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Insights into synaptic functionality and resistive
switching in lead iodide flexible memristor
devices†
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Neuromorphic platforms are gaining popularity due to their superior

efficiency, low power consumption, and adaptable parallel signal

processing capabilities, overcoming the limitations of traditional von

Neumann architecture. We conduct an in-depth investigation into the

factors influencing the resistive switching mechanism in memristor

devices utilizing lead iodide (PbI2). We establish correlations between

device performance and morphological features, unveiling synaptic

like behaviour of device making it suitable for range of flexible

neuromorphic applications. Notably, a highly reliable unipolar switch-

ing mechanism is identified, exhibiting stability even under mechanical

strain (with a bending radius of approximately 4 mm) and in high

humidity environment (at 75% relative humidity) without the need for

encapsulation. The investigation delves into the complex interplay of

charge transport, ion migration and the active interface, elucidating

the factors contributing to the remarkable resistive switching

observed in PbI2-based memristors. The detailed findings highlight

synaptic behaviors akin to the modulation of synaptic strengths, with

an impressive potentiation and depression of 2 � 104 cycles, empha-

sizing the role of spike time-dependent plasticity (STDP). The flexible

platform demonstrates exceptional performance, achieving a simu-

lated accuracy rate of 95.06% in recognizing modified patterns from

the National Institute of Standards and Technology (MNIST) dataset

with just 30 training epochs. Ultimately, this research underscores the

potential of PbI2-based flexible memristor devices as versatile com-

ponent for neuromorphic computing. Moreover, it demonstrate the

robustness of PbI2 memristors in terms of their resistive switching

capabilities, showcasing resilience both mechanically and electrically.

This underscores their potential in replicating synaptic functions for

advanced information processing systems.

Introduction

Flexible hardware neural networks (HNNs) have captured
remarkable attention as promising candidates for advanced
smart wearable computing systems.1 These networks possess
the capacity to process large datasets simultaneously, addres-
sing the limitations of the von Neumann bottleneck.2 This
involves electrical signals processed in combination with trans-
missions between synaptic cells, facilitating swift and energy-
efficient computational processes.3 The demand for compact,
fast responsive, and remarkably high-performance microelec-
tronic components is growing. This shift in trend is a direct
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New concepts
This work demonstrates the engineering of a lead-iodide-based
memristive device through a solution-processed methodology for brain-
like computing. It emphasizes the device’s unique features, such as low
voltage operation, stability, and synaptic characteristics on flexible
platforms. The innovative solution-processed methodology, coupled
with the device’s adept performance under ambient air conditions
without supplementary encapsulation, differentiates this work within
the landscape of current research. It offers profound insights into
material design, specifically focusing on the development of energy-
efficient and flexible memristive artificial synapses. The combination of
ionic bonding and interatomic forces in lead-iodide contributes to the
cohesive, bendable, and stable nature of the device. The role of ionic
migration in the resistive switching mechanism is confirmed through
conductive-AFM, providing valuable information for nanoscience and
nanotechnology.
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response to the challenges posed by the conventional von
Neumann architecture, which separates memory and computa-
tion functions. To address this challenge, a potential solution
lies in adopting neuromorphic computing, inspired by the
human brain, and incorporating bio-inspired in-memory com-
puting techniques.4–7

Memristors have captured attention due to their potential
applications in neuromorphic computing, owing to their
impressive features such as ease of fabrication, rapid switching
speed, and minimal power consumption.8,9 Neuromimetic elec-
tronics, cognitive computing and other bioinspired approaches
are considered as future technologies, especially in the upcom-
ing era of big data and the Internet of Things (IoTs). Developing
feasible neuromorphic systems that closely resemble their bio-
logical counterparts necessitates the growth of artificial synapses
with akin characteristics. In the human brain, synapses exhibit
both volatile and non-volatile memory attributes, referred to as
short-term plasticity (STP) and long-term plasticity (LTP),
respectively.10,11 This connection between STP and LTP enables
the learning process to incorporate historical information from
sequential stimuli. In this context, the electrochemical metalliza-
tion (ECM) mechanism facilitates the formation or interruption of
nanoscale conductive filaments (CFs) within these devices, giving
rise to resistive switching behavior. Moreover, the deliberate intro-
duction of imperfectly formed CFs in devices can yield volatile
memory attributes reminiscent of the STP observed in synapses. On
the other hand, due to their stochastic and abrupt nature, control-
ling CF dynamics presents challenges. Thus, the synaptic plasticity
of memristors is primarily governed by the inherent qualities of the
active layer involved and their interfacial properties.

Lead-halide perovskites have emerged as highly promising
materials for achieving high efficiency in photovoltaic cells,12,13

light-emitting diodes, and photodetectors.14 Notably, lead
iodide (PbI2) holds the integral part of the lead-halide based
perovskites. Structurally, it follows a traditional layered pattern
where I–Pb–I repeating units are stacked along the c-axis.15

The cohesion between PbI2 interlayers is governed by weak van
der Waals forces,16 similar to the bonding in other layered
materials. Bulk PbI2 is recognized as a direct bandgap material
(2.28–2.5 eV).17 PbI2 has the potential to be used in applications
such as solar cells,18,19 detectors,20 terahertz photonic
switches,21 and other optoelectronic devices due to its distinc-
tive optical and semiconducting characteristics. The presence
of free iodine ions in this structure enables PbI2 as one of the
promising candidates for memristive applications where ionic
properties are the prime requisite. To achieve flexible neural
networks, which are suited for smart wearable systems, the
development of a memristor with bio-realistic synaptic plasti-
city are required. Wlazlak et al. conducted a comparative
analysis of memristive devices based on lead halides (PbI2,
PbBr2, PbCl2) with limited neurmouphic investigation.22 While
this study extensively explored the memristive properties on
rigid platforms, the exact origin of the resistive switching
mechanism was unclear and its potential for other applications
such as random access memories and neuromorphic computa-
tion on flexible platforms was severely lacking.

In this work, we present a comprehensive investigation of a
flexible memristor device with PbI2 as an active layer demon-
strating consistent memristive and multilevel analog resistive
switching material with strong environmental and mechanical
stability. Also, the role of ion-migration and interfacial
chemical/physical interaction as the source of resistive switch-
ing are investigated and correlated. Further, primary measure-
ments on the learning and forgetting nature of the device, like
paired pulse facilitation (PPF), potentiation and depression
(P&D), and spike time-dependent plasticity (STDP) show evi-
dence of capabilities for neuromorphic computation. Remark-
ably, the flexible platform demonstrates 95.06% simulated
accuracy in recognizing modified National Institute of Stan-
dards and Technology (MNIST) patterns. All the findings point
to the adaptable potential of PbI2 for use in advanced electronic
applications.

Results and discussion
Structural characterizations

PbI2 thin films on ITO/PET susbtrate were prepared using the
conventional spin coating of PbI2 solution prepared in DMF
(N, N-Dimethylformamide) solvent (refer to the experimental
section for more details). The X-ray diffraction (XRD) data illu-
strated in Fig. 1a, obtained from the thin-film sample, indicates
the presence of a hexagonal phase polycrystalline structure within
the PbI2 thin film.23 The detected diffraction peaks are (001),
(003), and (202) at 12.71, 38.71 and 52.51, respectively in thin film
prepared using 100 mg ml�1 solution24–26 (Fig. 1a) with predomi-
nant (001) growth direction consistent with the PbI2 standard
XRD data.27–29 The intensity of (001) peak increases with the
concentration of PbI2 and shows the highest intensity for the film
prepared with 500 mg ml�1 solution concentration. The enlarged
view of the peak is shown in Fig. S1 (ESI†).

As the concentration of PbI2 increases, the (b) value of full-
width half-maximum (FWHM) gradually decreases and crystal-
lite size (D) increases respectively, as shown in the inset of
Fig. 1b.30 The average crystallite size of PbI2 crystals of three
different solution concentrations thin films was obtained using
the Debye Scherrer equation.

D ¼ Kl
ðb cos yÞ

where, constant K = 0.94l (1.54 Å) is the wavelength of X-ray, b
is the value of FWHM in radian and y is the Bragg’s angle of
diffraction peak (001). Here, the PbI2 crystallite size increases
with the concentration, as an estimated minimum size of
B16 nm for 100 mg ml�1 and a maximum size B26 nm for
500 mg ml�1 solution concentration as shown in Fig. 1b. The
morphology of PbI2 thin films was controlled by varying
the PbI2 concentration in DMF. The cross-sectional scanning
electron microscopy (SEM) view of the PbI2 thin films coated on
ITO/glass substrate is shown in Fig. S2 (ESI†), estimating the
average thickness as B80 � 5 nm, B100 � 5 nm, and B190 �
10 nm for PbI2 film prepared with the solution concentrations
100, 200 and 500 mg ml�1, respectively. The UV-visible
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spectroscopy was performed for all three films demonstrating
the increase of absorbance with the increase of PbI2

concentration (Fig. 1c). The spectrum’s significant absorption
edge (516 nm) is attributed to PbI2 inherent bandgap

Fig. 1 (a) Series of XRD pattern of 100, 200 and 500 mg ml�1 solution concentration. (b) Crystallite size extracted from XRD data, and inset represents
the FWHM graph of dominant (001) crystal growth plane. (c) UV-Vis spectra of all three PbI2 thin films. (d),–(f) AFM images of thin films prepared with 100,
200, and 500 mg ml�1 solution concentration, respectively.

Fig. 2 (a) Schematic diagram of device configuration. I–V characteristics of the device with solution concentration 100 mg ml�1, (b) demonstrating
gradual SET and RESET process on both the polarities, (c) replotted with respect to resistance on log scale (i.e., log (V)–log (R)), (d) with varying current
compliance, (e) I–V on flat and different bending radii (r = 15, 11, 8, and 4 mm) and then again on flat condition. (f) Cumulative probability of SET/RESET
voltage of 100 consecutive I–V cycles of 100 mg ml�1 device on flat and maximum bending condition (4 mm).
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absorption. The bandgap energy for a single semiconductor can
be determined using the formula below.

(ahv)n = A(hv � Eg)

where hn, a, A, and Eg are photon energy, absorption index,
constant value, and bandgap energy respectively. Here, the direct
band gap of PbI2 is also confirmed by the numerical value n = 2.
The optical band gap is estimated as 2.4 eV by plotting the
incident photon energy (hv) versus the direct and indirect
allowed transitions by using Tauc–Menth plot as shown in Fig.
S4 (ESI†), consistent with the literature.31 Fig. 1d–f show the
surface morphology of all PbI2 films measured using atomic
force microscopy (AFM). Film morphology seems uniform
without any observable pinholes with root mean square (RMS)
roughness of B13 nm, 12 nm, and B8 nm measured across
1.5 � 1.5 mm2 scan area on the films prepared with 100, 200 and
500 mg ml�1 PbI2 solution concentration. The average grain size
was estimated to be B160 nm, B250 nm, and B700 nm for
these films, respectively. The similar grain size pattern was also
confirmed by SEM surface images as shown in Fig. S3 (ESI†).

Electrical performance

Fig. 2a shows the memristor device configuration used in this
work, PET/ITO/PEDOT:PSS/PbI2/Ag (complete details of the fab-
rication procedure are discussed in the experimental section).
ITO (indium tin oxide) is the bottom electrode (BE) as a non-
hysteretic inert electrode, and silver (Ag) is used as the top
electrode (TE) with a B1.0 mm2 device area. The current–voltage
(I–V) characteristics of the devices were measured by applying
DC cyclic voltage sweep of 1 volt. I–V characteristics were probed
by applying external bias to the TE and BE was grounded
throughout the electrical measurements. All measurements were
performed in ambient environment conditions.

Fig. 2b illustrates the analog hysteresis observed in the as-
prepared device when subjected to a DC voltage sweep (0 V -

1 - 0 - �1 - 0 V), at the voltage scan speed of 400 mV s�1.32

The device shows analog and unipolar switching characteristics
with a low threshold (SET) voltage of 0.3 V and RESET voltage of
0.08 V shown in Fig. S6 (ESI†). The power consumption of the
device is estimated to be 10 micro joules (mJ) which is attributed
to its low SET/RESET voltage as 0.3/0.08 V, respectively.

In particular, analog memristor exhibits artificial synapses
characteristics for neuromorphic computing which are inspired
by the human brain.33 The device with the smallest grain size
and more grain boundaries (i.e., 100 mg ml�1) demonstrate
consistent and higher hysteresis loop area compared to the
other two devices (Fig. S5, ESI†). No significant current level
difference was observed for devices prepared with solution
concentrations 100 and 200 mg ml�1 but the current value
dropped by B1 order for 500 mg ml�1 solution concentration,
attributed to the higher series resistance in later devices as a
result of high thickness.34 Here, grain boundaries are the
percolation pathways for the migration of vacancies/ions to
control the resistance states (HRS and LRS) and their transition
and thereby result in resistive switching.35–37 As the device is
unipolar, the switching of resistance state from HRS to LRS and

later switching back from LRS to HRS is termed as SET and
RESET process respectively, both process occurs at the same
voltage polarity. Unlike, various other memristor devices
usually require positive voltage to SET the device and negative
voltage to RESET the device or vice-versa, unipolar device does
not require two different voltage polarity to undergo SET and
RESET processes.38–40 Based on the I–V characteristics, devices
prepared using 100 mg ml�1 PbI2 solution is used for the
further investigation.

Due to unipolar behaviour of the device, identical nature of
I–V characteristics can be observed on the opposite side (i.e.,
negative) polarity voltage. The analog behavior of the device is
due to the absence of hopping mechanism. To confirm the
gradual SET and RESET process and to validate the analog
switching of device, the resistance obtained from I–V character-
istics of the device at positive (Fig. 2c) and negative (Fig. S7, ESI†)
polarity voltage are plotted on logarithmic scale. Under the
positive voltage scan, weak and thin conducting filaments are
formed via metal ions as well as ions and vacancies from the
PbI2 layer. The formation and rupture of these filaments are
referred to as the SET and RESET processes. It is important to
recognize that the RESET process fails to fully restore the initial
resistance values owing to some remnant weak filaments. The
non-linear I–V characteristics observed in Fig. 2b and c is a result
of the incomplete RESET process. Furthermore, the optimum
voltage, scan speed, and current compliance (CC) for these
devices are shown in Fig. S8–S10 (ESI†). Multilevel switching
characteristics (Fig. 2d) was confirmed by varying CC as 10�3 A,
10�4 A, and 10�5 A. The HRS state remains the same but the LRS
state increases with the decrease in CC which indicates the
LRS state can be controlled by varying the CC during the SET
process41 (Fig. 2d). Further, the continuous drop of the LRS from
data retention characteristics confirms the volatile nature of PbI2

based memristor devices. (Fig. S11, ESI†)
To explore the potential of this device for flexible applica-

tions, I–V characteristics were measured at different bending
radii of 15 mm, 11 mm, 8 mm, 4 mm and back to flat condition
as shown in Fig. 2e. The flexible memristor device based on PbI2

demonstrates remarkable mechanical stability, a crucial trait for
its effective utilization in flexible applications. The switching
behavior in I–V remains invariant up to 8 mm bending radius.
Further bending of the substrate at 4 mm radius leads to a
significant drop in one-order current level and hysteresis. How-
ever, the consequent I–V scan on flat condition (after bending
condition) shows the attempt to reinstate of switching pattern.
The stability of a structure under external stress is important
for a flexible memristor. The excellent stability of the device
structure can be assigned to the stability of PbI2. From the
literature, it can be confirmed that PbI2 has an elastic constant
(14.69 N m�1) enabling mechanically stable under distortion,
smaller possion’s ratio leads to material stability under sheer
force and sheer modulus (g0/G2D) 4 1.75 which states the
material is ductile.42 To investigate the reproducibility of device
under mechanical stress, 100 consecutive I–V characteristics
were measured at 4 mm bending conditions (Fig. S12a, ESI†).
Also, to check the mechanical stability of device under flat and
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bending conditions, the operational switching parameters of
the device (i.e., SET and RESET voltage) were plotted using
cumulative probability with invariant performance (Fig. 2f).
The remarkable mechanical stability of PbI2 can be attributed
to the combination of ionic bonding, where oppositely charged
ions attract and hold the structure together, along with weak van
der Waals forces that operate between I–Pb–I layered arrange-
ments. These interatomic forces contribute to the cohesive and
stable nature of the material.42

Switching mechanism. The switching mechanism in PbI2-
based memristive device is a result of the combination of two
processes: (i) redistribution of ions (halide and metal) within
the active layer and (ii) reversible chemical interactions and the
modulation of energy barrier at PbI2/TE interface to facilitate
efficient charge transfer. Both of these processes contribute
equally to the switching phenomenon.43 Reactive metals such
as Ag or Cu initially undergo solid-state oxidation under
external voltage bias, resulting Ag+ or Cu+/Cu2+ ions followed
by migration into the active layer and formation of conductive
filaments via SET process. Concurrently, I�/Pb+ ions and
vacancies also migrate within PbI2 active layer to form the thin
conducting channels along with the chemical/physical inter-
action at PbI2/TE interface, switching to LRS. The confirmation
of the dominant role played by I� ions in the switching
mechanism, attributed to their lower activation energy com-
pared to Pb+ ions, is established through the implementation of
scanning Kelvin probe microscopy (SKPM) and conductive
atomic force microscopy (c-AFM) on bare PbI2 films. A complete
discussion can be found in ESI† (Fig. S13). Our results clearly

show that the redistribution of I� ions along with metal ions
within the active layer, form conducting channels under exter-
nal bias and contributes to the RS. During the RESET process,
reverse ion migration in bulk, Joule heating, and redox reaction
at the interface modulate the energy barrier and turn the device
into HRS.44 To further confirm the role of chemical interactions
at the interface, the TE was varied from Ag to copper (Cu), gold
(Au) and graphite. As observed from Fig. 3a, devices with Ag
electrodes show a consistent I–V hysteresis, while devices
prepared with Cu as top electrodes show poor I–V hysteresis
comparatively with higher inconsistency (Fig. S14a, ESI†). The
other two electrodes including graphite as partially inert and Au
as highly inert electrode show linear I–V characteristics with the
absence of hysteresis and confirm the activity of the TE for RS
behaviour.22

The proposed conduction mechanism behind the switching
behavior of PbI2 memristor device is investigated by replotting
the I–V curve using log scale i.e., log (V) vs. log (I) of positive
polarity region shown in Fig. 3b. The conduction mechanism is
divided and fitted into various regions: Charge injection region,
trap-assisted tunnelling region (TAT), Space charge limited
current region (SCLC), and Schottky emission (SE). Initially,
the charge injection region as Ohmic region (I a V) is observed
in 0–0.32 V voltage region with 1.1 slope value (Fig. 3c and Fig.
S14b, ESI†), referring to the injection/migration of charge metal
ions/carriers from TE into the active layer to initiate the
filament formation process.45–47 On further increase of voltage
(0.32–0.38 V), TAT mechanism (ln (I) a 1/V) is observed (Fig. 3d),
entails two-stage process, where carriers are first captured by

Fig. 3 Switching mechanism: (a) I–V characteristics by varying top electrode initiating with highly active Silver (Ag) electrode, less active copper (Cu)
electrode, partially inert graphite electrode and highly inert electrode gold (Au). Log (V)–log (R) graph of I–V characteristics. (b) Log (I)–log (V) graph with
conduction mechanisms. For gradual SET process via: (c) charge injection region (0–0.32 V). (d) Trap Assisted Tunneling region (TAT) (0.32–0.37 V).
(e) Space charge limited current (SCLC) region (0.38–1 V). For gradual RESET process: (f) Schottky emission region (1–0.08 V).
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defects or vacancies and subsequently tunnel through a barrier
to reach another trap.48–50 The gradual rise in current signifies
the formation of vacancies that establish the conduction path.
Furthermore, as the traps within the material are occupied, the
space-charge-limited current (SCLC, I a V2) mechanism (Fig. 3e)
dominates in the voltage range (0.38–1.0 V). As the voltage
is applied in reverse direction (1–0.08 V) the the Schottky
Emission (SE) mechanism (ln (I) and V1/2) comes into play.
The SE mechanism aids in facilitating the escape of trapped
charges, further resetting the device (Fig. 3g). Finally, as the
voltage decreases to a low bias range of 0.08 V to 0 V, the device
returns to HRS, forming Ohmic conduction characterized by a
linear relationship between current and voltage (I a V), as
depicted in Fig. S15 (ESI†). Since the device is unipolar, the
RESET process also occurs gradually in the same polarity.

Synaptic measurements

Memristors are commonly investigated with respect to their
emulation of certain functions of biological neurons, particularly
in the context of artificial synapses.51 Fig. 4a shows the schematic
diagram indicating the structural relationship between neural
synapse and artificial synapse. An artificial synapse can be con-
ceptualized as a two-terminal device capable of dynamically
adjusting and retaining its synaptic weights through the utiliza-
tion of voltage spikes.52 Fig. 4(a) clearly illustrates the TE (Ag) and
BE (ITO) electrodes as the input and output for pre-synaptic and
post-synaptic voltage spikes respectively, while the conductance of
the active layer represents the synaptic cleft. In a biological
synapse, when a stimulus reaches the pre-synaptic neuron, the
influx of calcium ions (Ca2+) prompts the release of neurotrans-
mitters into the synaptic cleft, which then affects the post-synaptic
neuron.53 Similarly in an artificial synapse, under the influence of
an electric field, these ions inoculates into the active layer and
changes the conductance of device.54 Due to the strong mechan-
ical and electrical stability, the devices fabricated with the solution

concentration 100 mg ml�1 were later used for synaptic
characterizations.

The paired-pulse facilitation (PPF) characteristic, a type of
short-term synaptic plasticity, describes the dynamic intensifi-
cation of neurotransmitters in biological brain synapses,
involved in a variety of neural functions like simple learning
and memorizing information.55 PPF can be simplified as the
degree of facilitation between the first and second pre-synaptic
voltage spikes.56 When the identical pulses of bias 0.5 V were
applied to TE as input voltage spike the corresponding current
response is noted as output which increases with every con-
secutive applied pulse of voltage with time interval 0.1 ms
(Fig. 4b). With increasing duration of time interval,55 PPF was
recorded following a similar procedure as described previously
where the current magnitude decreases with the increase of the
time interval between two consecutive pulses. Fig. 4c illustrates
the current response recorded when applying identical pairs of
pre-synaptic voltage pulses at varying time intervals. As the time
interval between two consecutive pulses of voltage is too short,
mobile ions gathered at the interface will not have enough time
to diffuse back before the arrival of second pulse of voltage.
Hence, the second spike has more potential than the first spike.
This increase in current was calculated by PPF index using

equation ðA2 � A1

A1
Þ � 100% (A1 and A2 are the current ampli-

tude at successive volatge pulses) for both flat and bending
condition (r = 4 mm). The decay of PPF index with time interval
was fitted using double exponential decay function.57

PPF Index ¼ C1 � exp �
Dt
t1

� �
þ C2 � exp �

Dt
t2

� �
where, C1 and

C2 represent the initial magnitudes and t1 and t2 are the
characteristic relaxation time of the rapid and slow decay
respectively.58 The extracted relaxation time constant values
are t1 = 0.94 ms and t2 = 35 ms for flat condition while t1 =
0.51 ms and t2 = 24 ms for bending condition corresponding to

Fig. 4 (a) Illustration of the biological and artificial synapse (b) current response induced by a pair of pre-synaptic pulses, (c) variation in current during
pre-synaptic pulses for different time intervals. PPF index for (e) flat condition and (f) bending condition (r = 4 mm).
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fast and slow decay terms as observed in Fig. 4d and 4e
respectively. The extracted values closely resemble the time
constants observed in biological synapses, where t1 is typically
in the range of tens of milliseconds (rapid phase) and t2 is in
the range of hundreds of milliseconds (slow phase).59–61 PPF
index increases for short time intervals while decreases for long
time intervals imitating biological synaptic response.

The learning and forgetting behavior of artificial synapse
can also be represented by potentiation and depression
(P&D).62 This behavior can be attributed to the formation and
rupture of filament formed due to metal or halide ions. Gen-
erally, P&D pattern depends on the pulse amplitude and time
interval. The first pattern of P&D was obtained with identical
pulses of 1.0 V and 0.35 V respectively (Fig. 5a) with read voltage
of 0.25 V. Due to device’s unipolar nature, it potentiates and
depresses in the same polarity. Fig. 5b shows the multiple
cycles of P&D taken using an identical pulse method. As
observed the P&D is non-linear which is not a good character-
istic for an artificial synaptic device for its application in neural
networks, which should be linear ideally. Ensuring a gradual
and incremental increase in conductance while maintaining
linearity is fundamental for the proper functioning of artificial
neural networks (ANNs).63 To reduce the non-linearity nature,
non-identical pulses method in step increasing mode from
0.05–1 V was recorded (Fig. 5c) which enable it to implement
for neural networking applications.64 The operational stability
was confirmed by measuring P&D up to 2 � 104 cycles as shown
in Fig. 5d with 1st and 20Kth cycle on flat condition (Fig. S16,
ESI†). To validate the flexibility of device same data was
collected on bending condition (r = 4 mm) as shown in

Fig. 5e. The higher level of current on bending condition
compared to flat condition is attributed to the easier formation
and rupture of the filament. As the device is bended, it is
hypothesized the distance between the active layer and TE
reduces providing a quick path for conduction and increasing
the current level of the device. The non-linearity (NL)
factor of P&D with identical pulses (35% and 33%) and non-
identical pulses (1.58% and 1.49%) in flat and bending
condition (Fig. 5f) is calculated using equation

NL ¼

Gmax � Gminð Þ
2

þ Gmin

� �
� Gs

Gmax�Gminð Þ
2

þ G2

� 100%. Here, the Gmax,

Gmin are maximum conductance, minimum conductance used
to switch the device between maximum and minimum con-
ductance states, respectively.65 It is noteworthy that, both
linearity and symmetry of P&D are important factors for neu-
romorphic computing. The symmetry of the device is estimated
from the above calculated non-linearity values of P&D. The non-
linearity of device with identical pulses is ap = 0.35 for potentia-
tion and ad = 0.33 for depression, while the same device with
non-identical pulses shows ap = 0.0158 for potentiation and ad =
0.0149 for depression. Hence, the asymmetry value for identical
pulses is 0.2 while with non-identical pulses is 0.0009. These
values are directly extracted from experimental results.66

In a biological synapse, synaptic plasticity is a phenomenon
that encompasses variations in synaptic strength and synaptic
connectivity and is believed to serve as the primary mechanism
for memory formation and learning processes in a human
brain.67 In an artificial synapse, synaptic plasticity refers to

Fig. 5 (a) Single P&D cycle by giving identical pulses of 1 V with constant read voltage of 0.25 V. (b) Multiple cycles of P&D via identical pulses pattern.
(c) and (d) are P&D obtained by non-identical pulse method in flat condition. (e) P&D cycles in bending condition obtained by non-identical pulse
method. (f) Non-linearity factor calculated for P&D obtained by identical pulse and non-identical pulse method.
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the change in conductance (synaptic weight) which results in
primary synaptic characteristics such as P&D and PPF etc. An
advanced form of learning by Hebbian learning is termed as
STDP, where the chronological order and time interval between
the pre-and postsynaptic spikes affect the change and direction
of the synaptic weight.68,69 STDP functions by modifying the
synaptic weight based on the relative timing of spikes between
the pre-synaptic and post-synaptic neurons. This timing is
represented by Dt (Dt = tpre � tpost), where tpre indicates the
arrival time of the pre-synaptic neuron spike, and tpost repre-
sents the arrival time of the post-synaptic neuron spike.70 When
presynaptic stimulation precedes postsynaptic activity (Dt 4 0),
it leads to an enhancement in synaptic efficiency, ultimately
resulting in long-term potentiation (LTP). Conversely, when
postsynaptic stimulation precedes presynaptic activity (Dt o 0),
it diminishes efficiency, leading to long-term depression (LTD).69

The elapsed period between the pre- and post-synaptic pulses
controls the magnitude of the subsequent alterations in synaptic
weight. Synaptic plasticity in memristors is achieved by gradually
switching between the HRS and LRS in response to trains
of pulses with changing pulse widths. Four STDP patterns
(asymmetric Hebbian STDP, asymmetric anti-Hebbian STDP,
symmetric Hebbian STDP, and symmetric anti- Hebbian STDP)
were collected simultaneously on both flat as well as bending
condition of radius r = 4 mm (Fig. 6a–d). Regarding these, the
weight updates can be represented by the following equations:
Dws = A exp(�Dt/t) + Dw0 denotes asymmetric STDP while Dwa =
A exp(�Dt2/t2) + Dw0 denotes symmetric STDP, Dw0 is the con-
stant signifying a non-associative component of the synaptic
change, A is the scaling factor and t is the time constant.

The experimental data was analyzed by fitting it with two
different mathematical functions: the exponential function,
and the Gaussian function. The pre and post synaptic pulse
mode adopted to get the STDP patterns are shown in Fig. S17
(ESI†). The fastest biological synaptic transmission typically
occurs within a time frame B1 ms. This refers to the speed at
which signals are transmitted across synapses in the nervous
system. Herein, PbI2 based flexible memristor device demon-
strates similar communication time (B3 ms) of human brain
and shows the potential for the neuromorphic computing
application.71,72

To scale the efficacy of PbI2-based memristors as an artificial
synapse, a multilayer perceptron simulation was conducted
within a four-layer neural network as illustrated in Fig. 7a.73

More details of the simulation can be found in the
literature.74,75 Here four-layer neural network comprises an
input layer with 784 neurons, two hidden layers with 250 and
125 neurons respectively, and an output layer with 10
neurons.76 The input layer here offers the MNIST handwritten
images data set ranging from (0 to 9) with dimensions 28 � 28
pixels and the hidden layer uses the simplified input feature
based on the synaptic weight matrix. Every layer of neurons was
intricately linked by synapses, and the synaptic weight was
updated through fee-forward and back-propagation processes.77

During each epoch, 50 000 MNIST training data set images and
10 000 MNIST test set images were employed for training and
testing respectively. For mapping of the weights, the measured
lowest and highest conductance states are ‘0’ and ‘1’, respectively.
The states between ‘0’ and ‘1’ have intermediate weights and
the nonlinearity is considered during weights mapping. The

Fig. 6 Spike time-dependent plasticity (STDP) characterization of PbI2 based memristor device in flat and bending condition respectively (a) and (e)
Asymmetric Hebbian, (b) and (f) Asymmetric anti-Hebbian, (c) and (g) Symmetric Hebbian (d) and (h) Symmetric anti-Hebbian.
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difference between adjacent conductance states is used to deter-
mine the linearity of the mapped synaptic plasticity. Furthermore,
different conductance states were achieved by applying pulses.
Synaptic weights in the training process were selected from P&D
curves (200 conductance states) based on parameters such as less
non-linearity(B1%), dynamic range, and precision extracted from
(Fig. 5c and f). After 30 epochs of training, the PbI2 device
exhibited a commendable recognition accuracy of 95.04% for flat
condition and 95.06% for bending condition of 4 mm, as shown
in Fig. 7b. Table S1 (ESI†) contains a comparison chart in the
literature depicting accuracy in relation to the number of training
epochs. A parallel simulation was executed utilizing an ideal
synaptic device characterized by perfect linearity (AP = AD = 0),
endless dynamic range, and an unlimited range of conductance
states. This idealized set-up achieved a higher accuracy of 97.07%.
In contrast, the performance of PbI2 is very close and promising,
placing it as a forthcoming nominee for artificial synapses in
neuromorphic computing for flexible applications.

Conclusions

In this work, we developed a remarkably stable and flexible low-
voltage operating memristor device by a complete solution
process, focusing the applications in data storage and neuro-
morphic computation. These findings explore the impact of
solution concentration on thin film thickness, morphology,
and the underlying mechanism behind resistive switching
and also, aim to develop novel flexible artificial neural synapses
that can replicate the crucial functions exhibited by biological
synapses in the brain. Moreover, this research delves into the
significance of ion migration and the formation/rupture of
conductive filaments in resistive switching-based artificial
neural synapses. It also uncovers the benefits associated with
these phenomena. Additionally, an environmentally robust
device has been fabricated and assessed under ambient air
conditions (with 75% relative humidity), without the need for

any encapsulation. These devices demonstrate unipolar analog
resistive switching with strong mechanical stability when
bended up to 4 mm radius. Major synaptic characterizations
on both flat as well as bending condition are reported such as
PPF, PPF index, P&D, and STDP. Also, MNIST pattern recogni-
tion accuracy was simulated as 95.04% and 95.06% on flat as
well as bending conditions, respectively. In conclusion, our
investigation demonstrates the reliable resistive switching
behavior, coupled with commendable synaptic properties, in
mechanically and environmentally stable lead iodide-based
flexible memristive devices. These findings highlight the sub-
stantial potential of these device for applications in neuro-
morphic computation and information processing.

Experimental methods
Materials

Lead(II) Iodide (PbI2, 99.999%, metal basis), PEDOT : PSS
(1.3 wt% dispersion in H2O, conductive grade), DMF (anhy-
drous, 99.8%) were purchased from Sigma Aldrich and used as
received. Precursor solutions of different concentrations (0.2 M,
0.4 M, and 1 M) were prepared by dissolving PbI2 in DMF. The
solutions were continuously heated and stirred at 100 1C until
clear solution was obtained.

Device fabrication procedure

Commercially available indium tin oxide (ITO) coated Polyethy-
lene Teraphalate (PET) flexible substrate sheets were cleaned
following standard cleaning procedure i.e., Substrates were
ultrasonicated for 15 minutes each with soap solution followed
by deionized water (DI water) and then mixture of acetone and
isopropanol (IPA). By using UV-Ozonization the hydrophobic
property of surface was changed to hydrophilic. The devices
were fabricated layer by layer spin coating procedure. Initially,
PEDOT: PSS was deposited on cleaned substrates by spin coating
process at 4000 rpm for 1 minute followed by annealing for

Fig. 7 (a) Schematic of the four-layer neural network for the pattern recognition simulation. Each node symbolizes the neuron, and each connection
symbolizes the synapse. (b) Pattern recognition accuracies based on the ideal and the PbI2 synaptic device on flat and bending condition (r = 4 mm).
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15 minutes at 100 1C. Similarly, PbI2 layer was deposited at 3000
rpm for 1 minute followed by annealing for 20 minutes at 60 1C.
Top electrode (Ag) of diameter B1 mm was deposited.

Thin film and device characterizations

AFM was conducted for investigate the morphology of the PbI2

films. Surface topography and film thickness by cross section
SEM by the ZEISS Ultra 55. UV-Visible spectroscopy was con-
ducted to investigate the optical properties from SHIMADZU
UV-1900i. Current–voltage sweep, and voltage pulse measure-
ments were performed using the source measurement unit
(SMU) Keithley 2604B in ambient conditions. An electrical
module ArcONE was employed for STDP measurements.
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