall
(ŷ ≲ 0.16) and becomes negative away from the channel wall
(ŷ ≳ 0.16). Such a change in the direction of the electroosmo-
tic driving force is caused by a sign change in the induced
electric field Ê but not in the space charge density ρ̂

[Fig. 2(e)]. Thus, the net electroosmotic flow for β = 0.64 is
weaker than that for β = −0.60. Consequently, when the elec-
troosmotic flow couples with the chemiosmotic flow for β =
0.64, the resulting diffusioosmotic flow is governed by the
latter, which goes from a region of high to low electrolyte
concentration, i.e., a negative mobility.

Combining the first and second observations, at a low elec-
trolyte concentration, the mobility transitions from positive to
increasingly negative as β becomes more positive.

The third observation from Fig. 2(a) is that the magnitude
of the mobility decreases and approaches zero with an increas-
ing electrolyte concentration C. This can be understood by
recalling that we consider a constant channel surface charge
density q̂ = 78.4. This corresponds to a channel surface poten-
tial ζ̂ ¼ 4 at a low electrolyte concentration C = 10–3 M. On
increasing the electrolyte concentration, the channel surface
potential decreases and approaches zero, e.g., ζ̂ ¼ 0:24 at C = 1
M which can be obtained by solving eqn (4)–(6), and so does
the mobility.

3.1.2. Monovalent electrolytes accounting for electrostatic
correlations (δc = κlc). In this section, we demonstrate a unique
diffusioosmotic flow reversal caused by electrostatic corre-
lations. This reversal manifests in a sign reversal in the diffu-
sioosmotic mobility at a high electrolyte concentration C ≳ 0.1
M. To this end, we show Fig. 3 is obtained with the same para-
meters as Fig. 2, except that a non-zero δc is input into the
computation according to its definition (δc = κlc) instead of
assuming it to be zero.

We start by stating the similarities between Fig. 3(a) and
2(a). These similarities occur when C < 0.1 M, where the
effect of electrostatic correlations is weak. First, Fig. 3(a)
shows that, at a low electrolyte concentration C = 10–3 M, the
mobility is negative for a strongly positive β (grey line) and
transitions to be negative for a strongly positive β (red line).
This trend and the physical explanations are identical to
those presented in Fig. 2(a) at a low electrolyte concentration
(the first and the second observation in section 3.1.1). In
fact, the mobilities at C = 10–3 M in Fig. 3(a) and their con-
stitutive driving forces in Fig. 3(b)–(e) are almost identical to

those in Fig. 2(a)–(e). This is because, at C = 10–3 M, δc =
0.074 ≪ 1 in Fig. 3(a)–(e) indicates that electrostatic corre-
lations are negligible and can be approximated accurately by
neglecting electrostatic correlations (δc = 0) as presented in
Fig. 2(a)–(e). Second, the same as in Fig. 2(a), Fig. 3(a)
shows that the magnitude of the mobility decreases with an
increasing electrolyte concentration. This echoes the third
observation in section 3.1.1.

Next, let us state and discuss the new phenomena caused
by electrostatic correlations, as shown by the dissimilarities
between Fig. 3(a) and 2(a). These dissimilarities occur when C
≳ 0.1 M, where the effect of electrostatic correlations is promi-
nent. The first new phenomenon caused by electrostatic corre-
lations is that, for a fixed β value, there is a substantial devi-
ation of the mobility as shown in Fig. 3(a) relative to Fig. 2(a)
at C ≥ 0.2 M where δc ≥ 1. This is consistent with the Poisson–
Fermi eqn (4) in that the effect of electrostatic correlations is
important when δc ≳ O(1).77

The second new phenomenon caused by electrostatic corre-
lations is that the aforementioned deviation of the mobility in
Fig. 3(a) subsequently evolves into a unique sign reversal in
the mobility at C ≳ 0.4 M, which is absent in Fig. 2(a). For
instance, in Fig. 3(a) for β = −0.60 (grey line) the mobility is
positive at C = 10–3 M and becomes negative at C ≳ 0.4 M,
whereas in Fig. 2(a) for β = −0.60 the mobility is positive at all
concentrations C. A comparison between Fig. 3(f )–(h) (which
accounts for electrostatic correlations) and Fig. 2(f )–(h) (which
ignores electrostatic correlations) shows that electrostatic cor-
relations are at the origin of such a sign reversal in the mobi-
lity at a high electrolyte concentration. First, by comparing
Fig. 3(f ) and 2(f), the chemiosmotic driving force –(log α−1)/ν
in the two panels are found to be qualitatively the same, indi-
cating that the chemiosmotic flow is not a cause of the diffu-
sioosmotic mobility reversal at a high electrolyte concen-
tration. Second, by comparing Fig. 3(g) and 2(g), the electroos-
motic driving force ρ̂Ê/2 presented in Fig. 3(g) shows a sign
reversal near ŷ = 0.01, which is absent in Fig. 2(g). This indi-
cates that the electroosmotic flow reversal away from the
channel surface is the cause of the diffusioosmotic mobility
reversal at a high electrolyte concentration. We remark that
such a sign reversal in ρ̂Ê=2 is due to the electrostatic corre-
lation-induced overscreening of the channel surface charge,
which is manifested in a sign change in the space charge
density ρ̂ near the channel surface as shown in Fig. 3(h). This
sign change in ρ̂ is absent when electrostatic correlations are
ignored in Fig. 2(h). This sign change in ρ̂ has been reported
in prior work and causes various anomalous electrokinetic
phenomena, including electroosmotic flow reversal,70 electro-
phoretic mobility reversal,72 dielectrophoretic polarization
reversal,73 and ionic current rectification reversal.74 In sum,
electrostatic correlations cause overscreening of the channel
surface charge that leads to a sign change in the space charge
density near the channel surface. Such a sign change in the
space charge density in turn causes a reversal in the electroos-
motic driving force ρ̂Ê=2 that generates the electroosmotic
flow, leading to a sign reversal in the diffusioosmotic mobility.
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A further note to the above-mentioned second new
phenomenon is that the unique sign reversal in the mobility is
absent for β = −0.02 (blue line) in Fig. 3(a), despite accounting

for electrostatic correlations. This is because for β = −0.02 a
sign change in Ê and in ρ̂ [Fig. 3(h)] cancel each other, leading
to no sign change in ρ̂Ê=2 [Fig. 3(g)] and the electroosmotic

Fig. 3 Diffusioosmosis of monovalent electrolytes accounting for electrostatic correlations (δc = κlc). Figure captions are the same as those in Fig. 2,
except that electrostatic correlations are accounted for.
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flow. Thus, without a sign change in the electroosmotic flow,
there is no sign change in the diffusioosmotic mobility.

The third new phenomenon caused by electrostatic corre-
lations is that, after the unique sign reversal in the mobility at
C ≳ 0.4 M, the mobility continues to increase in magnitude as
shown in Fig. 3(a). The two physical underpinnings of this
new phenomenon are as follows. First, in the presence of
electrostatic correlations, the magnitude of the electroosmotic
driving force ρ̂Ê=2 [Fig. 3(g)] is larger than that when electro-
static correlations are neglected [Fig. 2(g)]. Second, overscreening
as described by the Poisson–Fermi equation causes a non-vanish-
ing and increasing channel surface potential at an electrolyte con-
centration of C ≳ 0.4 M. Physically, the charge on the channel
surface is overcompensated by a layer of counterions,69,72 result-
ing in an increasing surface potential as the electrolyte concen-
tration increases and electrostatic correlations become increas-
ingly important. This is in contrast to the classical Poisson
equation, which overlooks overscreening and predicts a vanishing
channel surface potential at a high electrolyte concentration. For
instance, at C = 1 M, in Fig. 3(a) the channel surface potential ζ̂ ¼
0:32 whereas in Fig. 2(a) the channel surface potential ζ̂ ¼ 0:24.
In sum, under electrostatic correlations, with a larger ρ̂Ê=2 value
and an increasing ζ̂ value at a high electrolyte concentration, the
diffusioosmotic mobility continues to increase in magnitude
after the unique sign reversal.

3.1.3. Divalent electrolytes ignoring electrostatic corre-
lations (δc = 0). We show the diffusioosmotic mobilities of
divalent electrolytes obtained by ignoring electrostatic corre-
lations in Fig. 4. In Fig. 4(a), we compute the diffusioosmotic
mobilities of three divalent electrolytes: ZnSO4 (β = −0.10),
MgCrO4 (β = −0.12), and BeSO4 (β = −0.14). The channel
height H = 100 nm. Thus, κ̂ � 20 at C = 10–3 M and κ̂ � 20 as C
increases. The channel surface charge density q = 0.014 C m−2

(q̂ = 78.4) corresponds to a channel surface potential ζ = 50 mV
ðζ̂ ¼ 2Þ at C = 10–3 M. We use the same q̂ to compute the mobi-
lity at other electrolyte concentrations. Fig. 4 includes the
effect of finite-ion-size, i.e., ν is non-zero, but ignores electro-
static correlations by setting δc = 0. A positive (negative) mobi-
lity corresponds to a diffusioosmotic flow from a region of low
(high) to high (low) electrolyte concentration. The observations
from Fig. 4 and explanations largely follow those from Fig. 2
for monovalent electrolytes. We have summarized them below.

First, Fig. 4(a) shows that, at a low electrolyte concentration
C = 10–3 M, the mobility transitions from a large positive
number to a small positive number as β is increasingly posi-
tive. This trend and the physical explanations are identical to
that in Fig. 2(a) at a low electrolyte concentration (the first and
the second observation in section 3.1.1). Specifically, in
Fig. 4(a) at C = 10–3 M, the positive mobility for β = −0.14 (grey
line) arises from the electroosmotic flow [Fig. 4(c)–(e)] domi-
nating the chemiosmotic flow [Fig. 4(b)], where the former
flows from a region of low to high electrolyte concentration,
i.e., a positive mobility. The smaller positive mobility for β =
−0.10 (red line) is due to the fact that the electroosmotic flow
is weaker than that for β = −0.14 [Fig. 4(c)–(e)], despite that it
still dominates the chemiosmotic flow [Fig. 4(b)].

Second, Fig. 4(a) shows that the mobility decreases in mag-
nitude with an increasing electrolyte concentration. This trend
is identical to the third observation in section 3.1.1. The physi-
cal explanations are the same and not repeated here for
brevity.

3.1.4. Divalent electrolytes accounting for electrostatic cor-
relations (δc = κlc). In this section, we demonstrate that electro-
static correlations cause a unique sign reversal in the diffu-
sioosmotic mobility of divalent electrolytes, similar to that
shown in section 3.1.2 for monovalent electrolytes. To this
end, we show Fig. 5 obtained with the same parameters as
Fig. 4, except that a non-zero δc is input into the computation
according to its definition (δc = κlc) instead of assuming it to
be zero. In the following, we state and discuss the new
phenomena caused by electrostatic correlations, as shown by
the dissimilarities between Fig. 5(a) and 4(a).

The first new phenomenon caused by electrostatic corre-
lations is that, for a fixed β, there is a substantial deviation of
the mobility in Fig. 5(a) compared to that in Fig. 4(a). This
observation is similar to the first new phenomenon in section
3.1.2 for monovalent electrolytes. Specifically, this deviation is
observed in monovalent electrolytes at C ≥ 0.2 M by comparing
Fig. 3(a) and 2(a). However, this deviation occurs at a lower
electrolyte concentration C ≥ 10–3 M for divalent electrolytes as
observed by comparing Fig. 5(a) and 4(a). This can be under-
stood as follows. First, the inverse Debye length of a divalent
electrolyte is twice that of a monovalent electrolyte, κdi =
2κmono. Second, the electrostatic correlation length of a diva-
lent electrolyte is four times that of a monovalent electrolyte,
lc,di = 4lc,mono. Combining these two statements, it is computed
that, at C = 10–3 M, δc(= κlc) = 0.59 for a divalent electrolyte
whereas δc = 0.074 for a monovalent electrolyte. That is, at C =
10–3 M, the effect of electrostatic correlations is prominent in
divalent electrolytes but not in monovalent electrolytes. Hence,
consistent with the Poisson–Fermi equation that the impact of
electrostatic correlations increases with δc, at the same concen-
tration the deviation of the mobility in divalent electrolytes
[comparing Fig. 5(a) and 4(a)] is more prominent than that in
monovalent electrolytes [comparing Fig. 3(a) and 2(a)].

The second new phenomenon caused by electrostatic corre-
lations is that there is a unique sign reversal in the mobility at
C ≈ 0.003 M in Fig. 5(a), which is absent in Fig. 4(a). A com-
parison between Fig. 5(f )–(h) (which accounts for electrostatic
correlations) and Fig. 4(f )–(h) (which ignores electrostatic cor-
relations) shows that electrostatic correlations are at the origin
of such a sign reversal. The phenomenon and physical expla-
nations here are identical to those in the discussion of the
second new phenomenon in section 3.1.2 and are reiterated
briefly as follows. Electrostatic correlations result in overscre-
ening of the channel surface charge and a sign change in the
space charge density near the channel surface [Fig. 5(h)]. Such
a sign change in the space charge density in turn induces a
reversal in the electroosmotic driving force ρ̂Ê=2 and electroos-
motic flow [Fig. 5(g)], leading to a sign reversal in the diffu-
sioosmotic mobility [Fig. 5(a)]. We note that such a mobility
reversal due to electrostatic correlations occurs at a lower con-
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Fig. 4 Diffusioosmosis of divalent electrolytes ignoring electrostatic correlations (δc = 0). For panels (a)–(h), the red solid line denotes ZnSO4 (ion
diffusivity ratio β = −0.10), the blue solid line denotes MgCrO4 (β = −0.12), the grey solid line denotes BeSO4 (β = −0.14), and the dotted line is for
referencing zero of the y-axis. The channel height H = 100 nm and channel surface charge density q = 0.014 C m−2. Panels (b)–(e) and (f )–(h) are
computed at a bulk electrolyte molar concentration C = 10–3 M and C = 1 M, respectively. (a): The diffusioosmotic mobility M̂ versus C. (b) and (f ):
The chemiosmotic driving force −log α−1/ν versus the distance from the bottom channel wall ŷ. (c) and (g): The electroosmotic driving force ρ̂Ê=2
versus ŷ. (d): A zoom-in of panel (c) for showing a sign change of ρ̂Ê=2. (e) and (h): The space charge density ρ̂ (right y-axis; black solid line) and elec-
tric field Ê (left y-axis; all other lines) versus ŷ.
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Fig. 5 Diffusioosmosis of divalent electrolytes accounting for electrostatic correlations (δc = κlc). Figure captions are the same as those in Fig. 4,
except that electrostatic correlations are accounted for.

Paper Nanoscale

9376 | Nanoscale, 2024, 16, 9367–9381 This journal is © The Royal Society of Chemistry 2024

Pu
bl

is
he

d 
on

 2
3 

A
pr

il 
20

24
. D

ow
nl

oa
de

d 
on

 1
/1

1/
20

26
 1

:2
5:

42
 P

M
. 

View Article Online

https://doi.org/10.1039/d3nr06152c


centration of a divalent electrolyte [C ≈ 0.003 M in Fig. 5(a)]
relative to that of a monovalent electrolyte [C ≈ 0.4 M in
Fig. 3(a)].

The third new phenomenon caused by electrostatic corre-
lations is that, at C ≳ 0.003 M, the mobility continues to
increase in magnitude as shown in Fig. 5(a). The physical
underpinnings of this phenomenon are the same as the third
new phenomenon in section 3.1.2 and are not repeated for
brevity.

3.2. Diffusioosmotic flow direction diagrams

So far, we have presented results of how the sign and magni-
tude of the diffusioosmotic mobility (flow) vary with the elec-
trolyte concentration, ion diffusivity difference, and ion
valence, at a fixed channel surface charge. In this section, we
plot diffusioosmotic flow direction diagrams that show how
the sign of the mobility changes with these parameters at
varying channel surface charges. The channel height H =
100 nm. Electrostatic correlations are accounted for by incor-
porating a non-zero δc = κlc. These diagrams are efficient to
identify the range of parameters that generates diffusioosmo-
sis of the desired direction.

We present the diffusioosmotic flow direction diagrams for
monovalent electrolytes at C = 10–3 M in Fig. 6(a) and at C = 1
M in Fig. 6(b). The blue lines are obtained by determining the
values of β that generate a zero diffusioosmotic mobility (mean
diffusioosmotic velocity) at each q by setting a tolerance of M ≤
10–4. Thus, the blue lines separate each figure into four
domains, each of them corresponding to diffusioosmosis
flowing from a region of high to low electrolyte concentration
or vice versa. We state three key observations associated with
electrostatic correlations from these figures as follows.

First, at C = 10–3 M, when q is positive and as β changes
from negative to positive [going from left to right in the top
half of Fig. 6(a)], the direction of diffusioosmosis changes
from “flowing from a region of low to high electrolyte concen-
tration” (positive mobility) to “flowing from a region of high to
low electrolyte concentration” (negative mobility). This obser-
vation corresponds to the first and the second observation in
section 3.1.1. In contrast, at C = 1 M, when q is positive and as
β changes from negative to positive [going from left to right in
the top half of Fig. 6(b)], the direction of diffusioosmosis
changes from “flowing from a region of high to low electrolyte
concentration” (negative mobility) to “flowing from a region of
low to high electrolyte concentration” (positive mobility). This

Fig. 6 Diagrams showing the diffusioosmotic flow direction versus the channel surface charge density q and ion diffusivity ratio β. The channel
height H = 100 nm. (a): Monovalent electrolytes at a bulk electrolyte molar concentration C = 10–3 M. (b): Monovalent electrolytes at C = 1 M. (c):
Divalent electrolytes at C = 10–3 M. (d): Divalent electrolytes at C = 1 M. The areas with a positive (negative) mobility M denote that diffusioosmosis is
flowing from a region of low (high) to high (low) electrolyte concentration. Arrows indicate that a diffusioosmotic flow reversal can occur by varying
the magnitude of q without changing its sign.
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observation corresponds to the second new phenomenon in
section 3.1.2. A diffusioosmotic flow reversal due to electro-
static correlations is demonstrated by comparing the same
domain across Fig. 6(a) and (b).

Second, when the magnitude of q is large (e.g., |q| = 0.014 C
m−2) and β is small (e.g., |β| = 0.02), the direction of diffusioos-
mosis remains the same across a low [Fig. 6(a)] and a high
electrolyte concentration [Fig. 6(b)]. One example of this obser-
vation is KCl (β = −0.02) shown in Fig. 3(a), where the mobility
remains positive from low to high electrolyte concentrations.

Third, at a low electrolyte concentration, when βq > 0 a
diffusioosmotic flow reversal can occur by varying the magnitude
of the channel surface charge without changing its sign [e.g., the
two arrows in Fig. 6(a)], whereas at a high electrolyte concen-
tration this can only be achieved when βq < 0 [e.g., the two arrows
in Fig. 6(b)]. This diffusioosmotic flow reversal has been observed
in prior work that did not consider electrostatic
correlations.4,8,50,52 That is, this reversal is not due to electrostatic
correlations but is a consequence of the competition between the
chemiosmotic and electroosmotic components of diffusioosmo-
sis, since it occurs even at a low electrolyte concentration.
However, here we remark that electrostatic correlations can radi-
cally change the dependence of this reversal on βq between a
dilute and a concentrated electrolyte. Before ending, we show the
diffusioosmotic flow direction diagrams for divalent electrolytes
at C = 10–3 M in Fig. 6(c) and at C = 1 M in Fig. 6(d). These figures
are qualitatively similar to Fig. 6(a) and (b).

4. Conclusions

In this work, we have developed a mathematical model for
quantifying the diffusioosmotic flow driven by a binary sym-
metric electrolyte concentration gradient in a charged parallel-
plate channel. The key distinction between this and prior work
is the incorporation of ion–ion electrostatic correlations in
modeling diffusioosmosis, which is important in concentrated
electrolytes but has been ignored in prior theories. The
present model also incorporates the steric effect of finite-ion-
size, which has been shown to be important in diffusioosmo-
sis of concentrated electrolytes.14,52 To demonstrate our
model, we have computed and analyzed the diffusioosmotic
flow mobilities of a list of common monovalent and divalent
electrolytes.

In the first part of this article, we have analyzed the vari-
ation of the mobilities with respect to the electrolyte concen-
tration. For both monovalent and divalent electrolytes, we have
shown that ion–ion electrostatic correlations can lead to a
unique reversal of the diffusioosmotic flow. Specifically,
electrostatic correlations overscreen the channel surface
charge and cause a sign change in the space charge density
near the channel surface. This in turn causes a reversal in the
electroosmotic driving force of diffusioosmosis, leading to a
sign reversal in the diffusioosmotic mobility. Existing theories
that ignore electrostatic correlations cannot capture this
unique diffusioosmotic flow reversal. Accounting only for the

steric effect of the finite size of ions is not sufficient to capture
this flow reversal. This reversal occurs at ≈ 0.4 M for a monovalent
electrolyte and at a much lower concentration of ≈ 0.003 M for a
divalent electrolyte in a channel with the same surface charge.
These results demonstrate the significant impact of electrostatic
correlations on diffusioosmosis, where not just its magnitude but
its direction can be altered.

In the second part of this article, we have constructed flow
direction diagrams that enable efficient identification of the
diffusioosmotic flow direction for a given set of electrolyte con-
centration, ion diffusivity, ion valence, and channel surface
charge. These diagrams predict a separate diffusioosmotic
flow reversal that has been identified in prior work.4,8,50,52

This reversal can occur even at a low electrolyte concentration
where electrostatic correlations are negligible. Thus, this rever-
sal is not due to electrostatic correlations but the competition
between the chemiosmosis and electroosmosis that constitute
diffusioosmosis. This reversal can be achieved by varying the
magnitude of the channel surface charge without varying its
sign. We show that electrostatic correlations can alter qualitat-
ively how this reversal depends on the product of the channel
surface charge and the ion diffusivity difference βq across low
to high electrolyte concentrations. Namely, this reversal occurs
at a low electrolyte concentration only when βq > 0 and at a
high electrolyte concentration only when βq < 0.

The present analysis can be extended in several directions.
First, a natural extension is to relax the assumption that the
equilibrium electric double layer is not perturbed by the diffu-
sioosmotic flow. This can be done by numerically solving the
coupled nonlinear systems of the Poisson–Fermi equation,
conservation of individual ionic species, and the Stokes
equation with an electric body force. However, we note that
this extension will likely give quantitative modifications to our
present results only and will not alter our conclusions, since
the Peclet number is weak [Pe ≤ O(1)] in diffusioosmosis.10,50

Second, other effects can be incorporated into the present
model, e.g., a concentration-dependent viscosity, diffusivity,
and permittivity.77,79 These effects are, however, prominent
only in a solution whose concentration is higher than a few
molars. Thus, they will not qualitatively alter the flow reversal
predicted from this work, which occurs much below one molar
concentration. Third, diffusioosmosis experiments have
matured in recent years9,21 and can measure the diffusioosmo-
tic flow reversal predicted in this work.

Appendix A: Numerical schemes for
solving the electric potential and
diffusioosmotic mobility

We describe the numerical schemes for solving the electric
potential and diffusioosmotic velocity. Let us start with the
governing equation and boundary conditions eqn (4)–(6) for
the electric potential. We first discretize the domain ŷ∈ [0, 1]
into m + 1 grid points ŷ0, ŷ1,…ŷm, where ŷi = ŷ0 + iΔŷ with Δŷ
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the grid size and i = 0, 1,…m. The electric potential at the grid
point ŷi is ϕ̂i. We approximate the first- and third-order deriva-
tives using a forward finite-difference scheme with a first-order
accuracy, and the second- and fourth-order derivatives using a
central finite-difference scheme with a second-order accuracy
as follows,80

dϕ̂i

dŷi
� �ϕ̂i þ ϕ̂iþ1

Δŷ
; ð16Þ

d2ϕ̂i

dŷ2i
� ϕ̂i�1 � 2ϕ̂i þ ϕ̂iþ1

Δŷ2
; ð17Þ

d3ϕ̂i

dŷ3i
� �ϕ̂i þ 3ϕ̂iþ1 � 3ϕ̂iþ2 þ ϕ̂iþ3

Δŷ3
; ð18Þ

d4ϕ̂i

dŷ4i
� ϕ̂i�2 � 4ϕ̂i�1 þ 6ϕ̂i � 4ϕ̂iþ1 þ ϕ̂iþ2

Δŷ4
: ð19Þ

Upon finite-differencing, eqn (4)–(6) form a system of m + 1
nonlinear equations with m + 1 unknown ϕ̂i, which are solved
by the Newton’s method via the built-in solver FindRoot in
Wolfram Mathematica. The diffusioosmotic velocity is solved
by the same finite-difference method, except that the highest-
order derivative in its governing equation and boundary con-
ditions eqn (13) and (14) is second order. A converged solution
of the mean diffusioosmotic velocity, equivalently the diffu-
sioosmotic mobility, is obtained with Δŷ = 10–5. For instance,
as shown in Fig. 7, the mobilities at C = 10–3 M obtained with
Δŷ = 10–5 (solid lines) differ by less than 0.2% from those
obtained with Δŷ = 5 × 10–6 (circles).

Appendix B: Model validation by
recovering prior work

We validate our model by recovering the results of prior work,
which computed the diffusioosmotic mobilities that account
for the finite size of ions but ignore electrostatic correlations52

and those that ignore the finite size of ions and electrostatic
correlations.50 Specifically, as shown by the solid lines in
Fig. 8(a), our model recovers the mobilities computed by
Hoshyargar et al.52 with ν = 0.05, ζ̂ ¼ 6 and Pe = 1, in the limit
of δc = 0. As shown by the squares in Fig. 8(a), our model
recovers the mobilities computed by Ma and Keh50 with ζ̂ ¼ 6
and Pe = 1, in the limit of ν = 0 and δc = 0. In short, Fig. 8(a) in
this work shows the recovery of Fig. 2(b) in ref. 52, which com-
pares model predictions with and without the finite size of
ions in the absence of electrostatic correlations. For an
additional reference, we generate a similar set of mobilities
with ζ̂ ¼ 4 as shown in Fig. 8(b).

Fig. 8 For panels (a) and (b), the red solid line and squares denote the ion diffusivity ratio β = 1 for the bulk volume fraction of ions ν = 0.05 and ν =
0, respectively; the green solid line and squares denote β = 0.5 for ν = 0.05 and ν = 0, respectively; the blue solid line and squares denote β = 0 for
ν = 0.05 and ν = 0, respectively; the purple solid line and squares denote β = −0.5 for ν = 0.05 and ν = 0, respectively; and the grey solid line and
squares denote β = −1 for ν = 0.05 and ν = 0, respectively. (a): The diffusioosmotic mobility M̂ versus the inverse Debye length κ̂ with a channel
surface potential ζ̂ ¼ 6. (b): M̂ versus κ̂ with ζ̂ ¼ 4.

Fig. 7 Figure captions are the same as those in Fig. 3(a). Solid lines
denote results obtained with the grid size Δŷ = 10–5 and circles denote
results obtained with Δŷ = 5 × 10–6.
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