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TiO, remains one of the most popular materials used in catalysts, photovoltaics, coatings, and electronics
due to its abundance, chemical stability, and excellent catalytic properties. The tailoring of the TiO,
structure into two-dimensional nanosheets prompted the successful isolation of graphene and MXenes.
In this review, facet-controlled TiO, and monolayer titanate are outlined, covering their synthesis route
and formation mechanism. The reactive facet of TiO, is usually controlled by a capping agent. In

contrast, the monolayer titanate is achieved by ion-exchange and delamination of layered titanates. Each

Received 29th May 2024 . . . ) . . . —
Accepted 15th July 2024 route leads to 2D structures with unique physical and chemical properties, which expands its utilisation
into several niche applications. We elaborate the detailed outlook for the future use and research studies

DOI 10.1035/d4na00442f of facet-controlled TiO, and monolayer titanates. Advantages and disadvantages of both structures are
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1. Introduction

Titanium, as the 9th most abundant element in the Earth's
crust, is naturally found in the form of oxide minerals, partic-
ularly titania, TiO,. Over the last fifty years, TiO, has been uti-
lised in many applications involving photocatalysts,
photovoltaics, corrosion/UV protection coatings, and elec-
tronics while further studies exploring novel uses continue.
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provided, along with suggested applications for each type of 2D TiO, nanosheets.

Modification of the titanium oxide morphology into tailored
nanostructures is sought by many practitioners since it is able
to amplify functionality due to a larger active surface area,
leading to higher reactivity. Many unique properties can only be
observed at the nanoscale regime. For instance, quantum
confinement may occur at a nanoscale thickness, tuning in the
density of states and band gap of nanomaterials.' In catalysis,
the exposed facets (surface orientation) of nanomaterials play
a crucial role. Certain facets may have higher catalytic activity
due to their crystallographic orientation, making them more
effective in promoting chemical reactions. For titania, quantum
confinement and surface orientation play a major role in pho-
toconversion efficiency.”

Since the rise of graphene over the last two decades,® the
promise of this unique material has accelerated research
interest in inorganic 2D nanomaterials. The rapid development
of 2D nanomaterials is not limited to carbonaceous materials.
Recently, titanium carbide-based 2D nanosheets, known as
MXenes, have received much attention. Since 2011, an article on
the exfoliation of MXenes (i.e., TizAlC,) by HF has received over
2500 citations,* indicating the rapid growth of research. Tita-
nium oxide nanosheets, a 2D analogue of MXenes, have also
shown an academic impact, especially in catalysis; a 2008
contribution on anatase TiO, with exposed facets has been cited
over 3000 times.® Titania itself has enjoyed a huge impact and
has helped transform our knowledge of photoelectrochemical
cells since 1972.° Titanium oxide-based nanosheets are an
important research topic, which merits a comprehensive review
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to update our fundamental knowledge and awareness of their
uses.

2D nanosheets typically have a thickness of a few nano-
metres. They can be divided into three categories, namely,
exposed facet TiO, nanosheets, multi-layered nanosheets and
monolayered nanosheets. Exposed facet TiO, nanosheets are
thin non-layered materials with a 3D crystallographic structure
(i.e., TiO, with dominant {001} facets), as shown in Fig. 1a. The
thickness of this type of nanosheets could reach <5 nm while
maintaining the crystallographic structure of TiO,.” Meanwhile,
layered titanium oxide nanosheets consist of thin layer struc-
tures made from TiOg octahedra, as shown in Fig. 1b. Mono-
layered or single-layered titanium oxide nanosheets has been
extensively researched by Sasaki et al.®* who discovered a two-
step method to exfoliate titanium oxide (titanate) nanosheets
in 1998. In contrast to research on exposed facets TiO,, which
mainly focuses on photocatalysis, research on the monolayered
titanate nanosheets extends the exploration of their
functionalities/properties, such as dielectric characteristics,
together with spin-electronic applications.” While titanium
oxide nanosheets have potential in electrochemistry,'**> appli-
cations remain exploratory.

2D TiO, nanosheets also offer distinct advantages over other
2D materials primarily due to their exceptional chemical
stability and abundant availability. For example, MXenes, while
promising for various applications, often suffer from oxidation
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and stability issues, limiting their long-term usability in harsh
environments. In contrast, TiO, nanosheets are highly resistant
to chemical degradation, ensuring consistent performance over
time. Meanwhile, although graphene is renowned for its
exceptional electrical conductivity and mechanical strength, it
often lacks the inherent photocatalytic properties of TiO,
nanosheets. This makes them less suitable for environmental
remediation and energy conversion applications, such as pho-
tocatalytic water splitting and pollutant degradation. Besides,
producing high-quality graphene can be expensive and chal-
lenging to scale up, whereas TiO, nanosheets are more cost-
effective and accessible in large quantities.

Considering their advantages, this review aims to offer
a comprehensive perspective on both the synthesis techniques
and the distinct material properties of two key types: exposed
facet TiO, nanosheets and monolayer titanates. Special atten-
tion is devoted to their applications, ranging from energy
storage solutions such as sodium and potassium ion batteries
to environmental remediation efforts including ion-exchange
processes. Moreover, we delve into the advantages and chal-
lenges of various synthesis routes, particularly emphasizing the
trend toward non-fluorine-based precursors as a safer, more
sustainable approach. A forward-looking discussion is
included, highlighting the potential of these nanomaterials
present in diverse scientific and industrial sectors. Future
research directions aimed at optimizing these materials for
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Fig. 1

2D titanate nanosheets

(a) SEM image of the exposed {001} facet of TiO, with illustration (inset);** (b) TEM image of the chemically exfoliated titania nanosheets

and its 2D structure;** (c) historical timeline from the ground-breaking classic research on TiO, (ref. 6 and 15) to the development of the exposed
facet TiO; (ref. 5, 10—-13 and 16) and single-layered titania nanosheets.®7-*° Panel (a) is adapted with permission.** Copyright © 2017 American
Chemical Society. Panel (b) is adapted with permission from John Wiley and Sons.** Copyright © 2010 WILEY-VCH.
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electrochemical applications and potential integrations with
other technologies are also considered.

2. Synthesis routes and mechanism

2.1. Exposed facets titania

Over the last fifty years, crystal facet engineering has been
attracting increased attention as one of the most promising
ways to enhance both the physical and chemical properties of
solid-state materials. Exposing specific types of crystal facets of
materials has been reported to be responsible not only for the
increased catalytic activity, but also specialised optical and
electronic properties.”*>® A similar approach has been applied
to TiO,, considering its great potential in energy and
environmental-related applications. Considerable effort has
been made to develop a facile and straightforward synthetic
protocol for the synthesis of TiO, with specific control over
particular crystal facets. Using both experimental and theoret-
ical calculations, it is reported that several TiO, physicochem-
ical properties, such as catalytic activity, adsorption capability,
surface atomic configuration, optoelectronic properties, and
catalytic selectivity, could be affected by the type and degree of
crystal facet exposure.**>* Nevertheless, exposing the desired
crystal facet of TiO, during its crystal growth is a very chal-
lenging task. For instance, under equilibrium condition, most
of the available anatase TiO, crystals involve the thermody-
namically stable {101} facet due to its low surface free energy
(0.44 J m~?).>*3° High surface free energy facets, such as {001}
(0.90 J m?) and {010} (0.53 ] m?), quickly diminish during
crystal growth due to their instability.**

In general, the controlled synthesis of titania with well-
defined crystal facets can be achieved using different routes,
i.e., gas oxidation, epitaxial growth, spray-drying, topotactic
transformation, crystallization transformation from amor-
phous TiO, and wet-chemical syntheses such as hydrothermal,
solvothermal or non-hydrolytic routes.*>?*” However, hydro-
thermal and solvothermal synthetic routes are mostly preferred
for the scalable fabrication of two-dimensional TiO, nano-
structures. This is primarily due to their ability to offer several
beneficial advantages, such as low cost and strong ability to
direct crystal growth and nucleation by only controlling reaction
parameters. Typically, one of the most common strategies for
exposing specific types of crystal facets in TiO, is by the utili-
zation of an appropriate capping agent during hydrothermal or
solvothermal reaction.’*** A capping agent is used to direct TiO,
crystal growth in a specific direction as the result of its prefer-
ential adsorption in a particular crystal plane. Other reaction
parameters, such as the presence of Ti precursors, reaction
time, temperature and the type of solvent, can influence the
exposure of a particular crystal facet.**

The TiO, {101} facet is one of the most common crystal facets
in the anatase phase due to its low surface energy. Nevertheless,
the truncated octahedral bipyramid with eight {101} facets and
two {001} facets is found to be the most common crystal shape
of anatase in the nature-based Wulff construction.?**° Hence,
many efforts have been made to develop synthetic routes for the
formation of TiO, that show only a {101} facet. One of the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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earliest approaches was to slow the reaction rate, which can be
achieved by using Ti(m) as the precursor rather than Ti(w).*>*
In this approach, Ti(m) is considered to be oxidized to Ti(wv)
before it undergoes hydrolysis under hydrothermal conditions.
Consequently, this would significantly slow the overall reaction
rate due to the lack of dissolved oxygen. This approach was
successfully applied by Hosono et al. when they prepared
anatase TiO, nanooctahedra with approximately 100% exposure
of the {101} facets using TiCl; as the precursor in the presence
of sodium dodecyl sulfate (SDS) as a capping agent.*> Based on
the result, it was also suggested that SO,  from SDS was
responsible for the formation of an equilibrium crystal shape.
This was proven by the formation of a slightly different slender
pyramidal morphology when H,SO, was used instead of SDS. In
another report, a similar approach of utilizing TiCl; as the Ti
precursor was also reported in the hydrothermal synthesis of
TiO, with a {101} facet.** In this approach, H,O, was added as
an oxidizing agent to produce the intermediate Ti(O,);>". In
contrast, HCI was used to suppress the formation of the rutile
TiO, phase and to induce the crystal growth into the [101]
direction. As a result, pyramidal anatase TiO, with 100%
exposure of {101} facets could easily be obtained.

Furthermore, the highly exposed (101) facet of the TiO,
nanocrystals with octahedral morphology could also be ob-
tained by transforming the amorphous one-dimensional TiO,
nanofiber via hydrothermal method at 160 °C.* Based on the
result, it is reported that such an approach was able to produce
uniform octahedral TiO, nanoparticles with high specific
surface area (SSA) that predominantly exhibit the {101} facet
and a small percentage of the {100} facet. Furthermore, Wu and
co-workers have also successfully synthesized single-crystalline
anatase TiO, nanobelts with a high degree of surface exposure
of the (101) facet by a hydrothermal transformation of the TiO,
powder in concentrated NaOH aqueous solution.*” It was found
that the as-prepared (101)-exposed TiO, nanobelts exhibited
a lower rate of excitons recombination due to the significant
enhancement in charge mobility, fewer localized recombination
zones due to the reduction of unpassivated surface states, and
improvement in the ability to trap photogenerated electrons. In
another report, two-dimensional TiO, with a high percentage of
the {101} facet could also be obtained by converting both crys-
talline and amorphous TiO, via the chimie-douce (soft chem-
istry) method. For instance, Peng and co-workers have
successfully converted commercial anatase TiO, powder into
a two-dimensional (101)-exposed anatase TiO, nanosheet.*®
Based on their results, it is believed that the bulk anatase
crystals were able to be initially dissolved into several zigzag
titanate chain building blocks in highly basic conditions, which
could then be recrystallized back into the lepidocrocite struc-
ture where the exposure of the (101) surface is mostly preferred.
Fig. 2 shows a schematic illustration for the conversion pathway
of commercial bulk anatase to the two-dimensional (101)-
exposed anatase TiO, nanosheet.

Another approach that can be used to prepare two-
dimensional TiO, nanocrystals with high exposure of the
{101} facets is by selecting the appropriate capping agent. For
example, Yang and co-workers were able to develop a robust and
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Fig.2 Schematic illustration of the conversion pathway of commercial bulk anatase to two-dimensional (101)-exposed anatase TiO, nanosheet
in the chimie-douce method. Reprinted with permission from ref. 48. Copyright 2008, American Chemical Society.

straightforward synthetic protocol for TiO, nanoleaves using
a hydrothermal method at 140 °C, with titanium(wv) isoprop-
oxide and triethylamine (Net;) as the Ti precursor and capping
agent, respectively.* Based on the result, the as-prepared TiO,
nanoleaves were able to be self-assembled into a facet-selective
two-dimensional stacking structure along the [101] plane using
Zn(u)-porphyrin and the bidentate bipyridine. Recently, two-
dimensional NTA was also successfully transformed into
anatase TiO, nanostructures with up to 95% exposure of the
{101} facet using a solvothermal method with ter¢-butyl alcohol
as the solvent.*® According to the report, it was found that the
percentage of the {101} facet of the as-prepared TiO, nano-
crystals was proportional to its photocatalytic ability in
hydrogen production. This superiority in catalytic performance
was believed to be primarily due to the ability of the TiO, {101}
facet to serve as reduction sites with enriched electron
populations.

In the literature, the fabrication of two-dimensional TiO,
nanostructures with a high exposure of {001} facets is by far the
most exploited approach due to their high surface energy. In
most cases, the synthesis of such material is carried out by
preventing the crystal from growing in the [101] direction at the
naturally occurring TOB shape according to Wulff construction.
This can be achieved by making sure the crystal growth is
carried out under the non-equilibrium condition at a kinetically
controlled regime.*"* In general, the TiO, crystal nucleus would
initially evolve as a TOB seed. Under equilibrium condition,
TiO, (ref. 33) facets would rapidly be diminished as the crystal

4328 | Nanoscale Adv., 2024, 6, 4325-4345

prefers to grow into the thermodynamically stable TOB with
predominately {101} facet. This is mainly because the {101}
facet has significantly lower surface energy than the {001} facet.
Under non-equilibrium conditions, the high surface energy
{001} facets could be stabilized, resulting in the formation of
a metastable two-dimensional TOB crystal with increased
exposure of the {001} facets. Fig. 3 presents the schematic
illustration for the TiO, crystal evolution in both equilibrium
and non-equilibrium conditions.

Traditionally, a non-equilibrium condition during TiO,
crystal growth could be kinetically achieved by controlling the
temperature and ramping rate during the reaction. For
example, Ahonen and co-workers were able to create a non-
equilibrium condition by carrying out rapid heating and
quenching of titanium(wv) isopropoxide via high-temperature
(1200 °C) gas phase thermal oxidation.*® Based on this result,
it was found that such a condition was able to form a well-
faceted anatase TiO, particle with the predominant exposure
of the {001} facet. In another report, a similar rapid heating and
quenching approach was also carried out using TiCl, as the
precursor.** Here, the thermal oxidation process was done by
liberating the Ti precursor vapor using argon bubbles and
mixing with high-rate oxygen stream, where it was subsequently
subjected to high temperature (1300 °C), which results in the
formation of decahedral single-crystalline TiO, particles with
up to 40% exposure of the {001} facet. Both thermal oxidation
temperature and its ramping rate were crucial in this synthetic
method. A high exposure of the {001} facet could only be

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Schematic illustration of the TiO, crystal evolution under equilibrium and non-equilibrium conditions.

achieved when the annealing temperature was above 500 °C
with a ramping rate above 16 °C min 5% This synthetic
approach is also known to result in the formation of the rutile
TiO, phase as a byproduct.”® This method has been widely
considered unsuitable for the scalable industrial production of
such products.

Many recent studies have considered the influence of various
reaction dynamics for the synthesis of TiO, crystals with a high
exposure of the {001} facet in both aqueous and non-aqueous
liquid phase systems. It has been shown that selecting a suit-
able titanium precursor, reaction temperature, pressure and
solvent is important. The introduction of capping agents is
essential to control the crystal nucleation.*»** Among these
factors, the type and amount of capping agent are considered as
the most crucial contributing parameters in ensuring the high
exposure of the {001} facet in TiO,. This is primarily due to the
kinetics of crystal growth being exponentially proportional to
the crystal surface energy.** Typically, the specific surface energy

m {101} ®{001}

of a crystal can be enhanced or reduced by selective adsorption
of a capping agent on that particular crystal facet.*® As a result,
the presence of a specific capping agent can significantly
influence the final shape of the crystal. For the case of TiO, with
high exposure of the {001} facet, fluorine-based capping agents
have been widely utilized due to their strong preferential
interaction and ability to stabilize the {001} facet.® During the
past several years, different types of fluorine-based capping
agents, such as HF, NH,F, NaF, and [bmim]-[BF,], have been
effectively used to synthesize TiO, with a high exposure of the
{001} facet.>*”*® Moreover, the utilization of fluorine-based Ti
precursors, such as TiF, and TiOF,, has also been reported to be
able to produce TiO, with high exposure of the{001} facet due to
the simultaneous in situ generation of the F~ species.*>*
Furthermore, a study by Liu and co-workers revealed that the
variation in the degree of co-exposure for both {101} and {001}
facets could also be simply controlled by the ratio of HF/H,O
during the solvothermal reaction.®® Based on the result, the

Fig.4 SEM and TEM images of the TiO, nanocrystals with different degrees of the {001} facet synthesized at various ratios of HF/H,O. Reprinted
with permission from ref. 63. Copyright 2017, American Chemical Society.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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percentage of {001} facet exposure was found to be proportional
to the concentration of HF. Using this synthetic approach, two-
dimensional TiO, nanosheets with =92% exposure of the {001}
facet were successfully fabricated and proven to exhibited
exceptional ability as an antibacterial agent due to the presence
of the {101}/{001} surface heterojunction. Fig. 4 shows the SEM
and TEM images of the as-prepared TiO, nanocrystals with
different degrees of {001} facet exposure prepared at various HF/
H,O ratios.

Additionally, a fluorine-free hydrothermal route with K-
titanate nanowires and urea as the precursors was also intro-
duced for the synthesis of two-dimensional TiO, nanostructures
with the {001} facet.** In this synthetic approach, it was reported
that the carbonate ions resulting from the decomposition of
urea were found to be responsible for the formation of a high
percentage of {001} facet (60%). In other reports, other inor-
ganic species such as CI~ and SO,>~ anions were also reported
to be sufficient for directing the formation of TiO, nanocrystals
with a high exposure of the {001} facet.®**® Recently, organic-
based capping agents have also been explored for a similar
application. For instance, Khalil and co-workers have also re-
ported that an amine-based capping agent, i.e., DETA, could
also be utilized to expose the {001} facet during the hydro-
thermal synthesis of TiO, with spindle-like morphology.***” In
another study, Chen et al. successfully fabricated hierarchical
sphere microstructures comprising the self-assembled two-
dimensional ultrathin TiO, nanosheet with nearly 100% expo-
sure of the (001) facet using a mixture of isopropyl alcohol and
DETA as the capping agent." Recently, a combination of HF and
polymer-based capping agents, ie., poly(vinylpyrrolidone)
(PVP), has also been reported to be utilized for the synthesis of
TiO, nanomosaics comprising two-dimensional TiO, with
a high percentage of exposure for {001} facet.®® In this report, it
was believed that the large and bulky polymeric PVP molecules
could serve not only as the linker between TiO, nanosheets, but
also prevent them from stacking together along the c-axis.

2.2. Monolayer titanate

Since 1998, Sasaki et al'” have studied the single layered
nanosheets prepared by chemical exfoliation of lepidocrocite-
like titanate, in which the solid-state reaction was the main
method used to synthesize the parent compound at that time.*

Since the reaction occurs in the solid state, a high temper-
ature process (800-1500 °C) is usually required to induce the
reaction of solid precursors.” To ensure a uniform reaction,
crushing and grinding are usually performed with a mortar and
pestle to produce a thorough mixture of precursors, while ball
milling could be used for a larger quantity. To help with the
homogenisation, a small amount of solvent such as alcohol or
acetone can be added, in which it will evaporate after the
precursors are perfectly mixed.” Instead of using additional
solvent, pelleting can be performed as an alternative to produce
a good contact between the precursors. The rate of the solid-
state reaction can be controlled by adjusting the temperature
and by considering certain properties of the precursor, such as
the surface area, its reactivity, and morphology. To increase the

4330 | Nanoscale Adv., 2024, 6, 4325-4345
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reactivity, a molten salt is often used as an additive and
solvent.”

The common solid-state reaction of titania and alkali salt
precursors, such as CsNOj3, Cs,COj3, and K,COj; often results in
a fibrous (monoclinic) titanate structure. In 1987, Grey et al.*
discovered a new type of titanate compound using a non-
stoichiometric reaction, where the resulting product has
a layered structure of the lepidocrocite-like (orthorhombic)
titanates. Fig. 5 shows the crystal structures and scanning
electron microscopy (SEM) images of the fibrous and
lepidocrocite-like titanate compounds.

In the Grey et al. method, a TiO,:CsNO; molar ratio of
around 1 : 2.8-3.2 was mixed, followed by heating at 800-1050 °©
C for 0.5-20 hours, producing a white powder of lepidocrocite-
like caesium titanate with the chemical formula of Cs,Ti,_,,
4[,/404, where x is about 0.61-0.65 and [] represents a tita-
nium vacancy. The procedure has been further developed by
Sasaki et al., who used Cs,CO; and TiO, with a molar ratio of 1:
5.3 exhibiting lepidocrocite-like lamellar sheets.” Besides the
caesium-based precursor, Sasaki et al. also utilised Li,CO; and
K,COs; in place of Cs,CO; for the reaction with titania powder.”™
The reaction of Li-K-based titanates can be enhanced by
K,Mo00, molten flux process, which acts as an excellent heat
transfer medium. The slow-cooling procedure in the flux
process yields very large nanosheets of up to 30 microns, while
the solid-state reaction typically produces nanosheets of ~0.5-1
microns.”®””

The layered lepidocrocite-like titanate needs to be exfoliated
to produce monolayer nanosheets. Sasaki et al. showed a facile
two-step ion-exchange method to exfoliate the nanosheets.
Firstly, the interlayer caesium or potassium ions were etched with
acid and replaced by H' ions. For complete removal of alkali ions,
a repeated acid treatment with a fresh solution was required in
which 98% of the alkali ions were removed after three daily
cycles.” As a result, lepidocrocite-like titanate with a high cation-
exchange capacity was produced after the acid ion-exchange
reaction, exhibiting a similar smectite clay-like behaviour.

Secondly, the exchange of bulky ions with TBA" or TMA" ions
was conducted to assist the complete exfoliation of protonated
layered titanate. The properties of the resulting compounds
were similar to those of smectite clays such as montmorillonite,
hectorite, and saponite, in which the basal spacing could be
expanded (swollen) by the intercalation of guest molecules.
Depending on the concentration of bulky ions, the titania
nanosheets can be in intercalated, exfoliated, or osmotic-
swelling states,"” as shown in Fig. 6. An extensive study on the
exfoliation of nanosheets has been conducted by Sasaki et al.’”
By controlling the molar ratio of TBA" to H', the state of the
titania nanosheets can be adjusted from intercalation — exfo-
liation — swelling. For caesium-based titania nanosheets, the
intercalation state occurs when the ratio of TBA'/H" is less than
0.5, as examined by SAXS. The interlayer spacing of nanosheets
increases as the number of bulky ions increases, leading to
infinite interlayer spacing and the induction of exfoliation. The
fully exfoliated state occurs within the TBA'/H' ratio of 1-5.
When the ratio of TBA'/H" exceeds 5, a multilayer arrangement
of lamellar sheets occurs, exhibiting a diffuse double layer

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 (a) Crystal structure of the fibrous-like titanate (monoclinic);” (b) crystal structure of the lepidocrocite-like titanate (orthorhombic) viewed

along the a-axis;”® (c) FESEM image of fibrous-like titanate;”* (d) FESEM image of lepidocrocite-like titanate.” Panel (a) adapted with permission.”
Copyright © 2010, American Chemical Society. Panel (b and c¢) adapted with permission.” Copyright © 1995, American Chemical Society. Panel
(d) adapted with permission.” Copyright © 1998, American Chemical Society.

through osmotic swelling. During the osmotic-swelling state,
the interlayer spacing becomes smaller, leading to sheet coag-
ulation as the number of ions increases. One must note that the

ratio of TBA'/H" varies for each type of nanosheets depending
on the stoichiometry and charge density of the layered
compounds.””®” This chemical exfoliation method may
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Fig. 6 Schematic representation of the synthesis of single-layer titania nanosheets via chemical exfoliation process.®® Copyright © 2017 IOP

Publishing.
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produce very large nanosheets if gentle stirring or shaking is
applied during the exfoliation process.”

Besides the chemical exfoliation method, the exfoliation can
be conducted by mechanical approaches such as supercritical
fluid exfoliation®' and ultrasonication assisted ion-exchange.*
High energy jets created by the implosion of bubbles during
ultrasonication break up the layered nanosheets in a relatively
short time, although it also reduces the lateral size of the
nanosheets. Meanwhile, the supercritical fluid method utilises
the fluid expansion to exfoliate the nanosheets. A supercritical
fluid is any compound at a temperature and pressure above its
critical point, where the intermediate phase (which can effuse
through solids like a gas and dissolve materials like a liquid)
occurs. At the beginning, the layered nanosheets are interca-
lated by the supercritical fluid. In this state, the exfoliation can
easily occur by applying thermal stress to the intercalated
nanosheets. However, the exfoliated nanosheets may be
restacked upon cooling down; hence, a faster cooling rate is
preferable. The highest yield of exfoliated nanosheets by this
method, however, was estimated to be only 10%.*

While the chemical exfoliation method uses a top-down
approach from precursors synthesized by a solid-state reac-
tion, other researchers synthesised single-layered nanosheets
using bottom-up approaches such as the electron beam depo-
sition (EBD) of titania and oxygen atoms under ultra-high
vacuum® and sol-gel method.'®** Ti was deposited by e-beam
deposition on (1 x 2)-Pt(110) at room temperature (pO, = 1 X
10~* Pa), followed by post-annealing treatment at 700 K and
cooling down in oxygen (pO, = 1 x 10~ * Pa), resulting in titania

View Article Online
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nanosheets with 3.9 x 1.6 nm lateral size.** A sol-gel solution of
titania nanosheets can be synthesised by reacting the titanium
precursor (i.e., TiF, and (NH,),[TiO(C,0,),]) with an aqueous
solution of KOH or NaOH. The resulting product was a small
multi-layered nanosheet; hence, a bulky molecule such as
TBAOH or TMAOH was still required to exfoliate the nano-
sheets.®>®*¢ On the contrary, a sol-gel synthesis of TIP with
a large excess of aqueous bulky molecule solution of TMAOH
exhibited a high yield of diamond or rhombic-shaped mono-
layered nanosheets.'® The bulky molecule served as the reactant
for the acid-base reaction with titanic acid, as well as providing
enough ionic charge to maintain the exfoliation of nanosheets.
Compared to the chemically exfoliated nanosheets, the sol-gel
synthesis usually produces relatively small nanosheets of less
than 50 nm in lateral size.

Ban et al.”” further developed the sol-gel synthesis by using an
organic ligand (e.g, triethanolamine and lactic acid) to form
a titanium complex, hence retarding the nucleation of titania
nanosheets while promoting growth in the lateral direction. This
method created =100 nm diamond-shaped titania nanosheets
after several days of reaction in the autoclave. However, the
organic ligand may also cause the restacking of nanosheets
during evaporation; hence, it should be removed by dialysis.
Ban's sol-gel synthesis of large nanosheets is illustrated in Fig. 7.

The need to confine the growth of titanate in the lateral
dimension has been developed by another group. Sol-gel
synthesis at the hydrophobic/hydrophilic (ie., hexane/ice)
interface can be deployed to create large nanosheets, as illus-
trated in Fig. 8.** These nanosheets contain several small
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Fig. 7 The illustration of (a) the effect of the organic ligand in the crystallisation of the titania nanosheets and (b) inhibition of nanosheets

restacking by dialysis.®” Copyright © 2015, American Chemical Society.
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Fig. 8 (a) Schematic illustration of the 2-D TiO, formation on the hexane/ice interface.®* TEM images of a nanosheet consisting of horizontally

agglomerated TiO, nanodiscs:®* (b) HR-TEM image of nanodiscs, (c) TEM image of nanosheets. Reproduced from ref. 84 with permission from
the Royal Society of Chemistry.

nanodiscs with =5 to 15 nm in lateral size, which are
agglomerated horizontally. The single-layered nanosheets
structure was confirmed by atomic force microscopy (AFM),
whereas the nanosheets are only =0.5-1 nm in thickness. After

hydrolysis by HCI, the anatase TiO, structure was formed, as
characterised by X-ray diffraction (XRD). A schematic of the
synthesis route to TiNS is outlined in Fig. 9 and it is summa-
rized in Table 1.

Top-down
-Solid state reaction -Chemical/physical
followed
(alkaline precursor) — exfoliation
-Sol-gel (basic environment) bY (ion-exchange, ultrasonication,
supercritical fluid)
Bottom-up
Sol-gel
Hexane followed - -
Hydrolysis with Hydrochloric
on
i C——— | acid (HCl)
H ater fllm
ice/hexane Ul by
interface fee Sol-gel
« Ti(IV)isopropoxide (TIP) + TMAOH
. TIP/TBAOH/organic ligand | =sess areend
followed by dialysis
e-beam deposition of Ti and O on (1x2)-Pt(110) e

Fig. 9 Several routes to synthesize single-layer titania nanosheets: (a) TEM image of nanosheets made by the solid-state route,* (b) bright-field
TEM image of nanosheets made by the sol—gel route,®® (c) TEM image of nanosheets made by the ice sol-gel route,® (d) TEM image of
nanosheets made by the sol-gel route,*® (e) high-resolution STM image of nanosheets made by the e-beam deposition route (13.6 nm x
13.6 nm; bias voltage = 0.42 V; I+ = 0.9 nA).® Panel (a) adapted with permission.** Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. Panel (b) adapted with permission.®¢ Copyright © 2013, American Chemical Society. Panel (c) reproduced from ref. 84 with permission
from the Royal Society of Chemistry. Panel (d) adapted with permission.®* Copyright © 2006 by the American Physical Society.
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Table 1 Summary of the synthesis methods for single-layered titania nanosheets
Top-down approach

Exfoliation method and its Chemical
Synthesis of layered nanosheets additive formula Lateral size Ref.
Solid-state reaction
Cs,CO3 + TiOy — Cs;Tip_y/a[1x404 (x = Ion-exchange at 25 °C for 2 weeks Ti.010,%3%" ~0.1-1 um 17
0.7; O = titanium vacancy) by 0.00825 to 0.0825 mol L™
Reaction at 800 °C for 20 h (2 times) aqueous solution of

(tetrabutylammonium hydroxide)

TBAOH
Cs,C0; + TiO, + MgO — Cs,Ti,_, Mgy, Ton-exchange at 50 °C for 1 week Tio.g2501.825" " ~0.1-1 pm 88
204 (x = 0.7) by 5 wt% aqueous solution of
Reaction at 800 °C for 1 h followed by 2 TBAOH or
times heating at 950 °C for 20 h (tetramethylammonium

hydroxide) TMAOH
K,COj3; + TiO, + Li,CO3 — K, Tiy_3Liy Ion-exchange at 25 °C for 2 weeks Tig.6,0,% %" 0.5-2 um; average =~ 1 um 75
304 (x = 0.8); (with K,MoO, as flux melt) by 0.0125 to 0.025 mol L ™" for TBAOH and 10-30 um
Reaction at 1200 °C for 10 h, followed by aqueous solution of TBAOH or for TMAOH
slow cooling (4 °C h™") until it reaches TMAOH
950 °C
Na,CO; + TiO, — Na,Ti;0, Ion-exchange by methylamine at Ti;0,%~ ~0.1-1 um (rectangular) 89

Reaction at 900 °C for 24 h

Cs,CO;3 + TiOy — Cs,Tiy 541404 (x =
0.7; O = titanium vacancy); reaction at
800 °C for 20 h (2 times)

K,CO; + TiO, + Li,CO; — K,Ti,_y3Liy
304 (x = 0.8) (with K,M00, as flux melt).
Reaction at 927 °C for 10 h (spontaneous
cooling)

Sol-gel followed by ion exchange
(NH,),[TiO(C,0,),] + KOH —

K1.1H, oTi,05-2.6H,0 (1 day, 22-80 °C)
TiF, + NaOH — Nag gTi; 3[1,,0, yH,0
(y < 1.17) (3 days, 22 °C)

60 °C for 6 d, followed by

propylamine at 60 °C for 6 d
Ton-exchange by TBA" ion assisted Tig.9,0,%3¢~ =~0.1-0.2 pm 82
with ultrasonication (60-300 W,

2-30 min)

Supercritical DMF exfoliation Tig.570,%%" ~5-20 pm 81

(400 °C, 15 min)

Ion-exchange by aqueous solution Ti,05>~ ~10-20 nm 85

of TBAOH at 22 °C

Ion-exchange by aqueous solution Not available ~2-5 nm 86

of TBAOH at 22 °C

Bottom-up approach

Method Chemical formula Lateral size Ref.
Reflux of Ti(wv)isopropoxide (TIP) + aqueous (TMA),Tis_ 34404 (x = 0.7) Diamond shape with a diagonal 18
solution of tetramethylammonium length of (27.3, 19.1) nm to (7.7,

hydroxide (TMAOH); (5 min to 24 h, 100 °C) 5.5) nm

TIP + organic ligand (e.g., triethanolamine or (TBA, H)o 7 Ti; 82504 xH0 Diamond shape with =100 nm 87

lactic acid) + tetrabutylammonium
hydroxide (TBAOH) heated in autoclave at
80 °C for 1-7 days, followed by dialysis with
water for 2 days

Sol-gel of hexane + TIP + ice granule
interface, followed by hydrolysis with HCI
e-beam deposition on (1 x 2)-Pt(110); Ti was
deposited at room temperature (pO, =1 x
10~* Pa), followed by post-annealing
treatment at 700 K and cooling down in
oxygen (pO, =1 x 10 * Pa)

3. Properties
3.1. Physical properties

TiO,

TiO,

3.1.1. Exposed facets titania. Both optical and electronic
properties have been widely considered as the most common

4334 | Nanoscale Adv, 2024, 6, 4325-4345

lateral size

~5 pum consist of 5-15 nm 84
nanodiscs
3.9 X 1.6 nm 83

direct consequences for the exposure of a specific crystal facet in
2D TiO, nanostructures. Typically, this can easily be observed by
the alteration of both bandgap and band edge location.
According to recent studies, the exposure of the TiO, {001} facet
while diminishing the existence of the {101} facet may

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Slab model for the surface structures of the relaxed stoichiometric TiO,'s {111}, {001}, {010} and {101} facets. Reprinted with permission

from ref. 100. Copyright ©2013, American Chemical Society.

contribute to the reduction of the TiO, optical band gap.***>**
For instance, Liu et al. calculated that the optical bandgap of
TiO, nanostructures with 5%, 60%, and 92% exposure of the
{001} facet was found to be 3.33, 3.29, and 3.16 eV, respec-
tively.”> A similar bandgap narrowing due to the exposure of the
{001} facet was also observed elsewhere.**** According to theo-
retical calculation using DFT, such reduction was most likely
because the {101} facet possesses a slightly higher CB than the
{001} facet.*®” Such a phenomenon might also have occurred
due to the presence of oxygen vacancies as a result of the unique
surface atomic arrangement.”®® Furthermore, a similar band
structure alteration was also observed in other high-index fac-
ets. For example, using both experimental and theoretical
estimations, Xu and co-workers revealed that TiO, with the
{111} facet exhibited a higher conduction band minimum in
comparison to TiO, with {001}, {101}, and {010} facets.’® It is
believed that such a phenomenon was partially attributed to the
large percentage of undercoordinated Ti and O atoms at the
surface of the {111} facet. Fig. 10 presents the slab model for the
surface structure of TiO, at different crystal facets.
Furthermore, the unique arrangement of atoms at the
surface of TiO, from the exposure of different facets may also
influence the efficiency of the charge carrier separation. Tradi-
tionally, the prevention of the fast photogenerated electron-
hole recombination of TiO, was typically done by hetero-
junction or the application of sacrificing agents.'*"'*> However,
recent studies have suggested that crystal facet engineering of
TiO, could also be used as an effective strategy to avoid such
issue.'®*1% For example, the high surface energy {001} facet has
been proven to exhibit superior ability in ensuring efficient
separation of photoexcited charge carriers. It is believed that

© 2024 The Author(s). Published by the Royal Society of Chemistry

such a phenomenon was partly due to the presence of surface
defects, e.g., oxygen vacancies, which could efficiently mediate
the interfacial electron transfer.”* Additionally, a high density of
undercoordinated Ti atoms and large Ti-O-Ti bond angles at
the surface of the {001} facet has also been considered as one of
the main contributors for such phenomenon.® Recently, the
contribution of two or more co-existing facets has also been
associated with a more efficient charge separation. For instance,
Yu et al. reported that the co-exposed {001} and {101} facets were
found to exhibit a synergistic effect that was responsible for the
enhancement of the photocatalytic activity of the 2D TiO,
nanosheet.'”” Using DFT calculation, it was revealed that the
enhancement in the photoactivity was primarily due to the
formation of a surface heterojunction between the {001} and
{101} facets as a result of their band alignment. This is possible
since the positions of CBM and VBM of the {001} facet were
found to be more positive than that of the {101} facet.”” As
a result, the photogenerated electron tends to be thermody-
namically transferred to {101}, while the hole preferentially
moves in the opposite direction.

Another physical characteristic that may be influenced by the
exposure of certain facets in 2D TiO, nanostructures is their
capability in substrate adsorption. It is reported that the specific
geometric structure and atomic arrangement at the surface of
a particular TiO, facet could affect the interaction between TiO,
and various types of substrates, e.g., water, methanol, CO,, or
other small molecules.”®"® One of the widely accepted
rationalizations for such a phenomenon was the fact that
certain facets exhibit different degrees of oxygen vacancy and
undersaturated Ti coordination. For example, the surface of
TiO,'s {001} facet is widely known to have 100%

Nanoscale Adv., 2024, 6, 4325-4345 | 4335
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undercoordinated Ti-5c atoms and half saturated Ti-6¢c atoms.
In contrast, the {101} facet exhibits half of the under-
coordinated Ti-5c atoms and half saturated Ti-6¢ atoms.** The
{001} facet is also reported to have a larger stoichiometric
amount of the surface hydrophilic Ti** and surface OH groups
than the {101} facet."** As a result, the sorption capacity of the
{001} facet for water or other polar molecules is expected to be
higher than that of the {101} facet. A similar superiority in the
sorption capacity of the {001} facet over different facets was also
observed elsewhere for the absorption of Cr,0,> and
arsenic.>'*? It is also worth noting that the specific surface area
and particle size may both contribute to the overall sorption
capacity.

3.1.2. Monolayer titanate. The properties of chemically
exfoliated titania nanosheets are related to its chemical
formula, in which the precursors (i.e., lepidocrocite-like tita-
nate) have a general formula of Cs,Ti, 41,404, where x is
around 0.7 and [J is titanium vacancy'**"** for the caesium-
based and A,Ti,_,/;Li,304 nanosheets, where x = 0.8 for A =
K (potassium) and x = 0.75 for A = Rb."” The detailed crystal
structures of these compounds are shown in Fig. 11. After alkali
ion removal, the nanosheets are negatively charged with the
general formula of Tiy4;0,°%°" for nanosheets derived from
C8;Tiz— /a0 /40a.
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The absorption peak wavelength of the Tij.9,0,>*®* nano-
sheets is blue-shifted to around 265 nm, as compared to anatase
TiO, at 377 nm.? It is known that the molar absorption coeffi-
cient or molar extinction coefficient () is 2.2 x 104 mol "
dm?® em™" at 265 nm.**® This blue shift also occurs in sol-gel
diamond-like titania nanosheets, which has the peak around
250 nm.” It was concluded by both researchers that the
quantum confinement significantly contributes to the optical
properties of titania nanosheets especially due to the transition
from the 3D to 2D structure. Using spectroscopic ellipsometry,
the refractive index of the Ti, 3,0,°°>~ nanosheets was found to
be around 2.1 at 600 nm and the extinction coefficient of a thin
film (k) was nearly zero."” The titanate nanosheets in the
structure possess diamagnetic properties, which may have
aligned itself in the 2D plane perpendicular to the magnetic flux
direction due to the highly anisotropic magnetic suscepti-
bility."®* The magnetic susceptibility can be altered via UV
photoreduction of Ti" to Ti™" nanosheets, which exhibits
paramagnetic properties. It changes the orientation from the
orthogonal to parallel direction when exposed to the magnetic
field, as depicted in Fig. 12.

The electronic band gap energy of Tip 910,
was 3.84 eV, as estimated by in situ UV-vis spectroscopy,
which is 0.6 eV larger than that of anatase titania.”* Compared

036~ nanosheets

119

One layer of
nanosheets

Intercalated species: Alkali ion
(e.g. Cs, K, Li)/ H*/ Bulky ions

TiOs

Octahedron

Fig. 11 The polyhedral representation of the crystal structure of layered lepidocrocite-like titania nanosheets viewed down along the c-axis and
mono-layer titania nanosheets after exfoliation. Adapted from ref. 88 with permission from the Royal Society of Chemistry.
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Fig.12 The orthogonal and parallel magnetic orientation switching of titania nanosheets via photoreduction and oxidation.*® Copyright © 2018,

American Chemical Society.

to anatase TiO,, TiNS has a slightly higher conduction band at
—1.27 €V vs. Ag/Ag" and significantly lower valence band at
2.53 eV vs. Ag/Ag".""® The exfoliated titania nanosheets has
a larger band gap than its lepidocrocite-like titanate precursor,
hence further confirming the effect of quantum confinement.
Compared to the anatase TiO,, stronger UV light is required to
activate the photocatalytic capability of titania nanosheets. To
overcome the large band gap, metal and non-metal doping are
often introduced for narrowing the band gap. Due to a titanium
vacancy in the structure, co-doping is possible for titania
nanosheets.” One cation is used to replace the interlayer ions,
while the other may co-substitute Ti*" in octahedral sites. Fan
et al.** utilised the photocatalytic properties of titanate titania
nanosheets by doping with platinum nanoparticles via photo-
reduction of Pt(IV) ions, which is indicated by the colour
changing from white to dark grey. Besides the precious metal,
titania nanosheets have been doped by Fe, Ni, Co, Nb, and Mn
ions for metal doping and nitrogen ions for non-metal
doping.'® Few studies have examined non-metal doping.
Thus, an exploration of co-doping by a non-metal dopant
should be conducted for further research.

In terms of thermal stability, the monolayered titania
nanosheets maintained its structure up to 800 °C before it
transformed to anatase TiO,."** The stability was reduced with
increasing number of stacks of the titanate layers, in which 10
stacks of nanosheets transformed into anatase TiO, at around
400 °C. The 2D structure limits the diffusion of atoms,
hampering the 3D formation of the anatase structure. Mean-
while, the electrical conductivity depends on the relative
humidity, where it increases by about 5 orders of magnitude
from 45% to 95% relative humidity."” Water molecules

© 2024 The Author(s). Published by the Royal Society of Chemistry

adsorbed on the titanate surface can bridge the electrical
transport in the lateral dimension.

3.2. Chemical properties

3.2.1. Exposed facets of titania. The unique geometric
structure and atomic arrangement at the surface of 2D TiO,
nanostructures with certain exposed facets have also been
associated with the enhancement of their catalytic reactivity.
Recently, the ability to control the surface and electronic
properties via crystal facet engineering of 2D TiO, nano-
structures has attracted much attention as a way to improve
their performance in various applications, especially in catalysis
or light-harvesting devices. It is believed that the presence of
undercoordinated Ti atoms and the number of oxygen vacan-
cies at certain crystal facets has a significant influence in
dictating both the kinetics and thermodynamics of the reaction.
For instance, TiO, with a high exposure of the {001} facet has
been well-documented to be more reactive towards water
dissociation and more effective for facilitating photoredox
reactions than that with a high exposure of the {101} facet.>***
In another report, Amano et al. have also reported that the
performance of 2D decahedral single-crystalline TiO, with
a high exposure of the {001} facet in hydrogen evolution via the
water splitting reaction was superior to that of the commercial
P25 Degussa TiO, powder.** Recently, Khalil and co-workers
have also proven that the exposure of the {101} facets was
responsible for the enhancement in the photocatalytic activity
of the nano Au-TiO, heterostructures for the photodegradation
of organic pollutants.*® Based on this result, the synergistic
effect between the surface plasmon resonance phenomenon

Nanoscale Adv., 2024, 6, 4325-4345 | 4337
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and the exposure of the {001} feature was able to significantly
increase the reaction rate by ten-folds. Furthermore, they also
reported that a similar enhancement in photocatalytic activity
by the co-exposure of the TiO, (101) and (001) facets was also
observed in the photocatalytic reduction of bicarbonate using
CdSe-TiO, nanostructures.®”

In addition to the enhancement in the catalytic activity, the
exposure of certain crystal facets in 2D TiO, nanocrystals was
also reported to be responsible in the variation of the catalytic
selectivity. For instance, the selectivity of the toluene conversion
to benzaldehyde can be enhanced by simply increasing the
percentage of exposure for the {001} facet in the two-
dimensional TiO, nanosheet.®* According to the report, the
selectivity for the formation of benzaldehyde could be increased
by up to 93% (yield of 26%) by exposing 50% of the {001} facet.
In another report, Liu and co-workers reported that the expo-
sure of the {001} facet could also influence the selective
adsorption and photocatalytic activity towards azo dyes."® It
was revealed that TiO, with a low exposure of the {001} facet
(P25 titania, 5% of exposed {001} facet) showed a preferential
photocatalytic decomposition of MO. Meanwhile, TiO, with
a high exposure of the {001} facet favors the degradation of MB.
In the literature, this selectivity was believed to originate from
the unique surface atomic configuration of the {001} facet,
which results in the alteration of surface characteristics such as
the surface charge, Lewis and Brgnsted acidity, and exposed
functional groups.”*'** It is suggested that the spatial distri-
bution of the redox sites due to the preferential separation of
photogenerated charge carriers at certain crystal facets may also
contribute to the aforementioned catalytic selectivity.'>*'*

3.2.2. Monolayer titanate. The high reactivity of interlayer
alkali metal ions such as Cs" and K" is advantageous for the ion
exchange reaction with protons that facilitate the exfoliation of
titania nanosheets. The cation exchange capability of chemi-
cally exfoliated titania nanosheets is beneficial in energy storage
applications; for example, it can be used for lithiation and de-
lithiation in a lithium-ion battery.

In terms of colloidal stability, a net negative charged on the
titanate surface is formed after the removal of alkali metal ions,
in which it is stable in basic solution with the point of zero
charge at pH 8 and zeta potential of —37 mV at pH 10-13."** In
TBAOH or TMAOH solutions, the colloidal suspension of
chemically exfoliated titania nanosheets is stable for more than
6 months. It was observed that sol-gel titania nanosheets are
more stable due to the smaller particle size. A stable colloidal
suspension is convenient for the deposition process, in which
the controlled deposition of titania nanosheets can be realised
by Langmuir-Blodgett procedure and electrostatic layer-by-layer
assembly.”® Alternatively, an amount of titanate can be drop-
casted on the surface, yielding a film with cation-conducting
properties.’®* Electrophoretic deposition can also be per-
formed to decorate the electrode via the negative surface charge
of chemically exfoliated titania nanosheets.'* The negative
surface charge is also exhibited in sol-gel titania nanosheets."**
When an electrophoretic deposition technique combines with
mechanical stimulation, small sol-gel titania nanosheets can
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be inserted within titanate nanotubes to create a hierarchical
structure™* of titania nanosheets.

Modification of the surface functional group of titania
nanosheets has been studied.’® In an aqueous solution,
chemisorbed and physiosorbed water molecules are attached to
the surface of titanate, leading to a hydroxylated surface, where
the functionalisation can be performed via these hydroxyl group
titania nanosheets. Generally, the modification of the hydroxyl
group of titanate can be approached via hydrolysis with silane
groups, esterification with carboxylic acid, peroxo-titanium
complex formation by H,O,, acid-base reaction, and forma-
tion of admicelles by surfactant.****** Silanisation with APTES
altered the zeta potential of titania nanosheets via amino-end
groups, in which the APTES-titania nanosheets have the point
of zero charge at pH 6 and it is stable in acidic solution (pH <
4).*® Similar to titanate nanotubes which have a lot of hydroxyl
groups on its surface, the chemically exfoliated titania nano-
sheets are also highly reactive to H,0,. Reaction with H,O,
creates titanium(wv) peroxo-complex, which is indicated by
a colour transformation from white to yellow. Interestingly, the
colour reverts back to white after reacting with azo dyes, indi-
cating the release of the oxo group while cutting the azo dye
chain.” The colour transformation does not occur in sol-gel
titania nanosheets, which is probably due to the hindrance
caused by the excess of bulky molecules of TMAOH. Further
study is required for the formation of peroxo complexes in sol-
gel titania nanosheets.

4. Applications

4.1. Exposed facets titania

In the past several years, the exposure of certain crystal facets in
TiO, has emerged as a highly promising avenue for solving
several challenges that hampers the efficiency of conventional
TiO, in photocatalysis. The exposure of an unusual active crystal
facet in TiO, has garnered significant attention as one of many
potential solutions to enhance the photocatalytic performance
by improving the light absorption and charge carrier recombi-
nation. For example, Wu and co-workers demonstrated that
synthesizing rutile TiO, with a tunable ratio of the {110} and
{111} facets was evidently able to enhance the photocatalytic
activity in the hydrogen evolution reaction.'*® A tunable ratio of
both unusual facets was achieved by using seed-mediated
hydrothermal method using NaF as a crystal directing agent.
Based on the result, rutile TiO, with wholly {111} facet photo-
catalyst was found to exhibit the most superior photocatalytic
activity towards hydrogen production under the irradiation of
UV light. This was attributed to the exposure of the more reac-
tive {111} facet.

In another report, it was shown that exposing the (001) facet
in anatase TiO, was also evidently able to provide a significant
increase in the photocatalytic activity of the Au-TiO, nano-
composite in the photodegradation of a potent organic dye
under visible light.** According to this work, it is evident that
anatase TiO, with nanospindle morphology exhibited a four-
time higher photocatalytic reaction rate than TiO, with the
nanocube morphology. Such enhancement in the activity of the
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TiO, nanospindles was believed to be due to the high exposure
of the (001) facet, which is responsible for improving the
migration and separation of the generated charge carriers. As
a result, this would allow an efficient prevention of fast elec-
tron-hole recombination and lead to a better photocatalytic
performance. Similar enhancements in activity for the photo-
catalytic activity was also observed when the (001) exposed TiO,
was composited with other materials, such as two-dimensional
graphene oxides or CdSe quantum dots nanoparticles.®”**”

Recently, a composite of BiVO, and anatase TiO, with co-
exposed (001) and (101) facets was also used as photoanode
materials, and exhibited good performance in a photocatalytic
fuel cell (PFC)."*® In this study, the as-prepared photoanode was
able to exhibit a considerably high photoelectrochemical
response with a current density of 29.8 pA cm > (at 0.8 V vs.
NHE) under the low-intensity illumination of 13 W LED light.
Additionally, the photoanode was able to generate electric
power (0.00232 mW cm %) using rhodamine B (RhB) as fuel. It is
believed that such enhancement originated from the ability of
the co-exposed (001) and (101) facets in TiO, to form an internal
surface heterojunction, in addition to the already existing
external interfacial heterojunction between BiVO, and TiO,. As
a result, this would allow a further enhancement and efficient
distribution of photogenerated charge carriers.

The exposure of the unusual crystal facet in TiO, has also
attracted considerable attention in recent years for the applica-
tion of solar energy harvesting, particularly in photovoltaic solar
cells. Typically, a solar cell relies primarily upon efficient light
absorption, charge separation, and transport to maximize the
energy conversion efficiency. To serve such purposes, meso-
porous semiconducting materials such as TiO, are often used as
both support light absorption layer and ETL. Nevertheless,
commercial and conventional TiO, often suffer from poor
conductivity, inefficient electron mobility, and low diffusion rate
of the carrier, leading to low power conversion efficiency. Crystal
facet engineering in TiO, presents an intriguing avenue for
enhancing the performance of solar cells. The recent surge in
research elucidates the potential of exposing certain facets in
TiO, to revolutionize solar cell technology through their excep-
tional properties. For instance, Qaid et al. reported that TiO,
nanocrystals with exposed {001} facet prepared with facile HF-
and NaF-mediated hydrothermal method exhibited a significant
improvement in the performance for DSSC.'* Additionally,
a similar enhancement in performance was observed when the
{001} facet-dominant TiO, nanoparticles were used as ETL in
CH;NH;PbI; perovskite solar cells.**® According to the experi-
ment, it is evident that the exposure of TiO,'s {001} facet was
responsible for the enhancement of the electron injection and
suppression of electron-hole recombination, which resulted in
an increase of both photocurrent and open-circuit voltage.

The application of exposed facet titania within the field of
energy storage has emerged as an exciting frontier over the past
several years. Energy storage technologies, such as lithium-ion
batteries and supercapacitors, play a crucial role in achieving
efficient energy utilization and management. Recently, many
reports have also highlighted that the exposure of the unusual
crystal plane in TiO,, characterized by its unique atomic
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arrangement and distinctive surface properties, has proven to
evidently improve the efficiency, stability, and overall performance
of energy storage devices. For example, a composite of hierarchi-
cally porous TiO, nanosheet with large exposure of the (001) facet
and rGO was able to exhibit a superior and stable lithium storage
capacity and high performance as an anode material in lithium
ion batteries."* Based on the result, it is reported that the anode
material showed an excellent reversible capacity of 250 mA h g~
in a voltage window of 1.0-3.0 V and demonstrated good stability
even after 1000 cycles. In another report, Wang and co-workers
compared the performance of the (001)-faceted TiO, nanosheet
vs. spherical TiO, nanoparticles as anode material in lithium ion
batteries."** Here, it is evident that the battery fabricated with the
(001)-faceted TiO, nanosheet exhibited superior storage capacity,
enhanced stability, and higher charge/discharge rate compared to
that of the spherical TiO, nanoparticles. It is believed that such
enhancement was due to the ability of the exposed (001) facet in
TiO, to facilitate an efficient charge diffusion, which led to an
increase in the rate of Li ion insertion/extraction along the c-axis
during the charge-discharge.

4.2. Monolayer titanate

Most monolayer titania nanosheets are made by top-down
approaches through the exfoliation of layered titanate
compounds. The layered structured of titania also has many
applications. Having a layered structure, the interlayer cations
can be reversibly exchanged with other cations. The ion
exchange properties enable the layered nanosheets to adsorb
radioactive ions; hence, it is useful for environmental remedi-
ation. Several researchers utilised acid-modified titania nano-
sheets for Cs* ion adsorption, in which the adsorption capacity
did not decrease even after 5 cycles."** The adsorption capacity
of Cs" ions reached 329 mg g™, which is promising for radio-
active wastewater treatment. Protonated TiNS was also able to
adsorb cationic dyes such as methylene blue with the adsorp-
tion capacity up to 3937 mg g ', following the Langmuir
model.™* For dye removal, peroxo-modification of the TiNS
surface could be done, changing the colour of titania from white
to yellow.”*® With hydrogen peroxide, the Ti(iv)-H,O, complex
was formed, creating TiIOOH moieties on the surface. The per-
oxo groups were then able to oxidise dyes into smaller mole-
cules. Hence, the dye removal can be performed without the
assistance of UV or visible light. The interlayer spacing and
surface charge of acid-modified TiNS also induced size selec-
tivity for adsorbing the pharmaceutical compound, fluo-
roquinolone.™® In neutral and acidic solutions, the acid-
modified TiNS was able to be intercalated by positively CIP
with a thickness of 0.41 nm. Selective adsorption was also
obtainable by surface modification of TiNS.**'*¢ Boronic acid
ligands were immobilized on the surface of modified TiNS,
resulting in the selective adsorption of IgG up to 1669.7 mg g~
capacity.™® APTES-modified TiNS was deployed a as nano-
container of DNA."*® The DNA was intercalated in the layer of
APTES-TINS, where it was protected by TiNS from enzymatic
corrosion, acid condition, and UV-vis light irradiation. Thus,
DNA could be stored and released on demand.
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The ion exchange capacity of TiNS can also facilitate energy
storage. During charging and discharging, the intercalation and
de-intercalation of cations occur. Layered titania nanosheets
with minimal layer-to-layer interaction and a robust gallery
space enabled the fast and stable intercalation and de-
intercalation of large ions such as sodium and potassium ions
in a non-aqueous electrolyte.*” To obtain the minimum layer-
to-layer interaction, the titania nanosheets were exfoliated via
a chemical exfoliation method, followed by coagulation with
a Mg”>* solution to obtain a randomly stacked nanosheet
structure. At a rate of 3000 mA g~ *, the capacity was retained at
more than 80% after 10 000 cycles for Na* ion storage, which
was performed using an electrode thickness of 80 um. Such
remarkable performances did not occur without the prior
exfoliation of titanates. The specific capacity for Na" ion storage
was 53 mA h ¢ ' and 188 mA h g ' without and with prior
exfoliation, respectively. Nevertheless, the theoretical capacity
of titanate is relatively small compared to that of graphite or
Sn0,.? Doeff et al. synthesised the composite of carbon-TiNS by
exfoliating the titanate structure, followed by carbonization of
dopamine for the sodium half-cell configuration.*® The hetero-
structure of carbon-titania resulted in higher capacity and
capacity retention, while lowering the impedance. The combi-
nation of titania nanosheets with SnO, for the sodium ion
battery should be expected in the near future. The titania
nanosheets could also be used as an electrode for electroanal-
ysis.’?b13%14% The titania nanosheet exfoliated with tetrabuty-
lammonium cations was deposited from a colloidal aqueous
solution onto a glassy carbon electrode, creating a lamellar
structure.”® The lamellar titania acted as a sorbent and host for
the hydrophobic redox system and for electrochemical reac-
tivity. A future study on the electron transfer, mobility, and
binding of guest species within the lamellar is intriguing. The
negatively charged TiNS could also act as a host of ferrocene-
boronic acid receptor molecules, exhibiting the selective
sensing of fructose while insensitive for glucose.** Moreover,
the cationic diode behaviour was observed using the TiNS
deposit on top of the micron-sized hole of the PET film.**® The
ionic current rectification was possible due to the negative
surface charge of TiNS and tortuous path of ions within the
lamellar space.

Titanium dioxide is known to show striking photocatalytic
activities, while the high surface area of the 2D nanosheets
increases the density of active sites. TiNS has a larger band gap
(i.e., 3.84 eV) than anatase TiO, (3.2 eV).”** A strong UV light is
needed to excite the electrons for photocatalysis. Therefore,
many researchers combine TiNS with other catalysts to obtain
a narrow band gap, while maintaining the high surface area.
One group of researchers combined positively charged Zr-EDTA
complexes with negatively charged TiNS, creating a porous
structure with a surface area of 193 m” ¢”* and a specific pore
volume of 0.39 mL g '.*** The composite of Zr-EDTA-TiNS
yielded a band gap of 3.15 eV and was used for degrading
methylene blue (MB) under UV irradiation. The photocatalytic
degradation kinetics of methylene blue was 5-fold higher and
reached 98.1% MB removal for the Zr-EDTA-TiNS composite, as
compared to TiNS alone. The photocatalytic mechanism can be
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described as an artificial Z-scheme heterostructure due to
ohmic contact, facilitating charge transfer between the
conduction band of TiNS and valence band of Zr-EDTA. TiNS
has also been combined with alkaline Co(OH), (ref. 152) and
Ni(OH), (ref. 153) for the photocatalytic reduction of CO,. The
alkaline Co(OH), and Ni(OH), acted as a CO, binder, while TiNS
adsorbed the sensitiser and became an electron relay that
bridged the sensitiser with Co(OH), and Ni(OH), active sites.
For Ni(OH),-TiNS, the production rate of CO/H, was 1801/2093
umol g ' h™*, while Co(OH),~TiNS was 56.5/59.3 pmol h™*. For
photovoltaic application, TiNS was used as an atomic stacking
transporting layer (ASTL) in the lead halide perovskite solar
cell.” The TiNS was stacked into a multilayer thin film by layer-
by-layer deposition, which achieved complete surface coverage
after 5 repetitions. Contrary to the conventional sintered TiO,
thin film, the layer-by-layer deposition of TiNS exhibited nearly
negligible oxygen vacancies. The oxygen vacancies may cause
UV instability of the perovskite solar cell. For titania nanosheets
ASTL, the power conversion efficiency remained at around 70%
of the initial value after 5 hours of UV irradiation, while severe
reductions of PCE occurred for the conventional TiO, thin film,
resulting in only 5% initial value of PCE. Besides photovoltaic
application, TiNS could also be used for hydrovoltaic devices.'>*
The electricity was generated from water evaporation. The tita-
nium vacancy of TiNS enhanced the water-solid interaction.
When water molecules flow over the solid surface, the migration
of counterions occurs to generate an electric output. The
hydrovoltaic device based on TiNS produced an open circuit
voltage of 1.32 V for more than 250 h.

Coatings of layer-by-layer deposition of TiNS were used to
protect stainless steel car baffle from corrosion.’ The five-cycle
layer-by-layer deposition of TiNS exhibited a thickness of
around 10 nm with a corrosion inhibition efficiency of 99.92%
and an estimated corrosion rate of 5.32 x 10~> mm per year. The
2D structure of TiNS created a tortuous path for iron and oxygen
diffusion, hampering the rusting process of iron. Titania nano-
sheets have been known as a strong adsorbent of rare earth
elements, such as Eu, exhibiting photoluminescence proper-
ties." Intense red emission was observed at 616 nm under the
irradiation of 400 nm UV LED light. It would be interesting to
combine layers of red-emitting TiNS with blue-emitting rare-
earth mixed metal oxides, such as BaMgAl,;0,,: Eu** (ref. 158)
to create multi-colour luminescent layers for monitoring coating
health. As a nanocomposite coating, silk-TiNS enhanced the
tribological properties (e.g., hardness, reduced modulus, wear,
adhesion, and scratch resistance) of silk coatings.*” The hard-
ness and reduced modulus of the silk-TiNS composite were
higher than those of the graphene-silk composite film. The
reinforcement behaviour also occurred for bulk polymer nano-
composites, following micromechanical models such as Halpin—-
Tsai and Brune-Bicerano, up to few number of nanosheets
layers.”*® As discussed in section 3.1.2, TiNS is sensitive to
magnetic flux and UV light, in which the orientation of TiNS
within a polymer matrix can be adjusted. Hence, stimuli-
responsive polymer nanocomposites could be realised by incor-
porating TiNS within the polymer. A silk-TiNS multilayer thin
film also exhibited moisture-responsive coating.'®* The water
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molecules were adsorbed into the nanosheets, causing swelling
and reduction of the refractive index of the film. In summary, the
layered 2D structures of nanosheets and the photoresponsive,
chemically stable, negatively charged TiNS have many existing
and potential applications worthy of further investigation in
combination with other nanomaterials or polymers.

5. Conclusions and outlook

In conclusion, two-dimensional TiNS has emerged as a multi-
faceted and promising material that has captured the attention of
the scientific community. With significant implications for fields,
ranging from catalysis, electronics, and energy conversion to
environmental remediation, energy storage, and biomedical
applications, TiNS offers a transformative potential. Key to this
aspect is the manipulation of their crystal facets and structures,
which allow for a tailored set of properties for diverse applica-
tions. Synthesis routes involving both exposed facet and mono-
layer titania nanosheets have demonstrated unique properties,
such as heightened catalytic activity, ion-exchange capabilities,
and exceptional optoelectronic behaviours.

Within the realm of synthesis, hydrothermal and sol-
vothermal methods have proven effective for facet control. There
has been a shift toward non-fluorine-based precursors, primarily
due to the associated safety and environmental considerations.
This trend aligns well with the broader scientific movement
toward more sustainable and eco-friendly materials. In contrast,
the chemical exfoliation methods use non-fluorine precursors,
offering a safer yet versatile route to monolayered structures.

For applications, TiNS demonstrates a myriad of function-
alities. Their ion-exchange properties make them valuable
candidates for environmental applications, such as the
absorption of radioactive ions and organic dyes. The adapt-
ability of TINS in energy storage, particularly sodium and
potassium ion batteries, and their potential in photocatalysis,
signal an exciting trajectory for these materials. Composite
structures have shown that TiNS can work in synergy with other
materials to further enhance their performance in these sectors.

As we look to the future, the focus should be on refining and
diversifying non-fluorine-based synthesis methods and deepening
our understanding of the relationship between the crystal structure
and material properties. Exploring hybrid composites, particularly
through the integration of TiNS with polymers and other nano-
materials, appears to be a promising avenue. Moreover, targeted
research into nanoengineering for optimizing energy storage and
tunable band gaps for photocatalytic applications holds significant
potential. These endeavours not only serve to advance our tech-
nological capabilities, but also usher in an era of increased safety,
energy efficiency, and environmental consciousness.
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[bmim]-{BF,] 1-Butyl-3-methylimidazolium tetrafluoroborate
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3D Three dimensional
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APTES 3-Aminopropyl triethoxysilane
ASTL Atomic stacking transporting layer
CB Conduction band

CBM Conduction band minimum

CIP Charged ciprofloxacin

DETA Diethylenetriamine

DFT Density functional theory

DMF N,N-Dimethylformamide

DNA Deoxyribonucleic acid

DSSC Dye-sensitized solar cells

EBD Electron beam deposition

EDTA Ethylenediaminetetraacetic acid
ETL Electron-transporting layer
FESEM Field emission scanning electron microscopy
HF Hydrofluoric acid

IgG Immunoglobulin G

ITO Indium-doped tin oxide

MB Methylene blue

MO Methyl orange

MXenes Two-dimensional transition metal carbide
NTA Nanotube titanic acid

PET Poly(ethylene-terephthalate)

PFC Photocatalytic fuel cell

PVP Poly(vinylpyrrolidone)

rGO Reduced graphene oxide

SAXS Small-angle X-ray scattering

SDS Sodium dodecyl sulfate

SEM Scanning electron microscopy

SSA Specific surface area

TBA Tetrabutylammonium

TEM Transmission electron microscopy
TiNS Titania nanosheets

TIP Titanium isopropoxide

TMA Tetramethylammonium

TOB Truncated octahedral bipyramidal
uv Ultraviolet

UV-vis Ultraviolet-visible light

VBM Valence band maximum

XRD X-ray diffraction
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