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A nonlinear optical crystal with deep-ultraviolet
transparency and appropriate birefringence
achieved using p-conjugated confined
[B3O3F4(OH)]2�†
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Finding a deep-ultraviolet (deep-UV, k o 200 nm) nonlinear optical

(NLO) crystal is vital to a number of advanced optical technologies, yet

it remains a great challenge. Herein, we report a deep-UV NLO crystal,

K2B3O3F4(OH) (KBOFH), composed of p-conjugated confined groups.

It exhibits a relatively large birefringence of 0.054@550 nm and a wide

transparency window with an absorption edge below 200 nm. Theo-

retical calculations reveal that the observed optical properties of

KBOFH originate from the confined p-conjugated [B3O3F4(OH)] unit,

in which the p-conjugated interactions are decoupled by the tetra-

hedral non-p-conjugated [BO2F2] unit. This work provides an oppor-

tunity to design deep-UV NLO crystals containing p-conjugated

confined groups.

Introduction

Deep-ultraviolet (deep-UV) nonlinear optical (NLO) materials are
of tremendous interest owing to their ability to generate deep-UV
coherent light from common lasers (e.g., Nd:YAG 1064 nm,
infrared) by a cascade frequency-doubling process.1–5 The pre-
requisites essential for deep-UV NLO crystals include (1) large
second harmonic generation (SHG) efficiency, (2) a wide trans-
mittance range down to below 200 nm, (3) suitable birefringence
to phase match, (4) high laser-induced damage threshold (LIDT),

and (5) good physiochemical properties, among others.6–16 In
this context, borate lies in one of the most promising and
investigated material systems for deep-UV NLO.17–27 Neverthe-
less, it is still very difficult to develop efficient deep-UV NLO
borates as their performance criteria are generally mutually
exclusive in the deep-UV region. Against this background,
intense efforts have been made to develop borates.28–35

Conventional borates are generally composed of p-conjugated
[BO3] with sp2-hybridization and (or) non p-conjugated [BO4]
with sp3-hybridization. It is found that compared to the planar
[BO3] unit, tetrahedral [BO4] shows much lower hyperpolariz-
ability, polarizability anisotropy, resulting in unsatisfactory NLO
properties, such as subpar birefringence. Pan’s group discovered
that the fluorinated [BOxF4�x] (x = 1–3) units are able to exhibit
larger polarizability anisotropy and hyperpolarizability than the
[BO4] unit,36 and are thus considered to be attractive functional
building blocks (FBBs) to synthesize deep-UV NLO materials. On
the other hand, the p-conjugated [BO3] unit is the most attractive
FBB for the design of deep-UV NLO materials; however, its
dangling bonds have a negative impact on the band gap.

Recently, Chen’s group has put forward a so-called p-
conjugated confinement concept which refers to restriction of
p-conjugated by non-p-conjugated groups to reduce p-conjugated
interactions between the units, thereby broadening the bandgap
while retaining the desired birefringence. Guided by this proposal,
the carbonophosphate Sr3Y[PO4][CO3]3 exhibits a combination of
an appropriate birefringence value of 0.121@532 nm and a wide
bandgap value of 6.9 eV.37 In Sr3Y[PO4][CO3]3, p-conjugated [CO3]
and non p-conjugated [PO4] are not directly linked. We think that
the confinement effect can probably be enhanced when the
p-conjugated unit and the non p-conjugated unit are directly
bridged by covalent bonds since such direct connections can
eliminate the dangling bonds of p-conjugated groups more effec-
tively, thereby giving rise to enlarged band gaps while not com-
promising on the optical anisotropy too much. With these in
mind, we endeavour to combine the p-conjugated [BO3] with the
non-p-conjugated [BOxF4�x] (x = 1–3) units by taking the known
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[B3O6]3� as a parent to construct new deep-UV NLO crystals. By
doing so, a noncentrosymmetric (NCS) fluoroborate (KBOFH) has
been successfully synthesized. In the structure, a p-conjugated
confined [B3O3F4OH]2� FBB is identified, which is composed of
one p-conjugated planar [BO2(OH)] group and two non p-
conjugated [BO2F2] tetrahedrons by corner-sharing. In this work,
we report its synthesis, crystal structure, and NLO properties, and
investigate the underlying mechanisms of optical properties by a
theoretical approach.

Experimental section

Single crystals of KBOFH were synthesized via a hydrothermal
method. Triethylamine serves as both a solvent and a mineralizer.
Typically, La(NO3)3�6H2O (Adamas, 99.9%, 0.9 mmol, 0.389 g),
KBF4 (Aladdin, 99.0%, 2.7 mmol, 0.34 g), B2O3 (Aladdin, 99.0%,
1.2 mmol, 0.084 g), triethylamine (Greagent, 4 99.0%, 2 mL) and
deionized water (1 mL) were combined into a 23 mL Teflon-lined
Parr autoclave and mixed well. The mixture was heated to 200 1C,
held for 5000 min, and then cooled to 30 1C within 2000 min.
Colourless transparent laminar crystals were harvested.

Results
Crystal structure

The purity of the synthesized KBOFH which was washed several
times with acetone has been examined using powder X-ray
diffraction (PXRD) (Fig. S1, ESI†). To examine the stability in
air, KBOFH was exposed to air for one week. As displayed in Fig.
S2 (ESI†), the surface of the exposed crystal is nearly
unchanged. A further PXRD test of the exposed KBOFH showed
a good match with the original PXRD patterns (Fig. S3, ESI†).
These results indicate that KBOFH is stable in air. The mapping
of elemental scanning electron microscopy (SEM) analysis
revealed the existence of elements K, B, O, and F in KBOFH
(Fig. 1a), which were also confirmed by energy-dispersive X-ray
spectroscopy (EDX) (Fig. S4, ESI†). As shown in Fig. S4 (ESI†),
the molar ratio of O to F in KBOFH is close to 1.

KBOFH crystallizes in the NCS space group Ama2 (No. 40) with
orthorhombic cell parameters of a = 25.9308(5) Å, b = 22.5853(4) Å,
c = 7.46320(10) Å, Z = 24, and V = 4370.86(13) Å3 (see details in
Tables S1–S5, ESI†). The asymmetric unit consists of 12 indepen-
dent B atoms, 13 F atoms, 16 O atoms, and 7 K atoms. B3, B6, and
B9 exhibit a triangular [BO2(OH)] configuration while B1, B2, B4,
B5, B7, B8, B10, and B11 are bonded to two O atoms and two F
atoms to form [BO2F2] tetrahedrons. The bond lengths and bond
angles within [BO2(OH)] and [BO2F2] are listed in Tables S4 and S5
(ESI†), which are comparable to previously reported compounds,
such as Rb2B3O3F4(OH)38 and Cs2B3O3F4(OH).39 Its structure
consists of isolated three-membered rings [B3O3F4OH]2�

composed of a p-conjugated planar [BO2(OH)] group and two
non p-conjugated [BO2F2] tetrahedrons by corner-sharing. The
[B3O3F4OH]2� units are further connected by hydrogen bonding,
resulting in one-dimensional chains (Fig. 1b). These chains are
linked by K atoms to form a three-dimensional structure (Fig. 1c).

The [B3O3F4OH]2� rings are nearly parallel to each other which
might facilitate large optical anisotropy for KBOFH.

The UV-vis-NIR diffuse reflectance spectrum of KBOFH was
collected in the wavelength range of 200–1000 nm (Fig. S5,
ESI†). A relatively high reflectance of ca. 60% at 200 nm was
observed, revealing that KBOFH is deep-UV transparent and
has a band gap larger than 6.2 eV.

The infrared spectroscopy (FTIR) spectrum of KBOFH is
shown in Fig. S7 in the ESI.† The stretching vibration of O–H
can be observed in the range of 3400–3300 cm�1. The absorption
signals at about 1420 cm�1 and 1039 cm�1 correspond to
asymmetrical vibration and symmetrical vibration of BO3. In
addition, the sharp absorption signal at about 703 cm�1 corre-
sponds to the torsional vibration of BO3. Furthermore, a sig-
nificant signal observed at about 844 cm�1 is assigned to B–F
symmetrical vibration.40,41

The powder SHG efficiency of KBOFH was measured at
1064 nm using the Kurtz–Perry method.42 As shown in Fig. 2a,
KBOFH shows a SHG efficiency of ca. 0.2 � KDP in the particle
size range of 74–124 mm. Furthermore, the SHG intensities
continuously raise with the increase of crystal size, indicating
that KBOFH is type-I phase-matchable at 1064 nm (Fig. 2b). The
relatively weak SHG response exhibited by KBOFH could be
attributed to the opposite arrangements of [B3O3F4OH]2� units
which offset their dipole moments. These structural arrange-
ments are not preferable for the origination of a large NLO
response based on anionic group theory.43 Fig. 2c presents the
SHG response of KBOFH at various excitation wavelengths ran-
ging from 800 to 920 nm, revealing that KBOFH is able to generate
SHG output at 400 nm to 460 nm, which further verified the
phase-matching ability of KBOFH at 1064 nm. Fig. 2d shows that
the SHG intensity of KBOFH increases with the input power, and
the inset displays the SHG intensities in logarithmic coordinates
as a function of excitation power. The slope of the fitting curve is
found to be 2.2, which is in line with the theoretical value of 2,
indicating that the collected signals indeed stem from the SHG.
Fig. 2e and f display two and four asymmetric lobes respectively,

Fig. 1 Elemental analysis and crystal structure of KBOFH. (a) Scanning
electron microscope elemental mapping. The structure of KBOFH is
viewed along the (b) a axis and (c) c axis.
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resulting from the space group Ama2 of KBOFH crystals, suggest-
ing that an in-plane anisotropy existed in the (010) plane
of KBOFH.

The birefringence of KBOFH was measured on a polarizing
microscope. A schematic diagram illustrating birefringence

measurement by polarizing microscope is shown in Fig. 3a.
Generally, when polarized light enters the crystal, birefringence
occurs and splits the incident light into an ordinary ray (o light)
and an extraordinary ray (e light). The retardation (R) occurs
between the o light and e light in this process. Hence, the

Fig. 2 The second-order nonlinear optical properties of KBOFH. (a) SHG signals of KBOFH and KDP in the particle size range of 74–124 mm. (b) Particle
size-dependent SHG responses. The curve is drawn to guide the eyes and not fitted to the data. (c) SHG spectra of a (010) flake of KBOFH at various
excitation wavelengths ranging from 800 to 920 nm. (d) Pump power-dependent SHG response in the incident light at 800 nm. Inset: The SHG
intensities in logarithmic coordinates as a function of excitation power. Polarization-dependent SHG for (e) vertical configuration and (f) parallel
configuration.

Fig. 3 Birefringence properties of KBOFH. (a) A schematic diagram illustrates the birefringence measurement principle using a polarizing microscope.
(b) Original interference of the KBOFH crystal under orthogonally polarized light. (c) KBOFH crystal realizing complete extinction. (d) The orientation of
the KBOFH plate used for measurement. (e) Theoretically calculated refractive index dispersion curves of KBOFH.
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determination R and the thickness of the crystal plate enable us
to measure the birefringence. A selected single crystal of
KBOFH exhibits original interference color as blue under
orthogonally polarized light (Fig. 3b), which then turns black
when a Berek compensator (Fig. 3c), suggesting that extinction
has been achieved for measured crystals. At a wavelength of
550 nm, the R-value is determined to be 625 nm, and the
measured thickness is 11.53 mm (Fig. S8, ESI†). The orientation
of the crystal used for birefringence determination is found to
be the (010) plane by SCXRD (Fig. 3d). Based on these results,
the birefringence of KBOFH is observed to be Dn(010)exp =
0.054@550 nm in the (010) plane. In addition, based on first-
principles calculations,44 the static refractive indices of KBOFH
are found to be na = 1.410, nb = 1.458, and nc = 1.458 at 550 nm.
The calculated birefringence (0.048@550 nm) in the (010) plane
is matched well with the experimental value (Fig. 3e). Inspired
by the obvious optical anisotropy of KBOFH, we further exam-
ined its SHG phase-matching ability using the calculated
refractive indices. As shown in Fig. S9 (ESI†), the shortest
phase-matching wavelength of KBOFH is determined to be
235 nm, which is comparable to those of a few known deep-
UV NLO crystals, such as LBO (277 nm), CLBO (236 nm), and
KDP (258 nm).

First-principles calculations were carried out to reveal the
structure–property relationships of KBOFH.45–47 Fig. 4a shows
that KBOFH has a band gap of 7.0 eV, close to the experimental
observation. The density of states (DOS) and partial DOS
diagram of constituent atoms are present in Fig. 4b. The upper
region of the valence band (VB) is mainly composed of O 2p, F
2p and B 2p orbitals. The bottom region of the valence band is
occupied by O 2p, H 1s, K 3s and K 3p. As the optical properties

of crystals are intimately associated with electronic activities
near the Fermi level, we can briefly conclude that the bandgap,
birefringence, and second-order NLO properties of KBOFH are
mainly determined by anionic [B3O3F4OH]2� groups.

To further visualize the contribution of [B3O3F4OH]2� to the
optical properties of KBOFH, the highest occupied molecular
orbitals (HOMOs), the lowest unoccupied molecular orbitals
(LUMOs), and the electron localization function (ELF) calcula-
tions were implemented. The HOMO is largely occupied by the
2p orbitals of oxygen and fluorine atoms (Fig. 4c), whereas the
LUMO is dominated by K 3p states (Fig. 4d).

Additionally, the occupied p-orbitals of known [B3O6]3� and
[B3O3F4OH]2� in KBOFH were computed for a comparison of
conjugated interactions between them (Fig. 4e). It is found that
the p-electron clouds of the [B3O6]3� group are highly deloca-
lized. In the case of the [B3O3F4OH]2� group, only s-bonds were
observed for [BO2F2] tetrahedra while the planar [BO2(OH)]2� is
also delocalized. Hence, compared to [B3O6]3�, the electron
clouds exhibited by [B3O3F4OH]2� are partly decoupled by the
tetrahedral [BO2F2] group; in other words, [B3O3F4OH]2�

should be categorized as a confined p-conjugated functional
unit. In this context, KBOFH may exhibit a wider band gap, and
[B3O3F4OH]2� groups could better balance SHG, deep-UV trans-
parency, and birefringence, the three most important criteria
for deep-UV NLO materials. Furthermore, the (100) (in-plane)
and (001) (out-of-plane) slices of ELF are presented in Fig. 4f
and h. For [B3O3F4OH]2�, remarkable discrepancy of electron
cloud density between the (100) and (001) orientations is
observed, which indicates that [B3O3F4OH]2� is anisotropic
and should be responsible for the large optical anisotropy
exhibited by KBOFH.

Fig. 4 Theoretical calculations of KBOFH. (a) Electronic band structure. (b) DOS and partial DOS. (c) The HOMO map. (d) The LUMO map. (e) The
occupied p bonds in [B3O6]3� (left) and [B3O3F4OH]2� (right). (f) (100) (in-plane) projection of the ELF for KBOFH. (g) (001) (out-of-plane) projection of the
ELF for KBOFH. The atoms K, B, O, F, and H are denoted using pale grey, purple, pale blue, yellow, and white balls, respectively.
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Conclusions

In conclusion, a deep-UV NLO crystal KBOFH has been synthe-
sized via a hydrothermal method. KBOFH reveals intriguing
NLO properties including a wide band gap of 4 6.2 eV and a
phase matchable SHG efficiency of ca. 0.2 � KDP. Moreover, its
birefringence was measured using a polarizing microscope,
revealing that it possesses a relatively large birefringence, Dnexp =
0.054@550 nm, which enables a short phase-matchable limit of
235 nm. The electron localization function (ELF) shows that
[B3O3F4(OH)]2� is anisotropic and thus responsible for the large
optical anisotropy of KBOFH. The structure–property relationship
investigation based on theoretical approaches reveals that the
optical properties of KBOFH discussed in this work are mainly
determined by the [B3O3F4OH]2� group which is found to be a p-
conjugated confined group by HOMO–LUMO analysis.
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