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Non-uniform magnetic fields for single-electron
control

Mauro Ballicchia, * Clemens Etl, Mihail Nedjalkov and Josef Weinbub

Controlling single-electron states becomes increasingly important due to the wide-ranging advances in

electron quantum optics. Single-electron control enables coherent manipulation of individual electrons

and the ability to exploit the wave nature of electrons, which offers various opportunities for quantum

information processing, sensing, and metrology. Here we explore non-uniform magnetic fields, which

offer unique mechanisms for single-electron control. Considering the modeling perspective, convention-

al electron quantum transport theories are commonly based on gauge-dependent electromagnetic

potentials. A direct formulation in terms of intuitive electromagnetic fields is thus not possible. In an effort

to rectify this, a gauge-invariant formulation of the Wigner equation for general electromagnetic fields

has been proposed [M. Nedjalkov et al., Phys. Rev. B, 2019, 99, 014423]. However, the complexity of this

equation requires the derivation of a more convenient formulation for linear electromagnetic fields [M.

Nedjalkov et al., Phys. Rev. A, 2022, 106, 052213]. This formulation directly includes the classical formu-

lation of the Lorentz force and higher-order terms, depending on the magnetic field gradient, that are

negligible for small variations of the magnetic field. In this work, we generalize this equation in order to

include a general, non-uniform electric field and a linear, non-uniform magnetic field. The thus obtained

formulation has been applied to investigate the capabilities of a linear, non-uniform magnetic field to

control single-electron states in terms of trajectory, interference patterns, and dispersion. This has led to

the exploration of a new type of transport inside electronic waveguides based on snake trajectories and

the possibility of splitting wavepackets to realize edge states.

1 Introduction

The field of electron quantum optics studies and applies electro-
magnetic (EM) field-controlled phenomena for manipulating
electron states in solid-state quantum systems.1–5 Ideally, trans-
port theories should describe both processes governing electron
trajectories and wave phenomena such as interference and diffr-
action in multiple dimensions. Theories based on EM potentials
rely on formal mathematical apparatus related to the choice of
scalar and vector potentials, which, however, obscures the physi-
cal aspects and thus the heuristic understanding of electron
evolution. This is also true for the Wigner theory which among
the alternative formulations of quantummechanics utilizes clas-
sical concepts of a phase space and a quasi-distribution func-
tion. Indeed, the underlying Wigner quantum mechanics is for-
mulated in electrostatic terms under the choice of zero vector
potential.6 The central quantities in the derived evolution (trans-
port) equation are the Wigner function fw and the Wigner poten-
tial Vw, defined by the Weyl transform of the density matrix and

the scalar potential, respectively. The inclusion of the magnetic
field, however, introduces additional terms, which depend on
the choice of the gauge.7–17 Six decades ago, Stratonovich18 gen-
eralized the Weyl transform to replace the canonical momentum
as a phase space coordinate with the kinetic momentum. The
latter, being a physical quantity, is gauge invariant, and so is the
transport equation for fw derived by the Weyl–Stratonovich trans-
form. Details can be found, e.g., in ref. 19–21 and the references
therein. The potentials are completely removed from the theory,
which offers the advantage of depending only on physical
factors, such as the EM fields E and B. The equation is math-
ematically challenging as it depends on multi-dimensional inte-
grals of fw with the terms
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The dependence of the position and momentum variables r
and p is inherited from the spatial dependence of E(r) and B
(r), while p enters via the Fourier transform. Moreover, in con-
trast to the electrostatic counterpart, which has been analyzed
and applied for more than three decades to a plethora of
quantum transport processes,22,23 there is limited experience
with the properties of the gauge-invariant equation. It is thus
desirable to gain first-hand experience by reducing the com-
plexity of the equation. A first step in this direction is based on
the fact that for stationary EM conditions and a homogeneous
B, the IF-term can be neglected. Also, HF introduces the mag-
netic Lorentz force, while DF can be expressed via Vw for a
stationary E.20 As a homogeneous magnetic field can be associ-
ated with the zeroth-order term in the Taylor expansion of B(r),
as a next step, it is reasonable to take into account the next
(linear) term in the expansion. Therefore, in what follows, we
focus on the effects introduced by a magnetic field with spatial
linearity. Therefore, we consider the following physical set-
tings: the dimensionality of the problem is reduced to a two-
dimensional electron evolution in the r = (x, y)-plane. The
inhomogeneous magnetic field is normal to the plane in the
z-direction: B = (0, 0, B(y)). In this way, the Lorentz magnetic
force is in the plane. The y-coordinate is chosen along the line-
arity of B, so that B(y) = B0 + B1y. The electric field E(r) has a
general spatial dependence. Being stationary, the electric field
allows the reintroduction of the Wigner potential Vw(p, r), a
quantity which has been physically well analyzed over the last
decades. In section 2, we formulate the corresponding mag-
netic field aware evolution equation for the Wigner function.
An analysis of the operators, which compose the equation, is
presented.

In section 3, certain physical effects incorporated into the
solution are identified in the case of weak non-linearity.
Interesting spatial correlations between the electric and mag-
netic fields are observed, which affect the process of
magnetotunneling.24,25 They are observed in both density and
negativity distributions obtained from the Wigner solution,
suggesting the existence of both local and non-local interplays
of these fields and indicating effects, which can be used for
controlling electron evolution. In particular, different settings
of the non-linear magnetic field can be used to guide electron
trajectories to a desired region of space. Furthermore, it is
shown that certain evolution patterns such as snake trajec-
tories and edge states,2,26,27 which are expected from classical
considerations, are maintained by quantum evolution. They
can be used to guide and manipulate an electron state by
restraining it in a desired region, splitting the density distri-
bution, or affecting its spreading.

2. Wigner equation for linear
magnetic fields

The equation has been initially formulated for the case of both
linear electric and magnetic fields (see eqn (25) in ref. 21). A
linear electric field can be accounted for either by an accelerat-

ing (Newtonian) force or, equivalently, by the corresponding
Wigner potential term. This duality has been used to verify
certain quantum particle concepts used in the electrostatic
Wigner theory.28 For an electric field with a general spatial
shape, it is straightforward to reintroduce the Wigner potential
in the evolution equation (using eqn (44) and (45) from
ref. 20):
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The left-hand side contains the Liouville operator (Lo(B(y))),
where F is the magnetic Lorentz force FðBðyÞÞ ¼
e
m
p� BðrÞ ¼ e

m
ðpyBðyÞ;�pxBðyÞ; 0Þ.† On the right-hand side is

the Wigner potential term, followed by a term, which involves
higher-order mixed derivatives. Without EM fields, the equation
reduces to Lo(0) = 0, which resembles the force-less Vlasov
equation. The equation involves Newtonian trajectories; however,
the quantum character of the evolution depends on the initial con-
dition:29 the latter can contain, e.g., negative values in contrast to
the classical distribution function. An electric field is accounted for
by the Wigner potential term Vw, so that the equation takes the
well-known form Loð0Þ ¼ Vw. Lo(0) is associated with force-less
Newtonian trajectories; however, this does not challenge the
quantum character of the theory: Lo(0) together with Vw gives rise
to interference, non-locality, tunneling, negativity, and oscillatory
behavior of fw. The evolution is fully coherent as the theory is fully
equivalent to wave mechanics.29,30 Next, if B0 ≠ 0, (1) becomes the
homogeneous magnetic field equation discussed in ref. 20 (eqn
(49)). The Liouville operator in eqn (1) involves Newtonian trajec-
tories driven by the inhomogeneous magnetic field B(y) = B0 + B1y,
which affects the interplay with Vw. The last operator with the
higher-order derivatives is proportional to B1. This fact provides the
opportunity to discriminate the two operators by considering a
small B1. For large y, the magnitude of the linear component B1y
can become larger than B0 so that if both have opposite signs, the
sign of the magnetic field B(y) is changed. Furthermore, an ana-
lysis of physically relevant settings shows that the higher-order
derivative operator can be a few orders of magnitude smaller than
the Wigner potential. The latter is characterized by the quantity γ ≃
1014–15 s−1,6 characterizing the electric conditions in nano-
structures. This is a quantity equivalent to the total out-scattering
rate in Boltzmann transport models, which, for instance, for
phonons is 1012–13 s−1. These considerations suggest that the inter-
play of Lo(B(y)) and Vw can give rise to important physical effects
which dominate the transport for small B1 values. Accordingly, we
neglect the last row in (1) and consider the equation
LoðBðyÞÞ ¼ Vw. It resembles the standard Wigner equation, which

† In the Lorentz force, in eqn (1), and in the following, p refers to the kinetic
momentum instead of the canonical momentum.
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is associated with a signed-particle model6.‡ The signed-particle
model represents an electron state by an ensemble of numerical
particles. The particles have special features that carry the
quantum information; however, they evolve in the phase space
over Newtonian trajectories dictated by Lo. Thus the left-hand side
of (1) determines the trajectories of the particles in the evolving
ensemble so that the effects of the classical Lorentz force (due to
the linear magnetic field) are incorporated also in the quantum
evolution. This is demonstrated by the existence of snake and edge
modes in the quantum evolution considered in the next section:
there, we consider the essential cases of magnetotunneling and
ways to manipulate the state evolution by choosing different set-
tings for B0 and B1. Finally, it is important to highlight that such a
level of physical insight is a unique feature of the Wigner
formalism.

3 Magnetic field effects in the
quantum evolution

Simulations were performed with the open source stochastic
code ViennaWD32,33 based on the signed particles. In general,
a magnetic field is able to control the trajectory of a classical
charged particle. However, the quantum case has a wave-like
nature which needs to be incorporated. This is possible by
using a signed-particle model which is a numerical model to
describe the evolution of a quantum electron state and, more-
over, the magnetic field effect in this evolution. In the follow-
ing sub-sections, we show and study the effect of applying a
non-uniform linear magnetic field to a selection of specific
quantum electron state evolution scenarios and we highlight
the use of magnetic fields for controlling the electron state.
Where possible, we compare to classical transport results, as
the Wigner signed-particle model we employ provides a seam-
less transition to the classical transport picture. A coherent
evolution (ballistic transport) is considered to outline the ana-
lyzed effects.

In Section 3.1, we analyze a magnetotunneling structure
where the electron state interacts with an “electric” potential
barrier and an external magnetic field orthogonal to the trajec-
tory. In Section 3.2, we analyze the evolution of a quantum elec-
tron state in an electronic waveguide with two opposite external
magnetic field configurations, resulting in a so-called snake tra-
jectory and the formation of an edge state, respectively.

3.1 Magnetotunneling

Magnetotunneling refers to the effects of a magnetic field on
tunneling processes of an electron state through a single-
barrier potential. It has been analyzed in the framework of the
Wigner formalism in ref. 34, showing how a coherence pattern
remains after a barrier, revealing a sort of the “two-peak” wave-
form. In other work, magnetotunneling has been investigated

in ref. 20 with a comparison between the classical and
quantum behaviours in the presence of a uniform magnetic
field B(y) = B0. The “classical” behaviour corresponds to treat-
ing the potential barrier as a classical electric force. In this
case, the particle, having a kinetic energy less than the barrier,
is completely reflected. In the quantum case, it was demon-
strated that there is tunneling, as was expected, e.g., from ref.
34, but in addition it was shown that the process of trans-
mission (including the interference effects) is clearly affected
by the magnetic field. In the following, we are going to deepen
this analysis, in particular, studying the case where a non-
uniform magnetic field is included in the Liouville operator,
i.e., where Lo(B(y)) includes a non-uniform magnetic field B(y)
= B0 + B1y, and the barrier is quantum mechanically rep-
resented by the Wigner potential Vw.

3.1.1 Simulation setup. The simulation domain is (x, y) =
(40 nm, 60 nm), as shown in Fig. 1–4. A 0.3 eV potential
barrier is placed at y = 30 nm. The barrier thickness is 1 nm
and is physically modeled by the Wigner potential Vw in all
shown experiments. The initial condition corresponds to a
minimum uncertainty Wigner state σx = σy = 3 nm, which is
periodically injected into the simulation domain from the
bottom and evolves towards the barrier with a kinetic energy of
0.1 eV. The initial mean velocity is 0 in the x-direction, so
almost all the energy at t = 0 fs is directed towards the poten-
tial barrier. We consider four cases of (B0B1):

Case 1 is (B0B1) = (0, 0) and represents a reference case for
the entire experiment since it allows to analyse quantum tun-
neling through the barrier without the influence of an external
magnetic field.

Fig. 1 Case 1: the steady-state electron density, n(x, y), of a Wigner
state (electron) injected at the bottom, evolving towards the +y-direc-
tion. No magnetic field is applied (see B(y) indicators on the left). The
dashed line indicates the mean path of the state’s evolution. The green
lines indicate a 1 nm thick barrier of 0.3 eV. The density shows a fine
oscillatory structure above the barrier.

‡The inclusion of the higher-order derivative terms demands an advanced
quantum particle model, which is currently in development.31
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Case 2 is (B0B1) = (−6 T, 0) and represents the effect of a uniform
magnetic field directed orthogonal to the simulation domain.

Case 3 is (B0B1) = (−6 T, 0.2 T nm−1). The magnetic field
changes its sign around the barrier; the magnetic field is thus
zero at the barrier.

Case 4 is (B0B1) = (−2 T, −0.2 T nm−1). The linear com-
ponent B1y increases the effect of the magnetic field B along y,
so that the magnitude of the magnetic field is non-zero in the
region of the barrier.

3.1.2 Density and negativity analysis. Fig. 1–4 show the
electron density for all the four cases. The steady-state electron
density, n(x, y), is obtained by the integration over p of the
steady-state Wigner function fw(x, p). In accordance with the
Ehrenfest theorem, in all the four cases, the mean densities
follow the classical paths that are indicated by the dotted
lines.

In Fig. 1, which is related to B(y) = 0, the classical path is
the central line x = 20 nm, since no magnetic field bends the
trajectory. The density perfectly reflects the symmetry with
respect to the central dashed line and shows a fine oscillatory
structure above the barrier after the tunneling. The latter is
almost completely destroyed by the constant magnetic field, as
shown in Fig. 2. Therefore, the magnetic field bends the path,
guiding the electrons towards a specific position, where con-
sidering possible applications, an additional channel could be
envisioned, outlining a possible use-case for single-electron
control.

In case 3, the magnetic field changes its sign around the
barrier, giving rise to a snake type of evolution,1 as shown in
Fig. 3. Besides, the fine structure of the density above y =
30 nm is recovered, similar to the case shown in Fig. 1.
Observing that the magnetic field is zero at the barrier as in
Fig. 1, we associate this effect with the existence of a local

Fig. 2 Case 2: the steady-state electron density, n(x, y), of a Wigner
state (electron) injected at the bottom under a constant magnetic field
(see B(y) indicators on the left), which bends the density and thus the
mean path, indicated by the dashed line. The oscillatory structure above
the barrier is strongly reduced by the magnetic field.

Fig. 3 Case 3: the steady-state electron density, n(x, y), of a Wigner
state (electron) injected at the bottom under a linear magnetic that goes
from −6 T to 6 T (see B(y) indicators on the left) and thus the magnetic
field becomes zero at the barrier and switches the sign, giving rise to a
snake type of evolution. The density in the upper half of the domain
shows again a fine oscillatory structure.

Fig. 4 Case 4: the steady-state electron density, n(x, y), of a Wigner
state (electron) injected at the bottom. The magnetic field is gradually
increased towards the +y-direction and is particularly large at and above
the barrier (see B(y) indicators on the left). The magnetic field sup-
presses the oscillations of the density, similar to case 2. The mean path
(white dashed line) is compared to the mean path of case 2 (orange dot-
dashed line): Although they differ, they both guide the state to the same
final position.
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interplay with the EM fields. Indeed, in Fig. 4, when B(y)
around the barrier is particularly large (similar to case 2), the
oscillations are again suppressed.

In case 4, the electron density, shown in Fig. 4, is very
similar to the electron density of case 2, since the magnetic
field is negative in the entire simulation domain, but gradually
increases towards the +y-direction starting from −2 T until −15
T. The mean path (white dashed line) is compared to the
mean path of case 2 (orange dot-dashed line): although they
differ, they both guide the state to the same final position. An
important observation is that the magnetic field is particularly
large at and above the barrier in this case, and indeed it sup-
presses the oscillations of the density, similar to case 2
(Fig. 2).

Since the linear change of the magnetic field is along the y
axis and no significant asymmetries with respect to the classi-
cal trajectory are observed along the x axis, to better analyze
the four cases, the steady-state electron density n(x, y) has
been integrated over x, obtaining the density along y, i.e., n(y).
One of the advantages of the Wigner formalism and, in par-
ticular, of the signed-particle model is to have access to the
Wigner function and its negativity obtained by Negw(r, p) =
fwθ(−fw), where θ is the Heaviside function. The Wigner func-
tion negativity indicates the quantum behavior of a state.35 We
thus also investigated the negativity along y, Negw(y), integrat-
ing over the momentum p and over x.

From the comparison of n(y) shown in Fig. 5, it is possible
to notice that the oscillatory behaviour in case 1 is smaller
than in case 2 before the barrier. It is almost completely
destroyed by the magnetic field after the barrier in case 2; only
a small variation related to the first two peaks is slightly
visible, while in case 1 it is well visible. A further confirmation
of the action of the magnetic field on the oscillatory behaviour
is given by the fact that case 3, where the magnetic field is
almost zero around the potential barrier, behaves similar to
case 1, while in case 4, where the magnetic field is even stron-
ger than −6 T, the behaviour is very similar to case 2. This
observation strongly suggests the existence of a local effect of
the magnetic field on the process of tunneling.

The negativity, as shown in Fig. 6, demonstrates an oscil-
latory behaviour around the barrier, which is a manifestation
of quantum effects. The appearance of negative values after
the injection of the entirely positive initial state below the
barrier (y < 25 nm) demonstrates the non-local action of the
barrier already without a magnetic field. The oscillations of
the negativity are well visible after the barrier for cases 1 and
3, while they are drastically reduced for cases 2 and 4: only the
first two peaks are slightly visible as a change of the slope (gra-
dient). In any case, the negativity shows this behaviour more
evidently than the density. This observation provides a confir-
mation that the magnetic field tends to destroy the oscillatory
behaviour of tunneled electrons and also confirms the results
presented in ref. 34. It is also possible to observe that the nega-
tivity increases with the magnitude of the magnetic field
already far before the barrier, which can be seen in all the
cases where a magnetic field is different from zero, i.e., cases

2, 3, and 4. This suggests another non-local effect of the inter-
play of the EM fields.

3.2 Snake trajectory and edge state

In this section, we are going to explore the ability of a non-
uniform magnetic field to control the evolution of an electron
state not only in terms of trajectory and interference patterns,
as in the magnetotunneling application, but also in terms of
shape and dispersion of the wave packet. In particular, we are
identifying two opposite configurations of the linear magnetic
field where the first contributes to maintain the localization of

Fig. 5 Density distribution along the y-direction n(y): cases 1 & 3 and 2
& 4 clearly group together, suggesting that the oscillations are sup-
pressed in the presence of a magnetic field in the region of the barrier,
further indicating that the EM fields interact locally.

Fig. 6 Negativity along the y-direction Negw(y). Negative values after
the injection (y < 25 nm) demonstrate the non-local action of the barrier
already without a magnetic field. The negativity increases with the
increase of B(y) in this region, which suggests again a non-local interplay
of the EM field. Oscillatory behavior is slightly visible for the first two
peaks in the presence of a strong magnetic field: cases 2 and 4.
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the wavepacket, as it happens in the case of a snake trajectory,
and the second to de-localize, which gives rise to the creation
of an edge state.

3.2.1 Simulation setup. In the two following experiments,
we consider a portion of an electronic waveguide in the plane
x–y with a magnetic field, B(r), that is orthogonal to the plane
x–y and presents a linear dependence in the x-direction, which
is orthogonal to the electron evolution (electron state evolves
along y). The waveguide width is 600 nm along the x-direction.
The magnetic field is defined by B(r) = (0, 0, B(x)) with B(x) =
B0 + B1x. Eqn (1), which describes the electron state evolution,
keeps the same form except that y and x are exchanged. The
waveguide length for the snake trajectory and edge state experi-
ment is 2500 nm and 3000 nm, respectively. We evolved a
minimum uncertainty Wigner state with σx = σy = 36 nm, meff =
0.19me and an initial energy of 0.045 eV along y. The electron
state is placed at y0 = 300 nm and we used a Gaussian state
that is fully included in the simulation domain at t = 0.

3.3 Snake trajectory

In the snake trajectory experiment, the value of the magnetic
field is defined by B0 = −1 T and B1 = 0.0033 T nm−1. This
means that the magnetic field starts at −1 T at x = 0 nm and
increases to 1 T at x = 600 nm and is constant along the
y-direction, as shown in the right part of Fig. 7. The initial
position of the Wigner state is (x0, y0) = (370 nm, 300 nm) and
is placed 70 nm to the right of the waveguide center which is
at x = 300 nm, where B = 0 T, see Fig. 7.

The left part of Fig. 7 shows the evolution of the electron
state along the waveguide. Fig. 7 shows the density of the
quantum states in specific time instants t = 0 ps, 1.6 ps, 3.2 ps,
5.0 ps, and 6.4 ps. The dashed white line represents the trajec-
tory of a classical “point-like” particle that evolves along the
wire starting from the middle of the quantum state with the
same mean velocity. Furthermore, the chosen magnetic field
affects the shape of the electron state, as shown by the distri-
bution of the electron density. At t = 0, the state is perfectly cir-
cular. During the evolution, the width of the wavepacket is
affected by the magnetic field. In particular, along the x-direc-
tion the “width” of the wavepacket tends to decrease,
approaching the center (t = 1.6 ps), followed by an increase
again as it oscillates to the other side (t = 3.2 ps). This is due
to the non-uniform magnetic field along x that tends to con-
centrate the density along the B(x) = 0 line. Fig. 8 shows the
evolution of variances Δx and Δy of the spread of the packet in
the x and y directions, as compared to the variance of a freely
evolving wavepacket. Particularly interesting is the behavior of
Δx, which is kept bounded around the initial value by the
magnetic field. The different behaviour of Δx and Δy is due to
the different behaviour of the Lorentz force that causes the
wavepacket to oscillate along x and to move forward along y.

3.4. Edge state

In the edge state experiment, the magnetic force is opposite to
the one used in Section 3.3, as can be seen from the right part
of Fig. 9. Thus B0 = 1 T and B1 = −0.0033 T nm−1, so the mag-

netic field ranges from 1 T to −1 T along x and is constant
along the y-direction. The initial position of the Wigner state (t
= 0 ps) is perfectly centered, i.e., (x0, y0) = (300 nm, 300 nm),
where B = 0 T, as can be seen in the left part of Fig. 9. In the
classical case, a particle evolving in the center and along the
line x = 300 nm (where the magnetic force is zero) will not be
affected by the action of the magnetic field. In the quantum
case, the electron state density is distributed in space, accord-
ing to Heisenberg’s uncertainty principle, and represented by
an ensemble of numerical particles, so that the evolution is

Fig. 7 Snake trajectory: evolution of a minimum uncertainty Wigner
state along a waveguide under an orthogonal, non-uniform linear mag-
netic field B(x) = B0 + B1x with (B0B1) = (−1 T, 0.0033 T nm−1). The right
part shows the magnetic field B(x) in tesla (T). The left part shows the
electron density at t = 0, 1.6 ps, 3.2 ps, 5 ps, and 6.4 ps. The electron
state follows a snake trajectory indicated by the white dashed line.

Fig. 8 Evolution of variances Δx and Δy of the spread of the Gaussian
wavepacket in the x and y directions, as compared to the variance of a
freely evolving (uniform motion) wavepacket indicated by the dashed
line.
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always affected by the action of the magnetic field. It is thus
clear that in the quantum case, the signed-particle model is
useful as it allows to describe and heuristically understand the
electron evolution. Parts of the electron density on the left of
the central line are pushed towards the left border of the wave-
guide, while other parts on the right are pushed towards the
right border. The boundary conditions reflect the parts of the
split state back towards the center. An analysis of the left part
of Fig. 9 shows the density of the quantum states at specific
times t = 0 ps, 2.5 ps, 5.0 ps, and 8.0 ps. As we can see at t =
2.5 ps, the electron density width increases along the x-direc-
tion during the evolution. This dispersion is driven by the
Lorenz force and provides a curvilinear shape along x to the
wavepacket, similar to an “arc”. When the electron state inter-
acts with the lateral borders of the waveguide, it is reflected
towards the center, this can be seen by the fact that the
bending of the curvilinear shape disappears near the borders.
At t = 5.0 ps, the electron state is completely reflected and the
density takes an almost “bimodal distribution” form along x.
It is almost separated in two parts, one on the left and one on
the right of the line x = 300 nm, where the magnetic field is
zero. Only a small portion of the density is still in the center of
the waveguide. The electron density at t = 8.0 ps keeps the
bimodal distribution which is more defined and evolves along
the waveguide as two parallel parts of an edge state that travel
in the same direction, due to the opposite sign of the magnetic
field. This behaviour is further confirmed by the dispersion of

the two parts along the direction of motion that is clearly
visible comparing to the density at t = 5.0 ps with the density
at t = 8.0 ps. This configuration of the magnetic field splits the
state and pushes its parts towards the boundaries which
reflect them back. This mechanism of electron splitting can be
an attractive option for research in electron quantum optics,
where “beam splitter” concepts are a vital building block.

4 Summary

Non-uniform magnetic fields offer unique capabilities to
control single electron states. Here, we investigated a generaliz-
ation of eqn (25) proposed in ref. 21 for non-linear electric
fields. The obtained equation involves the conventional
Wigner potential, the magnetic Lorentz force that also
includes linear magnetic fields, and higher-order terms that
depend on the linear coefficient of B. The higher-order terms
can be neglected for small magnitudes which allows us to
perform numerical calculations in terms of the well-developed
signed-particle model. Experiments on magnetotunneling
and, in particular, the capability of linear, non-uniform mag-
netic fields to control an electron state trajectory are shown.
Moreover, the possibility of changing the value of the magnetic
field allows us to specifically influence an interference pattern
or an oscillatory behaviour. We also show the capability of
linear, non-uniform magnetic fields to control the spatial dis-
persion of an electron state or to split the electron state. It
should be stressed that both cases of evolution have a classical
analog of evolving initial Gaussian distributions of an ensem-
ble of non-interacting electrons. Indeed, for the considered
physical setup, classical and quantum evolution rules are the
same. However, in the former, the initial condition can only be
non-negative, while in the latter, negative values are also poss-
ible, characterising the Wigner quasi-distribution function.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was funded in whole or in part by the Austrian
Science Fund (FWF) [10.55776/P33609, 10.55776/P37080]. For
open access purposes, the author has applied a CC BY public
copyright license to any author accepted manuscript version
arising from this submission. The computational results have
been achieved using the Vienna Scientific Cluster (VSC).

References

1 P. Hoodbhoy, J. Phys.: Condens. Matter, 2018, 30, 185303.
2 P. Mondal, A. Nogaret and S. Ghosh, Phys. Rev. B, 2018, 98,

125303.

Fig. 9 Edge state: evolution of a minimum uncertainty Wigner package
along a waveguide under an orthogonal non-uniform linear magnetic
field B(x) = B0 + B1x with (B0B1) = (1 T, −0.0033 T nm−1). The right part
shows the magnetic field B(x) in tesla (T). The left part shows the elec-
tron density at t = 0, 2.5 ps, 5 ps, and 8 ps. At the end, the wavepacket
becomes a split edge state.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 10819–10826 | 10825

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/1
6/

20
25

 1
1:

54
:1

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3nr05796h


3 X. Zhang and Y. Liu, Phys. Lett. A, 2020, 384, 126613.
4 C. Karmakar, R. Kaneriya, G. Rastogi, R. Upadhyay,

P. Kumar and U. Joshi, Phys. Lett. A, 2021, 417, 127693.
5 P. Hoodbhoy, J. Phys.: Condens. Matter, 2020, 33, 065601.
6 M. Nedjalkov, D. Querlioz, P. Dollfus and H. Kosina, in

Wigner Function Approach, ed. D. Vasileska and
S. M. Goodnick, Springer New York, New York, NY, 2011,
pp. 289–358.

7 W. V. Houston, Phys. Rev., 1940, 57, 184–186.
8 B. Novakovic, R. Akis and I. Knezevic, Phys. Rev. B: Condens.

Matter Mater. Phys., 2011, 84, 195419.
9 J. B. Krieger and G. J. Iafrate, Phys. Rev. B: Condens. Matter

Mater. Phys., 1986, 33, 5494–5500.
10 I. B. Levinson, Sov. Phys. JETP, 1970, 30, 362–367.
11 R. Kubo, J. Phys. Soc. Jpn., 1964, 19, 2127–2139.
12 F. Rossi, in Bloch Oscillations and Wannier–Stark

Localization in Semiconductor Superlattices, ed. E. Schöll,
Springer, Boston, 1998, pp. 283–320.

13 G. J. Iafrate, V. N. Sokolov and J. B. Krieger, Phys. Rev. B,
2017, 96, 144303.

14 T. B. Materdey and C. E. Seyler, Int. J. Mod. Phys. B, 2003,
17, 4555–4592.

15 T. B. Materdey and C. E. Seyler, Int. J. Mod. Phys. B, 2003,
17, 4683–4732.

16 L. Bellentani, P. Bordone, X. Oriols and A. Bertoni, Phys.
Rev. B, 2019, 99, 245415.

17 L. Avazpour, M. King, S. Belling and I. Knezevic,
International Conference on Numerical Simulation of
Optoelectronic Devices (NUSOD), 2022, pp. 111–112.

18 R. Stratonovich, Dokl. Akad. Nauk SSSR, 1956, 109, 72–75.
19 O. T. Serimaa, J. Javanainen and S. Varró, Phys. Rev. A,

1986, 33, 2913–2927.

20 M. Nedjalkov, J. Weinbub, M. Ballicchia, S. Selberherr,
I. Dimov and D. K. Ferry, Phys. Rev. B, 2019, 99,
014423.

21 M. Nedjalkov, M. Ballicchia, R. Kosik and J. Weinbub, Phys.
Rev. A, 2022, 106, 052213.

22 D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method
for Nanoelectronic Devices, Wiley, 2013.

23 D. K. Ferry and M. Nedjalkov, The Wigner Function in
Science and Technology, IOP Publishing, 2018.

24 L. Pratley and U. Zülicke, Phys. Rev. B: Condens. Matter
Mater. Phys., 2013, 88, 245412.

25 N. Prasad, G. W. Burg, K. Watanabe, T. Taniguchi,
L. F. Register and E. Tutuc, Phys. Rev. Lett., 2021, 127,
117701.

26 J. E. Müller, Phys. Rev. Lett., 1992, 68, 385–388.
27 J. Reijniers and F. M. Peeters, J. Phys.: Condens. Matter,

2000, 12, 9771.
28 M. Nedjalkov, P. Schwaha, S. Selberherr, J. M. Sellier and

D. Vasileska, Appl. Phys. Lett., 2013, 102, 163113.
29 N. C. Dias and J. N. Prata, Ann. Phys., 2004, 313, 110–146.
30 V. I. Tatarskiĭ, Soviet Phys. Usp., 1983, 26, 311.
31 C. Etl, M. Ballicchia, M. Nedjalkov and J. Weinbub, J. Phys.

A: Math. Theor., 2024, 57, 115201.
32 P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr and

I. Dimov, J. Comput. Electron., 2015, 14, 151–162.
33 ViennaWD, https://www.iue.tuwien.ac.at/viennawd/,

[accessed: 12/04/2024].
34 N. C. Kluksdahl, A. M. Kriman and D. K. Ferry, High

Magnetic Fields in Semiconductor Physics II, Berlin,
Heidelberg, 1989, pp. 335–338.

35 M. Ballicchia, D. K. Ferry, M. Nedjalkov and J. Weinbub,
Appl. Sci., 2019, 9, 1344.

Paper Nanoscale

10826 | Nanoscale, 2024, 16, 10819–10826 This journal is © The Royal Society of Chemistry 2024

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/1
6/

20
25

 1
1:

54
:1

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://www.iue.tuwien.ac.at/viennawd/
https://www.iue.tuwien.ac.at/viennawd/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3nr05796h

	Button 1: 


