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Adapted MLP-Mixer network based on crossbar
arrays of fast and multilevel switching (Co–Fe–
B)x(LiNbO3)100�x nanocomposite memristors†

Aleksandr I. Iliasov, ‡ab Anna N. Matsukatova, ‡ab Andrey V. Emelyanov, ‡*ac

Pavel S. Slepov,d Kristina E. Nikiruy§a and Vladimir V. Rylkov ae

MLP-Mixer based on multilayer perceptrons (MLPs) is a novel

architecture of a neuromorphic computing system (NCS) intro-

duced for image classification tasks without convolutional layers.

Its software realization demonstrates high classification accuracy,

although the number of trainable weights is relatively low. One

more promising way of improving the NCS performance, especially

in terms of power consumption, is its hardware realization

using memristors. Therefore, in this work, we proposed an NCS

with an adapted MLP-Mixer architecture and memristive weights.

For this purpose, we used a passive crossbar array of (Co–Fe–B)x

(LiNbO3)100�x memristors. Firstly, we studied the characteristics of

such memristors, including their minimal resistive switching time,

which was extrapolated to be in the picosecond range. Secondly,

we created a fully hardware NCS with memristive weights that are

capable of classification of simple 4-bit vectors. The system was

shown to be robust to noise introduction in the input patterns.

Finally, we used experimental memristive characteristics to simu-

late an adapted MLP-Mixer architecture that demonstrated a clas-

sification accuracy of (94.7 � 0.3)% on the Modified National

Institute of Standards and Technology (MNIST) dataset. The

obtained results are the first steps toward the realization of mem-

ristive NCS with a promising MLP-Mixer architecture.

Introduction

Brain-inspired neuromorphic computing systems (NCSs) based
on neural networks generally have high interconnectivity
through synapses, allowing for massively parallel computation
and high defect tolerance. They are not confined by time and
energy demanding data transfer between storage and comput-
ing blocks, which is required for conventional von Neumann
systems. These features allow NCSs to efficiently solve cognitive
tasks (pattern and speech recognition, big data processing,
prediction, etc.).1–4 The last few years have been dedicated
to a persistent search for new solutions and architectures
for software NCSs, resulting in numerous contributions to the
ongoing accuracy race of such systems. The breakthrough
8-layer AlexNet demonstrated the superiority of the convolu-
tional architecture over fully connected architectures in the
ImageNet challenge.5 This led to the explosive development
and progressive deepening of convolutional architectures, e.g.,
the ResNet had up to 152 layers and tens of millions of
trainable parameters.6 Nowadays, researchers strive to create
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New concepts
Most existing studies on memristors incorporate them in some typical
software network architectures, observing the importance of the memris-
tive structure and characteristics but not that of the network architecture
itself. In this work, we highlight the importance of adaptation of software
architectures for their subsequent hardware memristive implementation.
For this purpose, we use a crossbar array of promising (Co–Fe–
B)x(LiNbO3)100�x nanocomposite memristors, which demonstrate some
superior characteristics. The eligibility of these memristors for neuro-
morphic applications is confirmed via hardware perceptron implementa-
tion. The presented adapted MLP-Mixer architecture model with
incorporated memristive characteristics demonstrates higher
classification accuracy on the MNIST dataset and, more importantly,
higher robustness to memristive variations and stuck devices in
comparison with standard fully connected networks. The obtained
results could motivate the development of many more adapted network
architectures, paving the way for the realization of efficient and reliable
neuromorphic systems based on partially unreliable analog elements.
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architectures with reduced dimensions and preserved accura-
cies, e.g., MobileNet V.2 had about 4 million parameters,7 ENet
had about 0.4 million parameters.8 The reduction of the
architecture dimensions is favorable for the software imple-
mentation of NCSs because large architectures are slow during
inference, and the training process of such systems may be
complicated.

The reduction of the architecture complexity becomes
even more crucial for the hardware implementation of NCSs
based on memristors. Memristors, devices capable of reversible
dynamical resistive switching,9,10 may be based on various
materials (e.g., inorganic, organic, nanocomposite, ferroelec-
tric, two-dimensional)11–14 and may emulate synapses15 or
neurons16,17 in NCSs. Memristors have been used for NCS
realizations, and schemes such as multilayer perceptrons
(MLPs),18–20 convolutional,21 long short-term memory22 and
others,23,24 including macro25 and neuromorphic vision26 net-
works, have been successfully demonstrated. Memristors can
be organized in passive or active (1T1M) crossbar arrays (with
half-pitch size down to 6 nm27) to perform multiply–accumu-
late operations in a simple one-step way by the electrical
current summation, weighted by the conductance state (accord-
ing to the Kirchhoff’s and Ohm’s laws).28 Memristor-based
formal NCSs are extremely sensitive to undesirable parameter
variations inherent in memristive devices (e.g., variation of only
5% can destroy the convergence).29 Therefore, some extreme
reductions of the NCS architecture dimensions have been used
in this case, e.g., reservoir computing,30 sparse coding,31 or
most valuable parameter selection32 schemes. However, these
solutions usually lead to a considerable accuracy decrease.33

Another way to mitigate the problem of memristive variations is
to realize spiking NCSs with bio-inspired algorithms.34–38

Although there is certain progress in the training of spiking
NCSs, such as deep learning-inspired approaches,39 surrogate
gradient learning40 and Python packages for spiking NCSs
modelling like SpikingJelly41 and SNNTorch,39 efficient train-
ing algorithms for spiking NCSs are still underdeveloped,
which complicates the transfer of memristor-based spiking
NCSs from the current device level to a large system level.42

Consequently, the search for new efficient memristor-based
NCS architectures and training algorithms is of high interest.

Recently, Google Research introduced MLP-Mixer, a novel
architecture with no convolutional layers and high classifica-
tion accuracy.43 The MLP-Mixer architecture is especially sui-
table for the classification of large images. The image is split
into several patches, and then two types of fully connected
layers are applied: to each image patch independently (channel-
mixing) and across patches (token-mixing).43 This research led
to a large-scale ongoing discussion about the cause of MLP-
Mixer’s success and effective reduction of the parameter num-
ber, e.g., MLP-Mixer uses the same channel-mixing (token-
mixing) MLP for each image patch (across patches), preventing
architecture growth. Nevertheless, this architecture still has
numerous parameters for a hardware NCS. In this regard, it
is particularly interesting to determine whether its strengths
may be transferred to a similar architecture with a lower

dimensionality for the implementation of a memristor-based
NCS with high classification accuracy.

Hence, several points are addressed in the scope of this
paper. First of all, we provide a thorough study of passive
crossbar arrays of (Co–Fe–B)x(LiNbO3)100�x nanocomposite
(CFB-LNO NC) memristors, including a study of the resistive
switching (RS) time of such memristors. LiNbO3-based mem-
ristors have recently become of high interest,44–46 particularly
CFB-LNO NC ones.47 CFB-LNO NC memristors operate through
a multifilamentary RS mechanism,48 demonstrate high endur-
ance and long retention, and possess multilevel RS (or very high
level of plasticity).49 Secondly, we demonstrate the possibility of
perceptron NCS hardware realization with crossbar arrays.
Finally, we simulate a formal NCS, which is based on the
measured memristive characteristics and possesses the
strength of the MLP-Mixer. We emphasize that this is one of
the first important steps toward the development of the mem-
ristive MLP-Mixer.

Results and discussion

Since the fundamental principles of NCSs are bioinspired,
numerous analogies at different scales can be drawn between
them and biological neural networks (Fig. 1). Looking at the
general picture (Fig. 1a), the latter consist of neurons connected
via synapses, and the strength of each connection is deter-
mined by the weight, adjustable in the learning process, of the
corresponding synapse. Similarly, the conductivity of memris-
tors in the crossbar array can be modified to obtain the
required weights of connections between the neurons of NCS.
Thus, the crossbar array of memristors is an analog of a net of
synapses (Fig. 1a). An optical image of the 16 � 16 memristor
crossbar under study is shown in Fig. 1a. The wide dark stripe
represents the active memristive material, CFB-LNO NC, and
the gold pads are contacts for Au row (horizontal, top) and
column (vertical, bottom) electrode buses, made with an addi-
tional Ti layer for better adhesion to the wafer.

Diving deeper into the details, a single synaptic connection
is equivalent to a single memristor at the intersection of the
horizontal and vertical electrode buses of the crossbar (Fig. 1b).
As a synapse connects an axon of a presynaptic neuron and a
dendrite of a postsynaptic one, a single memristor transfers an
electric signal from one electrode bus to another, i.e., between
artificial neurons connected to these buses. The image of the
intersection of the two buses obtained by scanning electron
microscopy (SEM) is presented in Fig. 1b. The widths of
the electrode buses are 20 mm for both rows and columns. All
256 (16 � 16) of such intersections are separate memristors of
the array with the corresponding row bus and column one.

Finally, zooming into the physics and biochemistry of a
synapse, the mechanism of synaptic transmission – release of
neurotransmitters due to the migration of Ca2+ ions – can be
compared to the RS mechanism of CFB-LNO NC memristors
(Fig. 1c). The RS mechanism relies on the formation/disruption
of a large number of conductive nanochannels (filaments) in
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the NC and LNO layers due to the nucleation of Co and Fe
atoms in the NC and electromigration of oxygen vacancies in
the LNO layer.47 Percolation chains of metallic nanoparticles in
the former layer act as electrodes with a complex morphology
for the latter, the presence of which prevents short-circuiting of
the memristor via these chains. The resistive switching process
is schematically depicted in Fig. 1c along with a dark-field
transmission electron microscopy (TEM) image of a single
memristor cross-section and a high-resolution bright-field
TEM image of the interface region near the bottom electrode.
The latter showed that the thickness of the amorphous LNO
layer near the bottom electrode was approximately 10 nm and
along with energy dispersive X-ray (EDX) analysis (Fig. S1, ESI†)
revealed that the NC layer consists of CoFe nanogranules with
an average diameter of 2.4 nm distributed in the LNO matrix
(Fig. S2, ESI†).

First, the memristive characteristics of the crossbar elements
were thoroughly studied. For the following one-layer perceptron
architecture realization in hardware, eight memristive weights
were needed (the perceptron and its architecture will be dis-
cussed further in the manuscript). After measuring and analyz-
ing the characteristics of each memristor in the crossbar array,
we chose rows 4, 5, 7, and 8 in columns 11 and 16. This choice
was justified by the small device-to-device and cycle-to-cycle
variations in the current–voltage characteristics of these

memristors (I–V curves in Fig. 2a and Fig. S3, ESI†). It is clear
from the figure that the chosen memristors have close low
and high resistance states (LRS and HRS, respectively) and RS
voltage values. Another subject worth mentioning is the mem-
ristors’ working current and, consequently, power consumption.
Although the working current is high for the presented memris-
tors, there are several ways to improve it: by decreasing the area
of a memristor or altering materials and/or thicknesses of the
active layers. The first approach can reduce the current flowing
through the device by decreasing the number of conductive
filaments in it. Fig. S4 (ESI†) demonstrates RHRS and RLRS for
cross-point devices with different areas, while their active layers
are the same for each of them and for crossbar memristors. It
can be seen that the working current decreases and the resis-
tance increases with a decrease in area. Fig. S5 (ESI†) demon-
strates the I–V characteristics of a single memristor made of the
same active materials with different thicknesses: B230 nm of
NC and B20 nm of LiNbO3 in contrast to 290 nm of NC and
10 nm of LiNbO3 layers in the crossbar. The working currents are
decreased by an order of magnitude in this case. Another
important characteristic is plasticity (multilevel RS), which was
studied for one typical memristor (Fig. 2b). This memristor
demonstrated 16 different resistance states that are stable for
at least 500 s (and more than 104 s retention of low and high
resistance states, see Fig. S6, ESI†). The stability of each state can

Fig. 1 CFB-LNO NC-based crossbar array and schematic representation of the biological analog. (a) the biological neural network (top) and optical
image of the 16 � 16 memristor crossbar array (bottom); (b) the single synapse between two neurons (top) and SEM image of one memristor at an
intersection of row and column wires (bottom); (c) mechanism of signal transmission in the synaptic cleft (top) and the schematically depicted resistive
switching mechanism of the CFB-LNO NC memristor (light blue columns represent conductive filaments, red arrows – their growth during the set
process) along with the dark field TEM image of a cross section single memristor and a bright field TEM image of the interface region near the bottom
electrode (bottom).
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be evaluated by calculating the difference between the maximum
and minimum resistance (resistance range) of the memristor at
this state during the 500 s measuring period. The maximum
resistance range was less than 13 O for the lowest resistive state
and less than 16 O for the highest resistive state, whereas
the ranges for other states did not exceed 9 O (4.5 O on average).
This value can be considered the minimal step between two
consecutive resistive states, which means that ideally, at least
17 states may be possible between the highest and the lowest
state (i.e., 19 states in total). It is worth mentioning that all
16 resistive states were obtained using a previously developed
write-and-verify algorithm50 with a 5% error tolerance. A decrease
in this tolerance or utilization of a recently proposed method of
state denoising51 may greatly increase the number of obtainable
resistive states. Memristors with stable multilevel resistive
switching can be used in further studies with more complex
NCSs capable of learning, such as convolutional networks and
others.25,52,53 During training and inference processes, memris-
tors are switched between different resistive states multiple times,
so their immunity to such consecutive switches (endurance) is
crucial for NCS operation. Fig. 2c shows the lack of significant
changes in Roff and Ron (the utmost HRS and LRS states, respec-
tively) and the overall operability of the memristor after 105 cycles,
which is sufficient for most tasks. It should be noted that the
resistance values of the obtained memristors are low (r1 kO),
which may cause undesirable sneak current effects in a crossbar
array,54,55 which could exceed 40% in our case (Supplementary
Note 1 and Fig. S7, ESI†). Special write/read schemes (such as ‘‘0’’,

‘‘V/2’’ or ‘‘V/3’’)56 could be accounted for in crossbar measure-
ments to address this issue. In this work, memristors from close
rows and columns of the crossbar were used for realization of
hardware perceptron to decrease the inequality of sneak currents
and electrode buses’ resistance between synapses associated
with each output neuron and to minimize the overall power
consumption.

Although there are many works regarding LNO-based mem-
ristors, their RS kinetics have not been studied in depth yet.
Meanwhile, this information may be very helpful for under-
standing processes that occur during resistive switching of
memristors and for the estimation of the RS energy, which
may lead to more conscious engineering of such devices. Also,
in hardware realization of memristive NCSs (e.g., MLP-Mixer)
with in situ learning, a schematically simple yet effective way of
synaptic conductivity tuning is by applying voltage pulses to the
device. Thus, it is crucial to know the reaction of the memris-
tors to pulses with different amplitudes and durations
to achieve the most energy-efficient switching procedure.
Therefore, one of the important subjects is the RS kinetics of
the separate CFB-LNO NC memristor from the array. A common
approach to study the RS kinetics between extreme resistive
states Roff and Ron is to apply a switching voltage pulse to the
memristor and simultaneously measure its current output57

(see also Methods and Fig. S9, ESI†). In our case, the switching
time from HRS to LRS is determined by the time of the voltage
pulse setting process, i.e., by the process of charging the
memristor capacity (RC-process), which is approximately

Fig. 2 Memristive characteristics of the CFB-LNO NC-based crossbar array. (a) Current–voltage characteristics of eight memristors from the 16 � 16
crossbar array; (b) retention of 16 stable resistive states, and (c) endurance over 105 consecutive resistive switching events of a single CFB-LNO NC
memristor; (d) dependence of the initial (R1) to final (R2) resistance ratio vs. duration of switching pulse at different voltage amplitudes.
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50 ns (see Fig. S10, ESI†). Under these conditions, it is clearly
impossible to directly study the RS time (tRS) between different
resistive states, which can be significantly less than 50 ns.
There are some approaches to circumvent this obstacle and
measure switching in the picosecond range (almost) directly;58

however, this requires a special design and geometry of the
memristor, applicable only for RS kinetics measurement.
Meanwhile, in this study, the main goal was to investigate
switching time in a real device. Therefore, we developed
another approach to estimate the tRS, which includes 3 pulses.
The first and last pulses, with amplitude U1 = U3 = 1 V, were
used to determine the initial (R1) and final (R2) resistances of
the memristor. The middle pulse with varying durations
switched the memristor. The switching behavior was studied
for the set process with 3 different switching pulse amplitudes:
+4.5 V, +3.5 V, and +2.5 V. Pulse durations varied from 100 ns to
50 ms. Further investigation with a higher voltage amplitude
and/or shorter pulse time was impossible in our case due to the
limitations of the used equipment. The resistance ratios R1/R2

for utilized switching pulse amplitudes and durations are
plotted in Fig. 2d (Fig. S11 for the reset process, using pulses
with an amplitude of –5 V, ESI†), as well as a linear approxi-
mation of the results on a double logarithmic scale. All three
approximation lines cross at point (tRS B 10�12; R1/R2 = 1); it
means that the minimal internal time of RS in CFB-LNO NC

memristors lies in the picosecond range. From this, we esti-
mate the minimal switching energy in the pJ range. It is to note
that such a switching time even surpasses that of the figure of
merits for memristors.59 Due to the clear dependence of the R1/
R2 ratio on the duration of the voltage pulse, the possibility of
resistance fine-tuning by altering not only the amplitude but
also the duration of the switching pulse can be expected for
such memristors (Fig. 2d). Another possibility of the RS to the
required state may be by varying the number of short consecu-
tive voltage pulses with the same parameters. The latter
approach can be useful in the fully hardware implementation
of the memristive NCSs because of the schematic simplicity of
such switching circuits. This approach is demonstrated for
CFB-LNO NC memristors further in this paper.

The second part of the manuscript is dedicated to fully
connected perceptron realization, a simple yet demonstrative
example of memristive NCSs. Fig. 3a shows a scheme of the
created hardware perceptron with 4 inputs (rows) and 2 outputs
(columns). The goal of this NCS is to perform the classification
of two vectors: ‘‘0101’’ and ‘‘1010’’. A logical one (‘‘1’’ bit) is fed
to the system as a voltage pulse at the corresponding row. The
lack of such a pulse at the current iteration (classification of the
current vector) means that a logical zero (‘‘0’’ bit) is fed to the
system. Two output currents are measured while the NCS is
exposed to the input voltages. A higher current represents the

Fig. 3 NCS based on the CFB-LNO NC crossbar array. (a) Scheme of the perceptron based on the memristor crossbar array; (b) output signals of
untrained (top) and trained (bottom) perceptron for ‘‘1010’’ (left) and ‘‘0101’’ (right) input vectors. The dashed line at 3.0 mA level separates ‘‘high’’ and
‘‘low’’ output currents; each graph represents several consecutive measures of current during exposition of the same vector; (c) output currents
colormap for noisy variations of ‘‘1010’’ (top) and ‘‘0101’’ (bottom) vectors; (d) normalized outputs for the same set of noisy input vectors.
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vector being fed to the system. So, the index of the output with a
higher current unequivocally states the result of the classifica-
tion performed by our NCS.

In order to facilitate the training process of the perceptron,
it was done ex situ (see Supplementary Note 2 for training
process clarification, ESI†). Initially, all 8 utilized memristors
were in the Roff state. Then, the obtained weight map in
binarized form was transferred to the crossbar array: memris-
tors corresponding to positive weights were switched to Ron,
while memristors corresponding to negative weights remained
in Roff. Due to the relatively long retention time of our memris-
tors (Fig. 2b and Fig. S4, ESI†), the resulting distribution of the
resistances is stable during further operation (inference) of the
NCS. After tuning the resistances, the memristors in the cross-
bar array are able to weight the input voltages with their
conductances as weight coefficients in terms of Kirchhoff’s
and Ohm’s laws, thus creating output currents. Fig. 3b shows
these currents from the NCS output before (two top plots) and
after training (two bottom plots; see Fig. S13 (ESI†) for the
weight map of trained NCS) for both possible vectors fed to the
system: ‘‘1010’’ (two left plots) and ‘‘0101’’ (two right plots).
They can be distinguished only in the case of a trained
network – current at the output corresponding to the presented
vector is higher than the demarcation line, while the current at
another output is lower; the minimal difference between them
is more than 16%. The color maps of the outputs are presented
in Fig. S14 (ESI†).

The important case of the perceptron’s operation, worth
paying closer attention to, is noise in the input data. The
behavior of the created system under such circumstances was
studied by presenting vectors with one flipped bit: logical 1 was
changed to logical 0 and vice versa. Output signals of the NCS
for every possible noisy input (2 ideal vectors and 4 variants of
noise in each of the two vectors; 10 vectors in total) are shown
in Fig. 3c. Evidently, the ranges of the output currents vary
significantly depending on the total number of logical ones in
the presented noisy vector, and the same approach of compar-
ing current to some fixed value is unsuitable. However, after the
normalization of the output signals I1,2: Inormalized

k = Ik/(I1 + I2),
k = {1, 2}, I1 and I2 are the currents measured in the experiment
from the first and second outputs, respectively. The resulting
currents can be easily distinguished by comparison with the
same value for each noisy input vector. Fig. 3d demonstrates
that the created NCS with the normalized current approach is
robust to the noise (up to 1 inversed bit in a 4-bit vector) in the
input data.

The last part of this manuscript is dedicated to the simula-
tion of more complex NCS architectures based on the memris-
tive characteristics demonstrated above. The Modified National
Institute of Standards and Technology (MNIST) dataset classi-
fication problem was chosen to facilitate the comparison with
other research works. Two architectures were chosen for this
problem: a fully connected 2-layer 64 � 54 � 10 NCS and an
adapted MLP-Mixer. The fully connected 2-layer NCS and

Fig. 4 MLP-Mixer network. (a) The adapted architecture. (b) Schematic clarification of the memristive characteristics’ introduction to the NCS. The
depression curve of the CFB-LNO NC memristor is averaged over 10 measurements. (c) Confusion matrix for the classification of the test dataset
obtained with the memristive MLP-Mixer model.
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dataset preparation were implemented in accordance with the
reference research work.60 The original MLP-Mixer architecture
had to be adapted to the chosen problem and reduced to
minimize the number of trainable parameters (i.e., weights)
without a considerable accuracy decrease. The reduction of
architecture dimensions is a crucial step to partially mitigate
the influence of memristive variability on network operation. It
is also necessary to adjust it to the rescaled MNIST dataset
(e.g., splitting images into patches is unnecessary in this case).
The proposed adapted architecture is presented in Fig. 4a, and
the MLP-Mixer has only channel-mixing layers (details are given
in the Experimental section). For simplicity, we refer to this
adapted MLP-Mixer architecture as the MLP-Mixer in the
following text. Fig. 4b explains the algorithm of the memristor
introduction to the neural network, i.e., two conductance values
are chosen from the experimental memristive depression curve,
so that their difference is the closest to the calculated ideal
synaptic weight. More details on this algorithm, including
consideration of memristive variability and stuck devices, can
be found in the Experimental section.

In this way, two simulations of the memristive NCSs were
implemented. The averaged experimental coefficient of varia-
tion (CV) for the depression curve equaled B1%. A critical
problem of the memristive NCSs is the emergence of stuck
devices during the training process,61 so 10% of the memristors
in the simulation were stuck in Ron state and were untrainable
(in accordance with the reference research work).60 The mem-
ristive 2-layer NCS demonstrated (91.4 � 1.1) % accuracy on the
test dataset classification, while the memristive MLP-Mixer
demonstrated (92.5 � 0.3) % accuracy (Fig. 4c depicts the
confusion matrix for the trained memristive MLP-Mixer, Fig.
S15 depicts the training curves for both simulations, ESI†).
Note that the number of trainable parameters is almost two
times less in the case of the MLP-Mixer architecture. The results
of the training process were averaged over 10 consecutive runs.
The obtained accuracy of the memristive 2-layer NCS is in good
agreement with the reference research work (91.7%).60

Although the depression curve in Fig. 4b considers cycle-to-
cycle variations for one device, numerous devices would con-
stitute the future hardware implementation of the network.
Therefore, it is necessary to address device-to-device variations.
The depression curves obtained from the two memristive
devices are shown in Fig. S16 (ESI†). The CV in the case of
two memristors (B3%) is already increased (the CV is B1% for
one device in Fig. 4b). It is assumed that 10% CV may be
considered an approximation of device-to-device variations for
many devices. The difference between the two neural network
models in this case is more significant: (79.1 � 3.1) % accuracy
for the 2-layer NCS and (82.0 � 1.3) % accuracy for the MLP-
Mixer (Fig. S17 demonstrates the training curves for the both
simulations, ESI†). The MLP-Mixer model is more robust to
memristive variations due to the reduced number of memris-
tive weights. Table S1 (ESI†) summarizes all obtained results.

Finally, the MLP-Mixer architecture was tested on the full-
sized MNIST dataset. In this case, it was sensible to split the
images into patches, so 28 � 28 images were split into 4

patches, also the number of neurons increased to process larger
images (all layers with 16 neurons were replaced with 64
neurons, while layers with 32 neurons – with 128 neurons).
The test accuracy equaled (94.7 � 0.3)%. Here, the main
objective was to demonstrate that the MLP-Mixer architecture
is flexible and can be successfully adjusted to the input images
of any size while retaining a relatively small number of para-
meters. Considering the above, MLP-Mixer may be regarded
as an optimal architecture. However, the search for other
adapted architectures is important in order to create a software
basis for the hardware implementation of efficient and reliable
memristor-based NCSs.

Conclusions

Thus, we fabricated a 16 � 16 crossbar array of nanocomposite
(Co–Fe–B)x(LiNbO3)100�x memristors. We demonstrated their
current–voltage characteristics that showed small cycle-to-cycle
and device-to-device variations, plasticity with 16 different
resistive states, and endurance of more than 105 cycles. We
have developed a method for estimating the RS time between
the intermediate states of the nanocomposite memristor and
have shown that this time can reach the picosecond range.
After typical characterization of the memristive devices under
study, eight crossbar memristors were implemented in a simple
hardware NCS capable of classification of two vectors: ‘‘0101’’
and ‘‘1010’’. Successful operation of this NCS after setting
synaptic weights was shown for both ideal and ‘‘noisy’’ inputs,
for which one bit of the image was inverted. Finally, more
sophisticated NCSs based on the memristive characteristics
were simulated. The simulation demonstrated that the usage
of the memristors under study in the accurately adapted MLP-
Mixer architecture results in high classification accuracy that is
resilient to memristive variations and stuck devices.

Experimental
Device fabrication

The M/NC/LNO/M-based crossbar array of memristors was fabri-
cated using laser photolithography on the Heidelberg 66 fs
lithograph (patterning electrode buses); ion-beam sputtering on
the original system: first, target LiNbO3 (resulting in an E10 nm
thick layer) and then composite target (Co40Fe40B20)x(LiNbO3)100�x

with x E10–25 at% and a layer thickness of E290 nm; plasma
chemical deposition via Trion Oracle III for deposition of an
isolating Si3N4 layer (E40 nm) designated to liquidate edge effects
in memristors that may cause electrical breakdown (see details in
ref. 62).

Electrical measurements

The electrophysical characterization of memristors was per-
formed with the source measurement unit (National Instru-
ments PXIe-4140). Electrical signals, fed to the perceptron, were
created via a signal generator (National Instruments PXIe-
5413). Output currents (results of perceptron operations) were
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measured with a 2-channel digital oscilloscope (National
Instruments PXIe-5110) as voltages on two resistors (47 O), in
series to the corresponding outputs of the perceptron. The
same scheme and equipment were used in the switching
kinetic experiments (see Fig. S9 for the electric scheme, ESI†).
For I–V measurements, the compliance current was set to
100 mA for both voltage polarities, with the rate of voltage scan
equals 2 V s�1. Depression pulse measurements were per-
formed using square pulses with an amplitude of �3.5 V and
a duration of 50 ms, with 200 pulses for each depression curve.
It is also worth noting that while switching with shorter than 50
ms pulses as well as obtaining a larger resistance range (like
one shown in Fig. 2) with higher voltage pulse amplitudes is
possible, we tried to find a compromise between the curve
linearity and the resistance ratio.

TEM

The structural investigations were carried out using a scanning/
transmission electron microscope (S/TEM) Osiris (Thermo
Fisher Scientific, USA), equipped with a high angle annular
dark field (HAADF) detector (Fischione, USA).

NCS simulation

Table 1 summarizes the details on the MLP-Mixer, 2-layer NCS,
and reference 2-layer NCS architectures along with the dataset
preparation details.

In order to simulate the introduction of the experimental
memristive characteristics to the NCS (i.e., on-chip training),
the following procedure was conducted for each weight of the
network. For each mini-batch, the theoretically required weight
update was calculated, using the back-propagation algorithm.
Then, the nearest to theoretical experimental weight update
was found, calculated as the difference between two mean
conduction states of the memristor (both states were chosen
from the averaged and normalized depression curve in Fig. 4b).
As long as the depression curve had some cycle-to-cycle varia-
tion, the chosen states were replaced with corresponding
normally distributed random values (experimental standard
deviation and mean value were used). Finally, the actual NCS
weight was equaled to the difference between these two result-
ing states. To simulate stuck devices, a random Boolean matrix
was created with a fixed ratio of the true/false values and of the
same dimensions as the NCS weight matrix. After each mini-
batch, all the values of the final NCS weight matrix for which

the corresponding Boolean matrix value was true equaled 1,
which simulated the memristor stuck in the Ron state. This
model is convenient for practical applications and offers a
compromise between the over-simplified ideal models and
accurate structure-specific models.63
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Table 1 Comparison of different architectures

Parameter name 2-layer NCS (ref. 44) 2-layer NCS (this work) MLP-Mixer (this work)
Images Gray + central crop + resized 8 � 8 Gray + central crop + resized 8 � 8 Gray + central crop + resized 8 � 8
Mini-batch size 50 100 100
Overall images in the training dataset 80 000 80 000 80 000
Validation dataset � + +
Test dataset 10 000 10 000 10 000
Training cycles (after each the
weights were tuned)

1600 800 800

Activation function Rectified linear unit (ReLU) Gaussian error linear unit (GELU) (GELU)
Architecture 64 � 54 � 10 64 � 54 � 10 see Fig. 4a
Number of weights 3996 3996 2208
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