Issue 13, 2024

Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution

Abstract

Conjugated polymers (CPs) are solution-processible for various electronic applications, where solution aggregation and dynamics could impact the morphology in the solid state. Various solvents and solvent mixtures have been used to dissolve and process CPs, but few studies have quantified the effect of solvent quality on the solution behavior of CPs. Herein, we performed static light scattering and small-angle X-ray scattering combined with molecular dynamics (MD) simulation to investigate CP solution behaviors with solvents of varying quality, including poly(3-alkylthiophene) (P3ATs) with various sidechain lengths from –C4H9 to –C12H25, poly[bis(3-dodecyl-2-thienyl)-2,2′-dithiophene-5,5′-diyl] (PQT-12) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT-12). We found that chlorobenzene is a better solvent than toluene for various CPs, which was evident from the positive second virial coefficient A2 ranging from 0.3 to 4.7 × 10−3 cm3 mol g−2 towards P3ATs. For P3ATs in non-polar solvents, longer sidechains promote more positive A2, indicating a better polymer–solvent interaction, wherein A2 for toluene increases from −5.9 to 1.4 × 10−3 cm3 mol g−2, and in CB, A2 ranges from 1.0 to 4.7 × 10−3 cm3 mol g−2 when sidechain length increases from –C6H13 to –C12H25. Moreover, PQT-12 and PBTTT-12 have strong aggregation tendencies in all solutions, with an apparent positive A2 (∼0.5 × 10−3 cm3 mol g−2) due to multi-chain aggregates and peculiar chain folding. These solvent-dependent aggregation behaviors can be well correlated to spectroscopy measurement results. Our coarse-grained MD simulation results further suggested that CPs with long, dense, and branched sidechains can achieve enhanced polymer–solvent interaction, and thus enable overall better solution dispersion. This work provides quantitative insights into the solution behavior of conjugated polymers that can guide both the design and process of CPs toward next-generation organic electronics.

Graphical abstract: Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2023
Accepted
21 Jan 2024
First published
24 Jan 2024

Nanoscale, 2024,16, 6495-6506

Effect of solvent quality and sidechain architecture on conjugated polymer chain conformation in solution

G. Ma, Z. Li, L. Fang, W. Xia and X. Gu, Nanoscale, 2024, 16, 6495 DOI: 10.1039/D3NR05721F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements