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Physical reservoirs employed to map time-series data and analyze extracted features have attracted inter-

est owing to their low training cost and mitigated interconnection complexity. This study reports a physi-

cal reservoir based on a bilayer oxide-based dynamic memristor. The proposed device exhibits a nonlinear

current response and short-term memory (STM), satisfying the requirements of reservoir computing (RC).

These characteristics are validated using a compact model to account for resistive switching (RS) via the

dynamic evolution of the internal state variable and the relocation of oxygen vacancies. Mathematically,

the transient current response can be quantitatively described according to a simple set of equations to

correlate the theoretical framework with experimental results. Furthermore, the device shows significant

reliability and ability to distinguish 4-bit inputs and four diverse neural firing patterns. Therefore, this work

shows the feasibility of implementing physical reservoirs in hardware and advances the understanding of

the dynamic response.

Introduction

Artificial neural networks (ANNs) are designed to mimic the
structure and functionality of biological neural networks
found in the human brain.1–3 The nervous system comprises
billions of interconnected neurons that communicate via elec-
trical and chemical signals.4,5 These neurons are organized
into complex networks that can process and integrate a vast
amount of information, learn from experience, and adapt to
new situations.6 ANNs have shown potential in object identifi-
cation,7 bioinformatics,8 and speech recognition.9 They have
even outperformed humans in some applications, such as gen-
erative pretrained transformer 3 (GPT-3)10 and AlphaGo.11

ANNs are generally divided into two types: feedforward neural
networks (FNNs) and recurrent neural networks (RNNs). FNNs
facilitate unidirectional information flow without incorporat-
ing loops, whereas RNNs feature feedback connections that

enable information propagation not only from the input layer
to the output layer but also within the hidden layers. This
recurrent structure makes RNNs particularly well-suited for
processing time-series data, as they can capture temporal
dependencies and model sequential patterns effectively.12,13

However, the training of RNNs poses challenges because of
exploding or vanishing gradients in recurrent structures. This
difficulty in training RNNs necessitates significant compu-
tational power and cost.14 Reservoir computing (RC) system
has the potential to overcome these problems because a
smaller neural network and a simpler weight update rule can
be used compared with RNNs.15,16 At the software level, RC
systems have demonstrated satisfactory performance in speech
recognition17 and time-series prediction.18,19

Physical reservoir computing (PRC)20–22 has recently
attracted interest as it can significantly reduce computational
resources needed for time-series data processing. PRC com-
prises two parts: (1) the physical reservoir, which acts as a non-
linear transformation of the input data, enhancing the separ-
ability and discriminative capabilities of the input data by
mapping it to a feature space and (2) the readout layer, which
is a small network and linearly processes the data output from
the physical reservoir. One of the main advantages of PRC is
the reduced computational cost due to the training of only the
weights in the readout layer because the physical reservoir
itself does not require weight updating. This characteristic

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3nr05401b

aDepartment of Materials Science and Engineering, National Cheng Kung University,

Tainan 70101, Taiwan. E-mail: jenschen@ncku.edu.tw
bDepartment of Electronics and Communication Engineering, Amrita School of

Engineering, Amrita Vishwa Vidyapeetham, Chennai, India
cAcademy of Innovative Semiconductor and Sustainable Manufacturing, National

Cheng Kung University, Tainan 70101, Taiwan

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 3061–3070 | 3061

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 7
/2

2/
20

25
 2

:1
2:

24
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://rsc.li/nanoscale
http://orcid.org/0000-0002-5834-870X
http://orcid.org/0000-0002-3301-2089
http://orcid.org/0000-0002-5973-8670
https://doi.org/10.1039/d3nr05401b
https://doi.org/10.1039/d3nr05401b
https://doi.org/10.1039/d3nr05401b
http://crossmark.crossref.org/dialog/?doi=10.1039/d3nr05401b&domain=pdf&date_stamp=2024-02-06
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3nr05401b
https://pubs.rsc.org/en/journals/journal/NR
https://pubs.rsc.org/en/journals/journal/NR?issueid=NR016006


makes the implementation of the physical reservoir in hard-
ware more feasible. Various physical reservoirs have been
reported to meet these requirements.20,21,23 Moreover, the
4-bit sequential coding for handwritten digits classification
and compression of spatial dimension for feature space extrac-
tion through volatile memristive devices were revealed.24,25

Milano et al. demonstrated a bottom-up approach in construct-
ing low-cost computing paradigm through self-organized
nanowire networks for mapping the spatio-temporal inputs.26

In addition to the volatile memristor-based physical reservoir,
the subsequent readout layer constructed by the 1T1R (1
Transistor 1 Memristor) crossbar array is also explored. Midya
et al. utilized the formal readout layer which employs backpro-
pagation-based supervised learning to train the weights by
modulating the 1T1R conductance state.27 Apart from the
backpropagation processing, the spiking neuromorphic system
was also established in the work of Matsukatova et al. to
perform computation based on the spike-timing-dependent
plasticity learning rule with low-power spiking signals.28

In this study, we demonstrate a physical reservoir based on
the bilayer oxide-based dynamic memristor, which utilizes an
oxide interface instead of the conductive filament-based
mechanism and functions as a nonlinear dynamical system
with short-term memory (STM). The platinum (Pt) is selected
as the bottom electrode for its high work function to form
Schottky barrier with most of the oxide semiconductors and
dielectrics.29,30 The bottom oxide layer, tantalum oxide (TaOx),
is a wide bandgap material and it possesses high oxygen
vacancies mobility due to the relatively low activation barrier of
oxygen vacancies for migration.31,32 For the top oxide
materials, compared with TaOx, indium gallium zinc oxide
(IGZO) exhibits higher electronic affinity and lower
bandgap.33,34 The low-work function metal Ta is employed as
the top electrode to form an Ohmic contact between the IGZO/
Ta interface.35,36 This heterojuction memristor accounts for
the resistive switching and the asymmetric Schottky barrier
and induces the self-rectification behavior. Different from
other related studies that mainly emphasized on implement-
ing specific physical reservoir functions and applications on
time-series data processing in memristor-based RC,37–39 the
preeminent discussion in this study is the compact model,
which incorporates the dynamic evolution of the internal state
variable (w) and enables the quantification of transient current
response. Because of the consideration of the w, the conduc-
tion status in the memristor can be acquired when the electri-
cal stimulation is removed and back to zero voltage. This
allows the device behavior to be predicted accurately and facili-
tate the simulation platform to perform time series data classi-
fication in reservoir computing system.40,41 We provide an
explanation for the fundamental driving mechanisms behind
the observed intrinsic nonlinear characteristics and STM
effects of the dynamic memristor. The simulation results are
well-aligned with the experimentally measured device charac-
teristics, which can be further integrated into the RC frame-
work. Additionally, compared to the recently reported studies,
the proposed dynamic memristor exhibits higher On/Off ratio

and rectification ratio, possessing the potential for superior
integration density and efficient operation of the reservoir
system.42,43 The comparison of these electrical characteristics
of related studies is provided in Table S1.† The use of the
bilayer oxide to form a heterojunction offers a promising
approach to memristor fabrication for future neuromorphic
technologies. Additionally, the simulation work lays the foun-
dation for the optimization of bilayer oxide-based dynamic
memristors and the application in dynamic signal processing.

Results and discussion
Microstructural characterization and electrical response

In this study, we implemented a bilayer oxide-based dynamic
memristor with indium gallium zinc oxide (IGZO) stacking on
tantalum oxide (TaOx). The experimental details of the device
are discussed in the methods section. The left panel of Fig. 1a
illustrates the stacking of layers, including their respective
thicknesses, whereas the right panel shows the corresponding
transmission electron microscopy (TEM) image of the device.
Throughout the electrical measurements, the top electrode
(TE), Ta, is maintained at ground potential while the voltage is
applied to the bottom electrode (BE), Pt. Fig. 1b demonstrates
an asymmetric current–voltage (I–V) hysteresis curve during
the voltage scan (−4.0 V → 0.0 V → 4.0 V → 0.0 V → −4.0 V).
The I–V curve is also measured for more than 100 scans, as
shown in Fig. S1,† indicating the stability and reliability of the
device. At low applied voltages (under 2 V), the current is hin-
dered by the Schottky contact (Pt/TaOx).

44,45 In addition, the
observed hysteresis loop confirms the presence of memristive
switching within the device. This effect is further demon-
strated by pulse measurement, as shown in Fig. 1c. The device
initially exhibits an HRS during the first small pulse while the
current constantly increases over time during the program-
ming pulse (3 V, 5 ms). Notably, after the strong stimulus, the
device exhibits the discernible current response during the
latter small pulses, indicating the potential for transition from
HRS to an LRS. Additionally, the current generated by the
second small pulse is slightly larger than the current generated
by the third small pulse, which shows the relaxation
behavior.46,47 This behavior is observed more than 50 times, as
depicted in Fig. S2,† demonstrating the uniformity of the
current over time, which is crucial for applications.
Furthermore, the device-to-device variations in I–V curves and
the current response under single pulse stimulation were eval-
uated by 16 devices as shown in Fig. S3.† This indicates that
the fabrication process and electrical performances of out Ta/
IGZO/TaOx/Pt dynamic memristors are reproducible. The
thicknesses for TaOx and IGZO were changed and discussed in
Fig. S4.†

The nonlinear behavior plays a vital role in RC applications.
Notably, the memristor is an inherent nonlinear system, as
reflected in the nonlinear equations.48,49 Here we show the
nonlinear response to programming using several tests.
Fig. 1d depicts the current response of the device under a

Paper Nanoscale

3062 | Nanoscale, 2024, 16, 3061–3070 This journal is © The Royal Society of Chemistry 2024

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 7
/2

2/
20

25
 2

:1
2:

24
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3nr05401b


single pulse with varying pulse amplitudes. The current
responses exhibit small changes until reaching 2 V. Under
higher voltages, the current responses exhibit nonlinear incre-
ments as the applied voltage linearly increases to 3.2 V. We
also verify the nonlinearity by applying a linearly increasing
voltage to the device, as shown in Fig. S5.† Furthermore, the
resulting current response also exhibits a nonlinear behavior
under different pulse widths, as depicted in Fig. 1e. The
current displays linear increases for the pulse width below
1 ms, whereas the rate of the current increase gradually
declines with longer pulse widths. To further investigate the
nonlinear behavior of the device, continuous positive program-
ming pulses are applied to the device at 50 Hz. Initially, the
current increases rapidly, but it gradually saturates with an
increasing number of programming pulses, as shown in
Fig. 1f. During prolonged programming, the migration of
oxygen vacancies in the switching layer is triggered. The loss of
the programming capability at high-conductance states can be
attributed to the more pronounced relaxation effect in the
switching layer.50–52 The relaxation effect can be considered in
the rate equation of the state variable (w) of the device, which
will be discussed in Fig. 2.

Simulation results

The memristive behavior is based on the Vox movement inside
the TaOx layer.

45 Briefly, the memristive effects and nonlinear-
ity shown in Fig. 1 are caused by the redistribution of oxygen
vacancies near the TaOx/IGZO interface.53 These behaviors are
further verified using the compact model of the dynamic
memristor as follows:51

I ¼ wγ sin hðδVÞ þ ð1� wÞ a½1 – exp ð�βVÞ� ð1Þ
dw=dt ¼ λ sin hðηVÞ – w=τ ð2Þ

The carrier transport at the IGZO/TaOx interface is governed
by two processes: (I) thermal agitation of electrons and (II) tun-
neling of electrons from IGZO toward TaOx. Eqn (1) represents
the current–voltage relationship based on the state variable
(w), which incorporates the conduction channel in two
aspects: The first term represents the tunneling behavior at
the IGZO/TaOx interface, and the second term demonstrates
Schottky-like emission behaviors.54–56 The device conductance
can be affected by the state variable (w), which is the relative
weight of the two processes due to the movement of oxygen
vacancies. Upon the application of a positive voltage at the BE,

Fig. 1 Microstructural characterization and electrical response of the Ta/IGZO/TaOx/Pt memristor. (a) The left panel illustrates a schematic repre-
sentation of the IGZO/TaOx structure positioned between the Ta and Pt electrodes, along with the thickness of each layer. The right panel displays
the corresponding cross-sectional TEM image of the device. (b) Current–voltage (I–V) characteristics of the device is repeated 20 cycles, and the
inset depicts the device structure under bias. (c) The measured current response demonstrates RS and relaxation behaviors. Before the device is
turned on, the initial high-resistant state (HRS) is measured under a small pulse (2 V, 1 ms). After the application of a voltage pulse (3 V, 5 ms), the
device switches to a low-resistance state (LRS) under small pulses (2 V, 1 ms). (d) The current responses are measured for 1 ms under different ampli-
tudes of input pulses (1 ms) ranging from 1.4 V to 3.2 V with a step of 0.2 V. (e) The measured current responses are depicted for different input
pulse widths from 500 μs to 3 ms, where the pulse amplitude is 3 V. (f ) The current response is recorded for 25 consecutive voltage pulses (3 V,
1 ms) at 1 ms intervals.
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the electric field can drive the migration of oxygen vacancies
toward the IGZO/TaOx interface, resulting in the accumulation
of oxygen vacancies. This leads to Ohmic-like contact domi-
nated by a tunneling current and increases the state variable
(w).57 Eqn (2) represents the dynamic behavior of the state vari-
able (w), which includes two factors: The first factor is the
effect of the applied voltage, which can drift Vox, and the
second factor is the effect of decay with effective time constant
(τ) due to the spontaneous relaxation of Vox. This model is
effectively employed to simulate the electrical behavior of the
IGZO/TaOx-based memristor. The fitting parameters α, β, γ, δ,
λ, η, τ in eqn (1) and (2) are provided in Table S2.† To simulate
device responses to input pulses, the pulse parameters such as
voltage amplitude, width, and pulse interval are used in eqn
(1) and (2)

The schematic diagram of the relocation of oxygen
vacancies is shown in Fig. 2a to illustrate the memristor
model. The band diagram was plotted through the analysis of
ultraviolet photoelectron spectroscopy (UPS) and ultraviolet-
visible (UV-vis) spectrophotometer as shown in Fig. S6–S8.†
Sufficient voltage (>2 V) must be applied to the BE to drift the
oxygen vacancies in TaOx toward the TaOx/IGZO interface. This
makes the depletion region at the TaOx side narrower, and
thereby enhances the tunneling probability for electrons from
IGZO layer to TaOx layer.30,58,59 Therefore, the current rises
dramatically, and the resistive state gradually switches to an
LRS. Upon further increasing the voltage, the transport of elec-
trons is dominated by tunneling, indicating the state variable
(w) increases. When oxygen vacancies are accumulated at the
IGZO/TaOx interface60 right after the electrical stimulus, the

Fig. 2 Schematic of carrier transport and simulation results based on the memristor model describing the dynamic behavior of the IGZO/TaOx-
based memristor. (a) Underlying working mechanism of the memristor. The relocation of positively charged oxygen vacancies within TaOx leads to a
dynamic change in conductance upon the change in depletion width. The main conduction mechanism: (I) the thermal excitation of electrons from
IGZO to TaOx occurs owing to the conduction band offset, and (II) the tunneling process occurs as electrons from the conduction band of IGZO
tunnel through the barrier to TaOx. (b and c) The curves in the top subfigures represent different voltage waveforms (black curve) and the dynamic
change in the state variable (w, orange curve). The bottom subfigures represent the measured (green curve in (b) and dark yellow curve in (c)) and
simulated (blue curve) current responses under different pulse intervals. Consecutive pulses result in an increase in both the state variable (w) and
the current response. Additionally, as the pulse interval increases, the enhancement is suppressed. (d) The trend of the measured current under a
random temporal input pulse is consistent with the simulation results.
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mobile oxygen vacancies retain temporarily and progressively
relax back to the TaOx layer because of the concentration gradi-
ent, causing the upward-band-bending depletion region at
TaOx side to be widened. Therefore, the tunneling current and
the state variable (w) decrease, leading to the decay of the
current to an HRS once the stimulation pulse is removed.50,61

Taking advantage of the band offset between the two oxides
and the dynamic relocation of oxygen vacancies and carriers,
this bilayered metal oxide-based memristor is capable of
demonstrating resistive switching and short-term memory
(STM) characteristics.

To verify the agreement between the experimental results
and modelling functions, we used six pulses (3 V, 1 ms) with
different time intervals (2 and 5 ms). The measured and simu-
lation results show that the current response gradually
increases, as shown in Fig. 2b. As the time interval between
electrical pulses increases (from 2 ms to 5 ms), the change in
the potentiated current significantly decreases, as shown in
Fig. 2c. Fig. S9† displayed transient current responses under
other pulse interval conditions (with pulse interval 0.5, 1 and
3 ms). As the pulse interval increases, the experimentally
measured current responses decrease. The corresponding
simulated currents decrease due to the relaxation of the state
variable based on the memristor model. In particular, the
change in the device current under different pulse intervals
can be quantitatively explained using simulations based on
the memristor model. Furthermore, as shown in Fig. 2d, as the
pulses are applied at a high rate, the state variable (w) gets
larger, leading to a rapid increase in the device current.
Conversely, when the pulses are applied at a low rate, the
longer pulse interval allows more time for the state variable
(w) to decrease, reducing the device current. Fig. S10† demon-
strated the consistency of the dynamic changes between the
measured currents and state variables subject to the pulse
streams of decreasing and increasing pulse number. As shown
in Fig. S10a,† the current and state variable were escalated con-
sistently when receiving the first stream of the electrical stimu-
lation (four pulses). Later, the subsequent pulse streams
(three, two and one pulses) applied after a time interval did
not potentiate the conductance state appreciably. This implies
that the initial four pulses strengthen the conductance to a
higher level and intrigues the relaxation of state variable
(oxygen vacancies), which compromises the stimulation of sub-
sequent pulse streams with descending pulse numbers.
Conversely, Fig. S10b† exhibits the increasing currents and
state variable responses under the application of pulse streams
of increasing pulse number (from one to four pulses). The
potentiated results illustrate that the stimulation of incremen-
tal pulse numbers surpasses the relaxation effect since the
initial state variable is lower. This demonstration also specifies
that the current responses differ when the pulse sequences are
varied. The current and the state variable (w) of the memristor
are sensitive to the application and removal of electrical
stimuli, resulting in different transient responses, which can
be useful for training sequential dependent signals in neural
networks. Moreover, the memristor exhibits analog RS capa-

bilities with multilevel states, enabling the generation of
diverse reservoir states.62,63

STM analysis of device

Notably, when a positive bias is applied to the BE, the conduc-
tance gradually increases, indicating potentiation, as shown in
Fig. 3a. However, it shows that the I–V curves overlap as the
voltage sweeps consecutively. This suggests the memory effect
fades over time. The decay of w, as discussed earlier, provides
a direct explanation for this phenomenon. Memristive devices
with STM are better suited to process temporally encoded
input patterns.47,64 Elements of a reservoir layer in RC should
ideally possess an STM property. Fig. 3b depicts how the STM
effect plays a crucial role in extracting temporal features from
the input pulse stream.65 When subjected to sequential
inputs, the device exhibits a nonlinear transient response
attributed to the STM effect. By aligning the measurement
parameters and decay time appropriately, the captured dyna-
mical device state is recorded using fixed time steps, generat-
ing nodes that represent reservoir states. These nodes are then
utilized to map time-series data and analyze extracted features
within PRC.66

The STM effect of the IGZO/TaOx-based memristor was
further investigated by examining three pulse trains with
varying pulse arrangements, as depicted in Fig. 3c. This figure
demonstrates the impact of recent inputs on the present
response of the memristors. In the cases labeled as 1_111,
11_11, and 111_1, the different numbers of pulse stimulations
(3 V, 1 ms) before the symbol “_” led to different responses.
However, the state variable (w) exhibites varying rates of
decline over the 20 ms interval, effectively suppressing the con-
ductance with different slopes. This behavior can be attributed
to the accumulation of different amounts of oxygen vacancies
at the IGZO/TaOx interface under different pulse arrange-
ments. Consequently, the rate at which oxygen vacancies tend
to diffuse back to their original positions during spontaneous
relaxation differs. Due to the different nonlinear transient
responses observed over the 20 ms interval, the final state of
the temporal frame differs among these three cases.

Memristor-based physical reservoir

RC is an efficient network for processing temporal signals,
offering lower training costs compared with standard RNNs.
Fig. 4a illustrates the schematic of a memristor-based RC
system. The reservoir layer captures and processes intricate
temporal patterns within the input signal, while the readout
layer interprets reservoir states to generate the desired output.

We employ the virtual node concept in the implementation
of the reservoir layer in the fabricated memristor device.66

Instead of mapping the input signal to a feature space using
multiple nonlinear units, the virtual node concept utilizes
delayed feedback on a single physical device with STM effects.
This effect can be observed in the IGZO/TaOx-based memristor
owing to the internal dynamics without having to use recur-
rent connects in the network. The device exhibits a wide range
of transient current responses that can be modulated based on
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the history of external stimulation. These adjustable conduc-
tance properties of the memristor serve as reservoir states for
mapping feature information from different sequential inputs.

In this study, the device is subjected to four different spike
train types: “Tonic”, “Bursting”, “Adapting”, and “Irregular” as
shown in Fig. 4b–e. The “Tonic” pattern comprises low-fre-
quency spikes with a constant interval, whereas the “Bursting”
pattern includes multiple groups of high-frequency spikes with
a constant intergroup interval. The “Adapting” pattern exhibits
spikes with gradually increasing intervals, and the “Irregular”
pattern represents irregularly firing spikes. The distinct
current responses to the four spike train types which demon-
strate the capability to effectively analyze the temporal
dynamics of neural firing patterns.

Fig. 5a presents the schematic diagram of the RC frame-
work applied to process the binary handwritten image classifi-
cation. First, the input images go through a preprocessing

stage. During this step, each long row of pixels in binary
digital images are divided into 7 smaller sections, each con-
taining 4 pixels, resulting in a total of 196 sections (7 sections
per row multiplied by 28 rows). Each 4-bit section has 24 poss-
ible pattern combinations, which are encoded into 16 different
pulse sequences before being fed into the reservoir. The RC
framework comprises a reservoir and a readout layer. The
former does not need any training, whereas the latter is trained
using a 196 × 10 single-layer network. Contrarily, the traditional
NN is a 784 × 10 single-layer network needed in binary hand-
written image classification, which is four times larger than its
size. This leads to significantly higher costs in terms of compu-
tation. In our study, we evaluate the separability of the memris-
tor by applying pulse streams with various temporal features
(Fig. 5b). Fig. 5c depicts the diverse but deterministic output
current responses of 16 different input signals with nearly the
same initial state. For each pulse sequence, distinct reservoir

Fig. 3 STM analysis of device. (a) I–V curve of the Ta/IGZO/TaOx/Pt memristor from three consecutive positive voltage sweeps (0.0 V → 4.0 V →
0.0 V). Positive voltage sweeps increase the memristor conductance gradually. The inset shows the overlap of adjacent hysteresis loops. (b) The
schematic diagram of the STM property ensures that the reservoir state is influenced by recent-past inputs, allowing for the equivalent implemen-
tation of neural networks with recursive connections. (c) The dynamic responses of the device are examined under four identical stimulation pulses
(3 V, 1 ms) with different sequential arrangements. The symbol “1” denotes the occurrence of a voltage pulse (3 V, 1 ms), whereas the symbol “_” illus-
trates a long pulse interval (20 ms). Upper panel: The simulation results illustrate the change in the state variable (w), which is obtained using the
memristor model under three different pulse conditions. Lower panel: dynamic responses of the memristor to pulse sequences measured by the
read pulse (1.8 V, 0.5 ms).
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states measured at the end of the pulse stream are observed,
demonstrating the ability to distinguish the 4-bit s. This proves
the potential of the device for utilization in an RC-based
network. Additionally, Fig. 5d displays the output response of
four input signals, [1 0 0 1], [1 0 1 0], [0 1 0 1], and [1 0 1 1],

which are repeated 30 times in the same cell. The oxide inter-
face of the device endows it with enhanced stability and
reduced cycle-to-cycle variations.67 These properties significantly
contribute to the overall performance and reliability of the
memristor-based RC framework.

Fig. 4 The schematic illustrates the concept of a memristor-based physical reservoir utilized for time-series data mapping and extracted feature
analysis by generating various temporal responses to neural activities. (The classification task in the readout layer was not carried out in this work.)
(a) A PRC system architecture comprises the input, reservoir, and readout layer. An input pulse stream is fed into the memristor. The current signals
are measured every 2.5 ms by the read pulse (1.8 V, 0.5 ms), which serve as reservoir states, and processed in the readout part. (b–e) Upper panel:
simulation results of the state variable (w) under different input patterns – “tonic”, “bursting”, “irregular”, and “adapting”. Lower panel: the memristor
exhibits temporal current responses corresponding to different input patterns.
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Conclusions

Our findings show that the IGZO/TaOx-based memristor holds
significant potential for implementation in memristor-based
RC systems. Additionally, we conducted simulations of
dynamic RS and validated the results with the experimental
data using a compact memristor model. We investigated the
electrical performance where the state variable (w) can be
modulated based on the migration of oxygen vacancies. The
nonlinear dynamic current response and the STM behavior
were demonstrated in the variations of current levels upon the
application and removal of electrical stimuli. These character-
istics make the memristor suitable for deployment as an
effective physical reservoir. The transient current response of

the memristor within a specific duration can serve as the reser-
voir state, enabling the extraction and analysis of temporal
input data. The systematic study on the RS mechanism and
device modeling in this work can provide valuable guidance
for further optimization and application of dynamic memris-
tors in the RC framework.

Method

In this study, a bilayer oxide-based Ta/IGZO/TaOx/Pt memristor
was fabricated on a SiO2/Si substrate, which was cleaned using
the RCA process. The BE was fabricated by depositing a Pt film
onto a SiO2/Si substrate using DC magnetron sputtering with a

Fig. 5 The IGZO/TaOx-based memristor shows significant reliability and ability to distinguish 4-bit inputs (from “0000” to “1111”). (a) The schematic
representation illustrates the RC framework utilizing dynamic memristors as the reservoir and the readout network for processing and classifying
binary handwritten digits. The preprocessing stage involves dividing the binary handwritten digit into smaller sections (a row of 28 pixels is divided
into 7 sections, and each section contains 4 pixels). These sections are then fed into the dynamic memristor reservoir by pulse streams. Please note
that the readout layer was not implemented in this work. (b) As an example, pattern “3” is represented by 20 pixels using 5 × 4-bit inputs during the
preprocessing stage. Each row corresponds to a pulse stream, and the pulse (4 V, 1 ms) is used to represent “1”, whereas zero voltage represents “0”.
(c) The separation of 4-bit inputs is achieved through different current responses to 16 specific pulse streams. The reservoir states are reflected as
the read currents of the memristors forming the reservoir. The current is measured using a read pulse (2 V, 0.5 ms). (d) The cycle-to-cycle variation
is measured by repetitively applying specific pulse streams 30 times on a single device. The variations in the final conductance are 1.58% for “1001”,
3.05% for “1010”, 1.99% for “0101”, and 1.94% for “1011”.
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Pt target (99.99%) and the following experimental parameters:
sputtering power, 100 W; working pressure, 4 mTorr; Ar flow,
50 sccm. A 67 nm TaOx layer was then deposited using RF
sputtering (target: high-purity Ta (99.99%), sputtering power:
80 W, working pressure: 16 mTorr, mixed gas flow: 50 sccm,
and Ar : O2 ratio: 4 : 1). Further, a 16 nm IGZO film was de-
posited using an IGZO target and RF magnetron sputtering
(sputtering power: 50 W, working pressure: 8 mTorr, and Ar
flow: 100 sccm). Lastly, a high-purity Ta target was used to
pattern the TE using DC magnetron sputtering with a shadow
mask (200 × 200 μm2), and the following parameters were used
for deposition: sputtering power, 60 W; working pressure,
7 mTorr; Ar flow, 50 sccm. Electrical characterizations were
performed using a Keysight B1500A semiconductor device ana-
lyzer. Pulse measurements were performed using a Keysight
wave generator fast measurement unit. Further, microstruc-
tural characterization was performed using TEM (JEM-2100F
field-emission tunneling electron microscope). Python was
used to fit and validate the compact memristor model.
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