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Deep-learning-assisted spectroscopic single-
molecule localization microscopy based on
spectrum-to-spectrum denoising†

Dandan Xu,a Yuanjie Gu,a Jun Lu,a Lei Xu,a Wei Wangb and Biqin Dong *a

Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously captures spatial localiz-

ations and spectral signatures, providing the ability of multiplexed and functional subcellular imaging

applications. However, extracting accurate spectral information in sSMLM remains challenging due to the

poor signal-to-noise ratio (SNR) of spectral images set by a limited photon budget from single-molecule

fluorescence emission and inherent electronic noise during the image acquisition using digital cameras.

Here, we report a novel spectrum-to-spectrum (Spec2Spec) framework, a self-supervised deep-learning

network that can significantly suppress the noise and accurately recover low SNR emission spectra from a

single-molecule localization event. A training strategy of Spec2Spec was designed for sSMLM data by

exploiting correlated spectral information in spatially adjacent pixels, which contain independent noise. By

validating the qualitative and quantitative performance of Spec2Spec on simulated and experimental

sSMLM data, we demonstrated that Spec2Spec can improve the SNR and the structure similarity index

measure (SSIM) of single-molecule spectra by about 6-fold and 3-fold, respectively, further facilitating

94.6% spectral classification accuracy and nearly 100% data utilization ratio in dual-color sSMLM imaging.

Introduction

Fluorescence microscopy is an indispensable tool for biologi-
cal imaging, which can observe the structure of cells and their
molecular-specific functional mechanisms. However, due to
the existence of the diffraction limit, the spatial resolution
of conventional fluorescence microscopy is restricted to
∼250–700 nm.1 Super-resolution microscopy has extended the
spatial resolution of conventional fluorescence microscopy
beyond the diffraction limit, by achieving ∼20–100 nm
resolution.2,3 Among these techniques, single-molecule localiz-
ation microscopy (SMLM) can overcome the diffraction barrier
and provide nanometer-level (∼20 nm)4–6 spatial resolution by
detecting and localizing the random subsets of fluorophores.
Apart from offering a remarkable spatial resolution, multi-
color imaging in SMLM is critical for investigating structural
and dynamical biological processes at the nanoscale.7,8

However, conventional multi-color SMLM, based on color
filters,9,10 requires spectrally well-separated channels

(∼100 nm) between dyes to minimize spectral cross-talk, which
limits the number of discrete color channels. Recently, several
spectroscopic SMLM (sSMLM) methods have been proposed to
significantly extend the number of distinct species via simul-
taneously capturing the spatial position and full spectra of
fluorescence emission from single molecules.8,11–13 The
additional spectral signatures enable sSMLM to distinguish
highly overlapping dye molecules. Besides, by integrating func-
tional information into the single-molecule spectrum using
environmentally sensitive fluorophores, functional super-
resolution microscopy (f-SRM)14,15 enables probing of local
physicochemical parameters (e.g., chemical polarity, pH, and
hydrophobicity) at nanoscale resolutions. However, the
number of photons emitted by a single-molecule localization
event is physically limited. Since these photons are further dis-
persed into spectral dimensions in sSMLM, the signal-to-noise
ratio (SNR) of recorded spectra is often insufficient for multi-
color and functional super-resolution imaging.16

To address the above concern, the most fundamental
approach is to capture sufficient fluorescence photons that
allow high SNR spectra to be acquired. Nevertheless, com-
pared to SMLM, collected photons need to be further divided
into spatial and spectral channels. This causes an inherent
trade-off between the localization precision and the spectral
fidelity. Despite these obstacles, strategies, including dual-
objective sSMLM8 and symmetrically dispersed sSMLM,17
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have been developed for more effective photon collection and
utilization. However, applications of these schemes are often
restricted in practice, as they require more sophisticated
experimental setups or are limited by sample types and
mounting geometries. In addition to physical strategies, deep
learning methods can provide an alternative solution to solve
the problems in multi-color sSMLM. Gaire et al. developed a
machine-learning method for reducing the data acquisition
time in sSMLM imaging.18 The pre-trained network can
reconstruct high-density images from low-density images,
thereby reducing the number of imaging frames. Besides,
instead of the widely used spectral centroid-based (SC-based)
method,8,18 Zhang et al. proposed a machine-learning-based
method to classify single-molecule emission spectra, and
achieved ten-fold reduction in misclassification and two-fold
improvement in the data utilization ratio.19 Meanwhile,
Manko et al. presented a supervised denoising network for
restoring the spatial and spectral images in sSMLM. The
training network in such a supervised manner depends
heavily on paired ground truth (GT) signals.20 However, in
the context of sSMLM imaging, it is challenging to obtain an
unbiased spectral signal due to the fast dynamics and
inherent spectral heterogeneity of stochastic single-molecule
emission.11,21

In this paper, we propose the spectrum-to-spectrum
(Spec2Spec) framework, a novel self-supervised deep-learning-
based spectral denoising method to unbiasedly remove the
noise from single-molecule emission spectra in sSMLM. First,
as the signals of spatially adjacent pixels are closely correlated
while the noise is independent, the sub-images sampled from
each raw spectral image can serve as the training input and
target. This scheme overcomes the difficulty of acquiring
ground truth spectral images in sSMLM. Second, we quantitat-
ively evaluated the denoising performance of Spec2Spec on
simulated data, suggesting that Spec2Spec can achieve 6-fold
improvement in the SNR and 3-fold enhancement in the struc-
ture similarity index measure (SSIM). Finally, we applied

Spec2Spec to experimental sSMLM data of tubulin and cla-
thrin to validate its ability in multi-color sSMLM imaging.

Methods
Experimental sSMLM system

A home-built sSMLM system was designed to simultaneously
capture the spatial position and full spectra of fluorescence
emission from single molecules. The schematic of the sSMLM
setup is shown in Fig. 1a. Continuous-wave laser illumination
(642 nm, 1100 mW, CNI) was used for excitation, and the
excited fluorescence signals from the sample were collected by
a silicone immersion objective (UPLSAPO60XS2, Olympus).
After passing through a tube lens (TL, SWTLU-C, Olympus),
the collected fluorescence was guided by a mirror (M) and an
entrance slit (S), which restricted the imaging field of view.
Then, the fluorescence was split into spatial and spectral chan-
nels with a standard 50 : 50 beam splitter (BS). The transmitted
fluorescence was directed toward the camera by two reflecting
mirrors (BB1-E02-10, Thorlabs) to record the spatial images.
Besides, the reflected fluorescence passed through a 30° dis-
persing prism (43–649, Edmound) to record the corresponding
spectrally dispersed images. We then simultaneously acquired
the spatial and spectral images from the different regions in a
scientific complementary metal oxide semiconductor (sCMOS)
camera (Dhyana 400BSI V2, Tucsen).

We calibrated the sSMLM module using a set of lasers with
emission peaks of 488, 556, and 647 nm. Besides, to character-
ize the transformation of spatial and spectral coordinates, we
imaged fluorescent beads and performed the affine transform-
ation. To gain the full spectrum of each single-molecule local-
ization event, we first used Thunder-STORM22 to obtain the
coordinates of each localization event in the spatial domain,
which subsequently served as the references to extract the
corresponding spectral images. In addition, median filtering
was employed to remove constant background patterns.

Fig. 1 Experimental sSMLM system and the proposed Spec2Spec framework. (a) Schematic of the sSMLM experimental system. The spectral
module is responsible for dividing the emitted photons into two channels, which provide spatial and spectral information, respectively; (b) workflow
of the self-supervised spectral denoising in sSMLM, including the re-sampling and re-integrating process from each raw spectral image to generate
training pairs and the optimization process of the Spec2Spec network parameters.
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Proposed re-sampling and re-integrating strategy

To generate spectrum-to-spectrum training pairs, we proposed
a re-sampling and re-integrating scheme as depicted in
Fig. 1b. More specifically, for each input spectral image with H
× W pixels, we divided it into three sub-images with H × W/3
pixels using an interval sampling strategy. To ensure the integ-
rity of spectroscopic signatures, three adjacent lines with H × 1
pixels were separated in order and concatenated into three
sub-images with H × W/3 pixels. Three sub-images were then
re-integrated along the direction perpendicular to the dis-
persion axis to generate the corresponding re-sampled emis-
sion spectra, respectively. Since these spectra were derived
from the same spectral image, they can be viewed as indepen-
dent samplings containing the same underlying ground truth
signal while having consistent signal intensity and SNR level.
Therefore, in the training stage, one spectrum can be used as
the input, while the other two serve as targets for optimizing

the network parameters. Furthermore, we investigated the
impact of different re-sampling strategies on the network per-
formances. As described in the ESI,† the interval sampling
strategy with three input sub-images achieves overall best per-
formance compared to the random sampling strategy and
other numbers of sub-images.

Network architecture and training strategy

We designed the network architecture of Spec2Spec based on
U-Net style, as shown in Fig. 2a, which is composed of a 1D
encoder module, a 1D decoder module, and four skip connec-
tions from each encoder block to the corresponding decoder
block. The 1D encoder module is equipped with four encoder
blocks, and each block contains two convolutional layers with
1 × 3 kernels, a rectified linear unit (ReLU), and a max pooling
with strides of two. The 1D decoder module is composed of
four decoder blocks, and each block contains a transposed

Fig. 2 Network architecture and qualitative and quantitative performance of Spec2Spec on simulated sSMLM data. (a) Network architecture of
Spec2Spec. (b) Single-molecule emission spectra before (blue) and after (red) denoising; the black dashed curve is GT. Quantitative evaluation of the
performance with (c) the SNR and (d) SSIM over a wide range of input SNRs before and after denoising; dashed lines show average values of the
corresponding indicators, and grey arrows show the relative enhancement. Each data point is the average result of 5000 spectra.
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convolutional layer, two convolutional layers with 1 × 3
kernels, and a ReLU. To accelerate training convergence and
alleviate the gradient problem, a batch normalization layer is
deployed after each convolutional layer. Skip connections
enable the network to retain more high-resolution detail
through the fusion of low-level and high-level features.

The network was trained using an Adam optimizer, with a
learning rate of 0.0001 and a batch size of 16. We used the
arithmetic mean of L1-loss and L2-loss as the loss function to
optimize the parameters of the network. We defined the input
spectrum as S, and the other two target spectra as L and R,
respectively. The loss functions are defined as follows:

LossL ¼ jFSpec2SpecðSÞ � Lj1 þ jjFSpec2SpecðSÞ � Ljj22 ð1Þ

LossR ¼ jFSpec2SpecðSÞ � Rj1 þ jjFSpec2SpecðSÞ � Rjj22 ð2Þ

Losstotal ¼ LossL þ LossR ð3Þ
We used PyTorch to construct and implement our network.

To speed up the training and testing process, we used NVIDIA
GTX 3080Ti graphics processing units (GPU). It took about
2 hours to train a pre-trained model on a typical dataset
(50 000 spectra) on a single GPU. Once trained, the testing
stage (1000 spectra) only took ∼4 seconds.

Evaluation metrics

For a simulated single-molecule emission spectrum X and its
ground truth Y, we use SNR and SSIM to evaluate the denois-
ing performance of Spec2Spec.

The SNR measures the pixel-level deviation between two
spectra, which can be described as follows:

SNR ¼ 10 log10
Yk k22

X � Yk k22
ð4Þ

The SSIM measures the perceptual-level similarity between
two spectra, which can be expressed as follows:

SSIM ¼ ð2μXμY þ C1Þð2σXY þ C2Þ
μX 2 þ μY 2 þ C1ð ÞÞðσX2 þ σY 2 þ C2Þ ð5Þ

where (μX, μY) and (σX, σY) are the means and variances of spec-
trum X and its ground truth Y, respectively. σXY is the covari-
ance of X and Y. The two constants C1 and C2 are defined as C1

= (K1L)
2 and C2 = (K2L)

2, where K1 = 0.01, and K2 = 0.03. L rep-
resents the dynamic range of pixel values, namely L = 65 535.

Sample preparation

Cells were seeded on clean glass coverslips 2 days before fix-
ation to reach a confluency of about 50–70% on the day of fix-
ation. COS-7 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
and 100 U mL−1 penicillin–streptomycin solution at 37 °C with
5% CO2. Before further processing, the growth medium was
aspirated and samples were rinsed twice with PBS to remove
dead cells and debris.

For two single-dye-labeled microtubule samples using
either Alexa Fluor 647 (AF647) or Dyomics CF660C (CF660C),

cells were first washed three times with PBS prewarmed to
37 °C and fixed with 4% paraformaldehyde, 0.1% glutaralde-
hyde and 0.2% Triton X-100 diluted in PBS for 15 min. After
that, the cells were washed with PBS three times and permea-
bilized and blocked with blocking buffer (5% BSA and 0.1%
Triton X-100 in PBS) for 1 h while gently rocking. Cells were
incubated with mouse monoclonal anti-α-tubulin antibody in
blocking buffer at room temperature for 1.5 h. After washing
with PBS three times, cells were incubated with AF647 or
CF660C goat anti-mouse IgG for 1 h. Samples were washed
three times with PBS and stored in PBS at 4 °C until imaging.

For dual-color labelling (AF647-labeled tubulin and CF660C-
labeled clathrin), the cells were first rinsed with PBS. Then, the
cells were immobilized with 0.1% glutaraldehyde and 3% paraf-
ormaldehyde in PBS at room temperature for 10 min. The
reduction process was conducted in PBS with 0.1% sodium boro-
hydride for 7 min. Following washing with PBS, cell permeation
was performed with 0.2% Triton X-100 in PBS for 7 min.
Samples were blocked with 5% BSA and 0.05% Triton X-100 in
PBS at room temperature for 90 min, and then incubated with
primary antibodies (rabbit anti-clathrin heavy chain, mouse anti-
α-tubulin) in blocking buffer (0.05% Triton X-100, 5% BSA in
PBS) for 60 min. The cells were then washed 3 times with PBS,
each time for 5 min. Secondary antibodies were labeled with
AF647 and CF660C. Next, the cells were washed with PBS 5 times
and fixed with 4% paraformaldehyde in PBS for 10 min.

Before sSMLM imaging, coverslips were mounted in 200 µL
of blinking buffer (50 mM Tris, pH 8, 10 mM NaCl, 10% (w/v)
D-glucose, 35 mM 2-mercaptoethylamine, 500 µg mL−1 GLOX,
40 µg mL−1 catalase, 2 mM COT).

Dual-color sSMLM reconstruction

First, we used Thunder-STORM to obtain the spatial coordi-
nates of each localization event in the spatial domain, which
subsequently served as the references to extract the corres-
ponding spectral images. Simultaneously, we recorded the
spatial position corresponding to each spectral image. Then,
after Spec2Spec denoising and classification using principal
component analysis (PCA) and K-means, we divided each spec-
trum (including its spatial position) into the corresponding
dye categories based on the corresponding label. Finally, for
better visualization, the reconstructed super-resolution images
were rendered with pseudo-color and their contrast and bright-
ness were manually adjusted to make structures in the image
as clear as possible. Each localization point was convolved
with a Gaussian kernel, and its kernel size was set based on
localization precision provided by the Thunder-STORM soft-
ware. Data pre-processing, data post-processing, and the ren-
dering process are performed on MATLAB R2020b.

Results and discussion
Quantitative evaluations on simulated sSMLM data

To demonstrate the denoising performance of the proposed
Spec2Spec framework, quantitative evaluations were first per-
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formed on a simulated spectral dataset. We used the average
of 20 000 experimentally acquired single-molecule spectral
images of AF647 as the noise-free image and the corres-
ponding emission spectrum was calculated to serve as the GT.
Then, we applied different levels of Poisson–Gaussian noise to
generate spectral images with different SNRs. Percentage nor-
malization was only applied in the inference phase for comput-
ing performance metrics, not in the training phase. Fig. 2b
shows an example of a single spectrum before and after
denoising, suggesting that the result of Spec2Spec is in high
agreement with GT. Quantitatively, we computed SNR and
SSIM metrics to evaluate the denoising performance of the
network. Moreover, we applied different levels of Gaussian
noise to explore the denoising performance of the network
over a wide range of input SNRs, including some extremely low
SNR conditions. We first performed percentile-normalization
for the GT spectrum, and then added different levels of
Gaussian noise by controlling the standard deviation of the
Gaussian noise, named sigma. We found that the average SNR
and SSIM was improved by ∼648% (4.2 dB versus 31.4 dB) and
∼309% (0.23 versus 0.94), respectively, as shown in Fig. 2c and
d, respectively. Furthermore, we investigated the impact of
different spectral resolutions on the network denoising per-
formance with simulated data (see details in the ESI†).
Surprisingly, the advantages of Spec2Spec are even more pro-
nounced when the sSMLM system has higher spectral resolu-
tion, which further demonstrates the generalization of the
Spec2Spec framework.

Performance of Spec2Spec on the experimental sSMLM data

We applied Spec2Spec to the experimental sSMLM data of
AF647-labeled tubulin and CF660C-labeled clathrin to validate
its ability in restoring emission spectra. The experimentally
collected single-molecule emission spectra and denoised
spectra are shown in Fig. 3a. Affected by noise, the distribution
of spectral centroids (SCs) of different dye molecules exists as
a heavily overlapped region, as shown in Fig. 3b, causing
difficulty in classifying spectra using a conventional SC-based

method, whereas the Spec2Spec framework can effectively
remove noise from raw spectra, thereby reducing the impact of
noise on the SC distributions, as shown also in Fig. 3b. We
further combined PCA and K-means clustering to classify the
recovered spectral data, and the corresponding clustering
result is shown in Fig. 3c. Compared to SC obtained by calcu-
lating the intensity-weighted average of wavelength, PCA can
provide more distinguishable low-dimensional features for
classification. Furthermore, the usage of K-means, an unsuper-
vised clustering algorithm, can alleviate misclassifications and
gain a higher UR.

Table 1 quantitatively compares the improvement of the
classification accuracy and utilization ratio (UR) among
different methods, where UR is defined as the number of
spectra allocated into each dye category divided by the total
number of spectra. To obtain the ground truth, we prepared
two single-dye-labeled samples using AF647 and CF660C,
respectively. We then independently acquired sSMLM data
from each sample. Finally, we mixed all collected spectra and
labeled each spectrum according to its origin. In the conven-
tional SC-based method, spectral windows (SWs) are pre-
defined based on the SC distribution for separating spectra to
each dye category. If SWs were set to be 687–689 nm for AF647
and 692–694 nm for CF660C, a classification accuracy of
82.6% and a UR of 36.9% can be obtained. As expected, the
SC-based method inevitably discards spectra outside SWs,
resulting in a low UR, which is attributed to more discontinu-
ous structures in reconstructed sSMLM images. Expanding
SWs increases the UR to 100%; however, more spectral cross-

Fig. 3 Application of Spec2Spec on the experimental sSMLM data. (a) Experimentally obtained single-molecule emission spectra from AF647-
labeled tubulin and CF660C-labeled clathrin before (blue) and after (red) denoising; (b) histogram of the spectral centroid distributions of mixed
AF647 and CF660C spectra before and after denoising; and (c) scatter plots showing the clustering result using denoised data, respectively.

Table 1 Comparison of the classification accuracy and data utilization
ratio

Data Method SWs [nm] Accuracy UR

Raw SC-based 687–689, 692–694 82.6% 36.9%
<690, >690 74.6% 100.0%

Spec2Spec <690, >690 92.6% 100.0%
PCA & K-means — 94.6% 100.0%
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talk will be observed in sSMLM images due to the reduced
accuracy. In contrast, after processing by Spec2Spec, the SC-
based method can achieve a classification accuracy of 92.6%
and a UR of 100%. Using PCA and K-means can further
improve the classification accuracy, and more importantly,
eliminate the difficulty in selecting appropriate SWs to balance
the classification accuracy and UR. Besides, we expect that
more-advanced feature extraction and clustering algorithms
will further improve the classification accuracy in multi-color

sSMLM imaging, especially when dealing with more colors
and dyes with high spectral overlap.

Dual-color sSMLM imaging using Spec2Spec

Furthermore, we experimentally demonstrate the benefits of
Spec2Spec in dual-labeled sSMLM imaging. Fig. 4a shows a
conventional SMLM image reconstructed from the spatial
channel. Here, we pre-defined two SWs, 683–690 nm for
AF647 and 690–697 nm for CF660C, resulting in a UR of

Fig. 4 The improvement of Spec2Spec in dual-color sSMLM imaging and observation of the minute spectral variations from the same type of dye
molecules. (a) Reconstructed SMLM image of AF647-labeled tubulin and CF660C-labeled clathrin in a fixed COS-7 cell. Scale bar: 1 μm. (b)
Separated tubulin image and (c) clathrin image processed by the SC-based method and (d) their merged dual-color sSMLM image. (e) Separated
tubulin image and (f ) clathrin image processed by the proposed method and (g) their merged dual-color sSMLM image. (h) Histogram of the photon
number distributions of spectra from the region of interest (ROI) as highlighted in (g); (i) and ( j) mixed emission spectra before and after denoising,
respectively; (k) and (l) a magnified view of boxed regions in (i) and ( j), respectively; (m) raw spectra from the white dashed boxes in (k) showing
AF647 (upper) and CF660C (lower) spectra from different localization events. (n) Their corresponding denoised spectra show distinguishable spectral
heterogeneity.
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98.6% in a SC-based classification. From Fig. 4b and c, recon-
structed images of two dye channels show many misclassifi-
cations of tubulin and clathrin, further causing heavy cross-
talk in reconstructed images (Fig. 4d). In contrast, the
Spec2Spec framework can effectively suppress the noise and
improve the classification accuracy. As shown in Fig. 4e and f,
the distribution of tubulin and clathrin can be clearly separ-
ated into the AF647 and CF660C channels, respectively.
Meanwhile, overlaying the two channels gives the recon-
structed dual-color super-resolution image, as shown in
Fig. 4g. This result indicates that the Spec2Spec framework
can effectively reduce cross-color contamination caused by
noise in multi-color sSMLM imaging.

Fig. 4h shows the histogram of the photon number of
mixed AF647 and CF660C spectra (∼9000) obtained from the
boxed region (Fig. 4g). Fig. 4i and j displays 200 single-mole-
cule emission spectra with 1000–2000 detected photons [high-
lighted in Fig. 4e]. Fig. 4k and l shows the magnified view of
the boxed region in Fig. 4i and j, respectively. As raw spectra
distorted by noise, we hardly determine the categories of emis-
sion spectra. Remarkably, after removing the noise, spectra of
different dye molecules can be readily distinguishable on the
basis of spectral shape (Fig. 4j). Additionally, Spec2Spec can
restore the spectral variations caused by the underlying fluo-
rescence heterogeneity.11,20 As shown in Fig. 4m and n, the
minute spectral variations from the same type of dye mole-
cules, which are drowned out by noise and are difficult to dis-
tinguish from each other in the raw data, can be clearly
resolved in the denoised data. After computing their spectral
peaks, we observed a shift of 5.23 nm for two AF647 single-
molecule spectra and 2.40 nm for two CF660C single-molecule
spectra, respectively. These results prove that Spec2Spec can
not only improve the classification accuracy in multi-color
sSMLM, but is also able to offer more convincing results in
functional sSMLM.

Conclusions

In this work, we propose Spec2Spec, a self-supervised deep-
learning-based spectral denoising framework for effectively
removing noise from the emission spectra of single-molecule
localization events in sSMLM. The proposed re-sampling and
re-integrating strategy eliminates the need for ground truth
spectra in supervised learning when constructing spectrum-
to-spectrum training pairs. Besides, we validate the denoising
performance on simulated data, suggesting that Spec2Spec
offers 6-fold improvement in SNR and 3-fold enhancement in
SSIM. We further employ the Spec2Spec framework for experi-
mental dual-color sSMLM data, proving that the combination
of Spec2Spec, PCA, and K-means can achieve more than 20%
improvement in classification accuracy with data UR of 100%.
Therefore, we envision that the proposed deep-learning-
assisted method offers a novel avenue for facilitating multi-
plexed and functional super-resolution imaging using
sSMLM.

Data and code availability

The PyTorch codes of Spec2Spec, representative pre-trained
models, as well as example data for testing, will be publicly
available at https://github.com/FDU-donglab/spec2spec.
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