Nanoscale Horizons

CORRECTION

View Article Online

Cite this: Nanoscale Horiz., 2024, 9, 2069

Correction: New horizons on advanced nanoscale materials for Cultural Heritage conservation

Rosangela Mastrangelo, David Chelazzi and Piero Baglioni*

Correction for 'New horizons on advanced nanoscale materials for Cultural Heritage conservation' by Rosangela Mastrangelo et al., Nanoscale Horiz., 2024, 9, 566-579, https://doi.org/10.1039/D3NH00383C.

DOI: 10.1039/d4nh90062f

rsc.li/nanoscale-horizons

The authors regret that some of the diffusion coefficients (D) listed in Table 1 in the published article have been attributed to the incorrect gel. The new Table 1 provided below replaces the originally published version and contains the correct diffusion coefficients. These errors do not affect the experimental data, results analysis and conclusions of the work.

Table 1 Cleaning performances of H-PVA - L1-L3 gels: average greyscale intensity of pixels in the cleaned areas (0: black, 255: white). Diffusion coefficients (D) of the dye Alexa Fluor in a tartrazine aqueous solution (free dye) and in TC-PNs with the increasing pore size. The apparent tortuosity, $\tau_{\rm app}^{-2}$, was calculated according to eqn (1)

Gel	Greyscale intensity in the cleaned areas	$D \left(\mu \text{m}^2 \text{ s}^{-1} \right)$	$ au_{ m app}^{-2}$
Free dye	-	278 ± 14	_
H-PVA – L1	231 ± 2	168 ± 8	1.7
H-PVA – L2	233 ± 4	128 ± 14	2.2
H-PVA – L3	240 ± 2	131 ± 8	2.1

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.