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a plasmonic lens structure for
maximum optical vortices induced on Weyl
semimetal surface states†

Ritwik Banerjee and Tanmoy Maiti *

Optical vortices have a topologically charged phase singularity and zero intensity distribution in the centre.

Optical vortex creation is regarded as a significant means for information transmission for applications in

quantum computing, encryption, optical communication, etc. In this study, using finite-difference time-

domain (FDTD) simulation, we calculated the electric field intensity and phase distribution of 2D lattices

of optical vortices generated from various polygonal plasmonic lens structures using surface states of

a Weyl semimetal (MoTe2). It was shown that a hexagonal lens is the best performing plasmonic lens.

Further, we posited here a unified mathematical formulation for optical electrical field and phase

distribution in the near field for any polygonal plasmonic lens. Our theoretical calculation corroborated

well with FDTD results, validating the proposed generalized formula. Such plasmonic lens structures

demonstrating scaling behavior offer great potential for designing next-generation optical memories.
Introduction

A vortex is a macroscopic phenomenon that can be seen in
turbulent ow, tropical cyclones, smoke rings, liquid helium,
and various other areas of hydrodynamics. Collet et al. reduced
this macroscopic phenomenon to a microscopic concept by
solving Maxwell–Bloch equations and introducing the concept
of an optical vortex in 1989.1 Phase singularity in an optical
vortex looks like an isolated dark patch with a unique phase in
the centre holding some topological charges, dependent on how
much light is twisted in a single wavelength.2,3 Momentum
carried by an electro-magnetic wave like light comprises two
components: spin angular momentum (SAM) and orbital
angular momentum (OAM). Allen et al.4 proposed that OAM in
vortex beams, where optical vortices propagate in paraxial
beams, can be much greater than SAM. Since the development
of optical vortices, their features, including detecting topolog-
ical charges,5 optical communication in free space6–11 using
different OAM modes, higher dimensional quantum
entanglement,12–14 and microparticle manipulation,15,16 have
stimulated the curiosity of researchers in a wide range of
domains. Wang et al.'s work7 in particular piqued the scientic
community's curiosity as soon as the study was published in
2012, with a national splash in a popular news e-portal head-
lined “Twisted light carries 2.5 terabits of data per second”. The
researchers applied the notion of OAM multiplexing and
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demultiplexing, which is equivalent to wavelength-division
multiplexing in bre communication,17–20 to possibly transport
up to 1369.6 Gbit s−1. This technique has the potential to have
a tremendous inuence on optical data communication,9 as
data can be stored in massive amounts due to the unlimited
range of possible OAM states. Khonina et al. further proposed
a method for calculating information transmission21 in a group
of optical vortices using spiral diffractive optical elements. The
huge application potential of optical vortices has prompted
scientists to fabricate optical lenses22 by combining two cylin-
drical lenses, thus enabling the conversion of the Hermite–
Gaussian (HG) mode into the Laguerre–Gaussian (LG) mode
and vice versa. Later, a group of scientists23 created a sub-
wavelength periodic groove structure with a variable space
structure, and via polarization manipulation, a new geometric
phase known as the Pancharatnam–Berry phase was created.
The use of subwavelength gratings in conjunction with liquid
crystals aids in the conversion of SAM to OAM,24 paving the way
for the generation of optical vortices by polarization
manipulation.25–27 Subsequently, researchers have reported
various optical vortex-generation techniques and advances in
the eld, including spatial light modulators,28,29 OAM mode
array generation by Dammann grating,30,31 phase only dif-
fractive optical elements,32–34 spiral phase plates,35–38 the fabri-
cation of various vortex-generating structures by femtosecond
laser direct writing,39,40 the achievement of phase discontinuity
by utilizing subwavelength metallic nano-antennas, scatterers,
or thin lms,41–43 Indeed, improving the vortex-generating
methods has been a continuous research effort in the optical
and plasmonic research societies for the past 30 years.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Plasmonic lenses have been proven to be an effective way of
coupling electrons with electromagnetic waves, like light, ulti-
mately giving rise to surface plasmon polaritons (SPPs). In
a pivotal study by Liu et al.44 in 2005, the concentration of an
electromagnetic eld was experimentally and theoretically
demonstrated through the interference of propagating SPP
waves in circular and elliptical slit structures. The exploration of
symmetrical structures, like circles or ellipses, has led
researchers to investigate constructive and destructive inter-
ference by varying certain parameters, such as the circle's radius
or the ellipse's eccentricity at specic wavelengths,45 as well as
the detection of the OAM of incident light.46 Asymmetric
structures, like Archimedes' spiral lens, were rst studied
theoretically and experimentally by Ohno and Miyanishi47 in
2006, in a study where they showed that the topological charge
of SPPs depend on both the chirality of the spiral structure and
the incident beam. Spiral slit structures have also been inves-
tigated in studies of circular polarization analyzers,48 the spin
dependence of surface conned plasmonic waves,49 and the
manipulation of the OAM of plasmonic waves by increasing the
number of turns of the plasmonic lens,50 etc. To introduce an
additional degree of freedom in controlling the geometrical
topological charge of plasmonic vortices, Archimedes' spiral
lenses were split to create a new type of lens called the plas-
monic vortex lens (PVL).51–55 Further modications at the nano-
metre level were later made using plasmonic metasurfaces or
meta lenses to control the geometrical charges of plasmonic
waves.56–59 Srivastava et al.60 initially conceived the concept of
a hexagonal lens inscribed on topological insulator surface
states. Their observations indicated an increase in the number
of optical vortices within the hexagonal plasmonic lens
compared to a circular lens structure. Additionally, the hexag-
onal lens exhibited scaling behaviour concerning changes in
the lens radius and incident wavelength. The uniqueness of the
hexagonal lens lies in its capability to multiply the number of
optical vortices, a phenomenon not observed in the aforemen-
tioned lens structures. However, a limitation in their work was
the absence of an explanation for the selection of the hexagonal
structure over other possible polygonal structures. This gap
served as the motivation and starting point for our work. Our
objective in this study was to determine the optimal polygonal
structure by conducting a theoretical and numerical compar-
ison of various polygonal structures.

It was observed that in a hexagonal lens, there is only a single
vortex at the centre, surrounding a 2nd layer of 6 vortices, a 3rd
layer of 12 vortices, and so on. As we increase the lens radius,
new layers of optical singularity points keep on adding. So, it is
imperative to think that if we make an octagonal lens, we would
obtain layers of optical vortices, such as, 1, 8, 16 or in this
progression. If the sides of the lens are further increased to 10,
12, etc., we should see more optical vortices. However, contrary
to the expectation, in this work, we found that the number of
vortices did not increase with the increment in the number of
sides of the polygon. With the number of the sides of the
polygon increasing, the number of optical vortices actually
decreased. Then we shied our attention to check whether one
can get more vortices by reducing the number of sides of the
© 2024 The Author(s). Published by the Royal Society of Chemistry
polygon to a pentagonal and square lens. While in the case of
the square lens, it seemed like the number of vortices was
increasing, they seemed hugely superimposed and it was
sometimes difficult to identify and distinguish the singularity
points in the vortices. These observations bring us back to our
initial assumption that a hexagonal structure produces the
maximum number of prominent optical vortices and optical
singularity points in both right-circular polarized (RCP) and
le-circular polarized (LCP) illumination. In order to under-
stand the relationship between polygons and the generation of
optical vortices, in this study, we carried out detailed theoretical
calculations, which were further validated by nite-difference
time-domain (FDTD) simulations. Herein, we posited
a unied equation to explain the generation of optical vortices
in any polygonal plasmonic lens under RCP and LCP illumi-
nation. To the best of our knowledge, there are no reports in the
literature providing such a kind of mathematical formulation
for polygonal plasmonic lenses. Our work potentially opens up
new avenues of research for polygonal plasmonic lens similar to
spiral lens, plasmonic vortex lens, and meta-lens. We also
switched from the widely utilized plasmonic materials, such as
gold and silver, to Weyl semimetals, owing to the improved
performance metric, i.e. the plasmonic gure of merit (FOM) of
Weyl semimetals at higher frequencies. However, our unied
mathematical formulation should be valid for any material,
including Au and Ag.

Material selection

Weyl semimetals outperform the popular plasmonic metals,
such as gold and silver, in terms of plasmonic gure of merit
(FOM) and surface plasmon polariton wavelength (lSPP). The
lSPP and FOM of any plasmonic material can be expressed
mathematically as,

lSPP ¼ lincident

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3WS þ 3airÞ
3WS3air

s
(1)

where, 3WS or 3Weyl Semimetal ¼ 3real part þ 3
0
img part

kSPP ¼ 2p

lSPP
(2)

FOM ¼ real part of kSPP

2p� imaginery part of kSPP
(3)

where 3WS is the permittivity of a Weyl semimetal, 3air is the
permittivity of air, and lincident is the incident wavelength of the
illumination. The permittivity values of MoTe2 were taken from
experimental data.61 The FOM of any material represents the
number of waves that surface plasmons can possibly travel, and
lSPP represents the wavelength of the surface plasmons due to
the effect of illuminating light. The comparison of the FOMs
between gold, silver, and MoTe2 Weyl semimetal, as shown in
Fig. S1 of the ESI,† infers that MoTe2 offers a better FOM,
especially at higher frequencies. Further insights on Weyl
semimetal surface states are also provided in ESI S1.† The lSPP

values of MoTe2 at three commonly used incident wavelengths
of 350, 375, and 415 nm were estimated to be 352.8, 379.39, and
Nanoscale Adv., 2024, 6, 5960–5970 | 5961
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Fig. 1 (a) Isometric view of a hexagonal lens, (b) octagonal lens, (c) polygonal lens with the number of sides p, and (d) circular lens.
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419.85 nm, respectively. Here, we designed various plasmonic
lens structures milled on MoTe2 through a silica substrate. A
200 nm thick MoTe2 Weyl semimetal layer was deposited on top
of a 400 nm thick silica layer, as shown in Fig. 1. Different lens
structures were entirely etched with a thickness of 200 nm.
Although only LCP illumination is shown in the schematic, both
RCP and LCP illumination were also used in the simulation.
Fig. 1a–c show the hexagonal, octagonal, and polygonal lens
with sides p. When the number of sides was increased to
innity, a circular structure was obtained, as shown in Fig. 1d.
The design parameters were maintained for all the polygonal
lens structures. Although the thickness values of Au and MoTe2
are schematically shown in Fig. 1 only for the octagonal lens,
the same thickness was maintained for all the other polygonal
structures. Additionally, the difference between the inner and
outer radii of the lens structures was kept as 200 nm. The
electrical eld intensity and phase were measured in the near
eld, so the monitor was kept at the z = 0 position. Theoretical
calculations were also performed in this order, as detailed in the
next section.
Theoretical calculations of the electrical eld and phase
equations of different polygonal lens structures

We started our calculation by deriving the electric eld distri-
bution in the z-direction (Ez) in the centre of a hexagonal plas-
monic lens by changing the equations of the circular plasmonic
lens accordingly. For SPPs, the z-direction electric eld inten-
sities will be the most prominent factor, therefore the focus was
5962 | Nanoscale Adv., 2024, 6, 5960–5970
directed only on the Ez component. The corresponding equation
of an electric eld of a circularly polarized lens (CPL) at an
observation point (r, q) along an incremental length in the z-
direction of a slit57 can be given as:

dEz(r, q, z) = A(f(q
0
))e−kazeu(f(q

0
),q

0
)ejksppjr−r

0 jdq0 (4)

where r, q, and z are the radial, azimuthal and z-direction co-
ordinates of Ez (dEz = differential form of Ez) at the observa-
tion point, (r0, q0) are the co-ordinates of the dipole source,
A(f(q0)) and u(f (q0), q0) are the amplitude and phase prole
functions at each dipole source, respectively, and ka is the
attenuation coefficient in the z-direction of the SPP mode in the
air. Since, we are considering the output monitor at the surfaces
of the lens, we took the attenuation coefficient as 1 and because
z = 0, the term e−kaz becomes 1. Furthermore, j is a complex
entity, jr − r

0j represents the distance between the source of the
SPPs and the point of investigation, f(q0) is an azimuthal
distribution function of dipole orientations with respect to the
x-axis; or 4(q0) is azimuthal distribution function of the dipole
orientations with respect to the radial vector, i.e. 4(q0) = f(q0) −
q
0; and kSPP is the SPP wave number.
The electric eld component of surface plasmons62 propa-

gating along the x-axis can be written as:

ESP ¼

2
664
�kz
0

kSP

3
775ejðut�kSPxþkzzÞ (5)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The wave vector kz depicts the intensity decay along the z-
direction and kSP surface plasmon polariton wave vector. As kZ
� kSP, the z-component will dominate in the near eld. This is
why we are only interested in the z-component of the electric
eld.

Eqn (4), the equation for a circularly polarized lens (CPL),
was modied by applying some boundary conditions as shown
below.

A(f(q
0
)) = A0cosf(q

0
);u(f(q

0
), q

0
) = ±f(q

0
)

Here, the +ve and −ve signs represents LCP and RCP,
respectively.

For circular polarization, the dipole sources are aligned
parallel to the radius, so 4(q0) = 0 and f(q0) = q

0

In the case of RCP polarization:

u(f(q
0
), q

0
) = −f(q

0
) = −q

0
and A(f(q

0
)) = A0cos4(q

0
) = A0.

The distance between the point of investigation and the
source of plasmons can be represented in a vector form

as

����� r!� r
0!
����� ¼

���r � r! cosðq � q
0 Þ
��� and its modulus can be

found out using the cosine rule as,���r� r
0
��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2 � 2rr cosðq� q
0 Þ

q
, where r is the radius

of the circle.
Now, plugging all the values in to eqn (4) and integrating dEz

over 0 to 2p, we get,
Ezðr; q; zÞq0˛½0; 2p� ¼ Aoe
�kaz

ðp=3
0

e�j

2
64

þ
ð2p=3
p=3

e�jq
0
e

jkspp

s

þ
ðp
2p=3

e�jq
0
e

jkspp

s

þ
ð4p=3
p

e�jq
0
e

jkspp

s

þ
ð5p=3

4p=3

e�jq
0
e

jkspp

s

þ
ð2p
5p=3

e�jq
0
e

jkspp

s

© 2024 The Author(s). Published by the Royal Society of Chemistry
Ezðr; q; zÞ ¼ e�kaz
ð2p
0

A0e
�jq0 ejkSPP�re�jkSPP�r�cosðq�q

0 Þdq0
(6)

Using the modulus of distance by applying the cosine rule,
eqn (6) can be written as,

Ezðr; q; zÞ ¼ Aoe
�kaz

ð2p
0

e�jq
0
e
jkspp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þr2�2rrcosðq�q

0 Þp
dq

0
(7)

where r follows the relation, r ¼ r0sec
�
q
0 � p

6

�
in the 1st

quadrant for a hexagonal plasmonic lens (HPL), as shown in
Fig. 2a. If we rotate this line, i.e. the radius of the hexagon
starting from the angle 0° to 2p, it touches the circle 6 times, at
the angles of p/6, 3p/6, 5p/6, 7p/6, 9p/6, and 11p/6 and at these
angles r becomes r0, which is also evident from the relationship

between r and r0. By putting r ¼ r0sec
�
q
0 � p

6

�
, the electric

eld for the range
�
q
0
˛

h
0;

p

3

i�
can be represented as per

Fig. 2a and as below,

Ezðr; q; zÞq0˛½0; p=3� ¼

Aoe
�kaz

ð p=3

0

e�jq
0
e
jkspp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � p

6
Þg2�2rrosec

�
q
0 � p

6

�
cosðq�q

0 Þ
r

dq
0

(8)

As this is a regular hexagon, we can apply almost the same
equation for the remaining sections, with the integration limit
q
0 ˛ [p/3, 2p/3], [2p/3, p], [p, 4p/3], [4p/3, 5p/3], [5p/3, 2p].
For the total hexagonal lens structure, the total electric eld
q
0
e
jkspp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � p

6
Þg2�2rrosec

�
q
0 � p

6

�
cosðq�q

0 Þ
r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � 3p

6
Þg2�2rrosec

�
q
0 � 3p

6

�
cosðq�q

0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � 5p

6
Þg2�2rrosec

�
q
0 � 5p

6

�
cosðq�q

0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � 7p

6
Þg2

A2�2rrosec

�
q
0 � 7p

6

�
cosðq�q

0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � 9p

6
Þg2�2rrosec

�
q
0 � 9p

6

�
cosðq�q

0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � 11p

6
Þg2�2rrosec

�
q
0 � 11p

6

�
cosðq�q

0 Þ
3
7775dq0

(9)
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can thus be written as shown in Fig. 2b and as below,

The square of eqn (9) yields the intensity, as I = Ez
2. We

solved the equations in MATLAB using Simpson's 3/8th rule.
The phase distribution and intensity were guided by two gov-
erning parameters: the change of r0 and KSPP. The analytical
plots, obtained from MATLAB, matched well with the FDTD
simulations, as discussed in the following section.

In the case of LCP illumination,

u(f(q
0
), q

0
) = f(q

0
) = q

0
.

Ezðr; q; zÞq0˛½0; 2p� ¼ Aoe
�kaz

ðp=3
0

ejq
0
e
jkspp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þfrosecðq0 � p

6
Þg2�2rrosec

�
q
0 � p

6

�
cosðq�q

0 Þ
r

þ

2
64

þ
ð2p=3
p=3

ejq
0
e

jkspp
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The value of the electric eld intensity at the LCP, under-
standable from Fig. 2b, was derived as:

The equations for the electric eld intensity arising due to
the linear polarizations (x-polarized and y-polarized illumina-
tion) are discussed in the ESI S2.† From eqn (9) and (10), weh i
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propose a generalized formula for any polygonal structure
having the number of sides p for RCP and LCP:

where p is the number of sides of the polygonal.
The unied equations for the polygonal structures (eqn (11)

and (12)) clearly indicate that the singularity points are depen-
dent on the material's properties and incident wavelength, as
kspp = f(3, 30, l). These points are also inuenced by the number
of sides of the polygon (p) and the radius of the lens (ro). These
key takeaways from the unied equation offer a exibility for
microparticle manipulation and vortex generation by adjusting
these parameters.
The equations for heptagonal (p= 7) lens and octagonal (p=
8) lens were derived from eqn (11) and (12) and are stated in the
ESI S3 and S4.† The generalized formula for a polygonal struc-
ture under linearly polarised illumination is provided in the ESI
S5.†
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Fig. 2 Schematic representation of the electric field derivations of a (b) hexagonal lens, (c) octagonal lens, (d) polygonal lens with p number of
sides, and (e) circular lens. (a) Represents the modifications of electric field equations in the first quadrant of the hexagonal lens through the
properties of a triangle.
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When we keep on increasing the number of sides of the
polygonal, eventually it becomes a circle for p = N and we have
proven that the generalized equation (eqn (12)) postulated for
a polygonal structure indeed works for a circular lens too.

In eqn (12), when p tends to innity, the
�ð2n� 1Þp

p

�
term

tends to become q
0 for every n. So, for every n, the

sec
�
q
0 � ð2n� 1Þp

p

�
term becomes 0. For n starting from 1 and

going up to a high number and theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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term remains the same, this gets converted toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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:

So, when p is innity, eqn (12) can be written as:h
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Similarly, for LCP, the electric eld will be:h
Ezðr; q; zÞq0˛½0;2p�

i
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¼2pAoe
�kazejðksppr0ÞJ1



ksppr

�
f e�kazJ1
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�
(15)
Comparison of different polygonal plasmonic lens structures
by FDTD simulation and theoretical calculations

In the previous section, we derived equations for the electric
eld intensity and phase distribution of various plasmonic lens
structures. In this section, the electric eld intensity at z-
direction and phase distribution have been simulated in FDTD
and also have been plotted in MATLAB based on the theoretical
calculations.

We started our investigation by carrying out FDTD simula-
tions for various plasmonic lenses with different lens geome-
tries, namely hexagonal, heptagonal, octagonal, and circular
Nanoscale Adv., 2024, 6, 5960–5970 | 5965
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lenses. For all the plasmonic lens structures, the radii of the
lenses were taken as r = 5 lspp. For the hexagonal lens under
RCP illumination, as shown in Fig. 3c and d, we could observe
a single optical vortex in the centre surrounded by the 2nd layer
of 6 optical vortices and the 3rd layer of 12 optical vortices. It is
anticipated that one can obtain more optical vortices, if we keep
on increasing the radius of the plasmonic lens. Based on the
results obtained for the hexagonal lens, i.e. a polygon with the
number of sides = 6, one can possibly expect similar increasing
number of optical vortices to be formed layer-by-layer in the
case of an octagonal lens, i.e. a polygon with n = 8. However, in
our FDTD simulation and theoretical calculations, the number
of vortices appearing for the octagonal lens with the same
radius was much lower than for the hexagonal lens, since only
the 1st and 2nd layers of vortices were formed for an octagonal
lens. The heptagonal lens also produced a singularity point in
the centre despite being an asymmetric structure, while the
circular lens showed only a single optical singularity point in
the centre. For LCP illumination, similar results were obtained
for all the lenses, as shown in the ESI Fig. S2.†
Fig. 3 MATLAB plots and FDTD simulations of the intensity and phase dis
heptagonal lens (e, f, g, and h), octagonal lens (i, j, k, and l), and circular

5966 | Nanoscale Adv., 2024, 6, 5960–5970
The MATLAB plots resembled the plots for the FDTD simu-
lations, as shown in Fig. 3. The only difference between the two
plots is in the intensity plots near or around the perimeter of the
lens. This difference was probably because FDTD gives a more
accurate result near the boundary of the lens, whereas in the
MATLAB simulation, we just plotted the equation. The total
topological charge of the vortices produced in each of the lens
structures was found to be +1 or−1, depending on the nature of
the illumination. LCP produced a topological charge of +1 and
RCP-1, indicating that the geometrical topological charge of any
lens structures is zero, irrespective of the number of sides of the
polygons. From Fig. 4, it is evident that themore we increase the
number of sides of the plasmonic lens, the lesser the number of
plasmonic vortices, when keeping every other condition intact.
This is the reason behind getting only one singular point, when
the number of sides becomes innity, i.e. a circular plasmonic
lens. Furthermore, we investigated smaller sided structures
than a hexagon. In Fig. 4, a relative comparison through colour
maps between hexagonal, square-shaped, and pentagonal lens
is shown only for LCP illumination.
tribution of different lens structures, i.e., hexagonal lens (a, b, c, and d),
lens (m, n, o, and p) under RCP illumination.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Intensity and phase distribution of different lens structures, i.e. hexagonal lens (a, b, c, and d), pentagonal lens (e, f, g, and h), and square-
shaped lens (i, j, k, and l). 1st and 2nd columns represent the FDTD simulations and 3rd and 4th column represent the MATLAB plots for a lens
radius r0 = 5lspp in MoTe2 under RCP illumination.
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The number of optical vortices seemed to increase for the
case of the square lens compared to the hexagonal lens, but the
singularity points were very difficult to differentiate from each
other and seemed like a huge superimposition. These obser-
vations indicate that the hexagonal lens is the most optimized
lens structure in terms of optical vortex generation. Also, the
effect of linearly polarised lights on the different lens structures
investigated through FDTD simulations and MATLAB plots and
further insights on the theoretical investigations of singularity
points are reported in the ESI S7.† Next, we further delved into
the far-eld studies of the best performing plasmonic lens
structure, i.e. hexagonal lens, as shown in Fig. S6.†

We discuss the vortex multiplexing phenomenon, as a func-
tion of the size of lens structure, in the next section. The
number of optical vortices increased as we increased the radius
of the lens, as shown in Fig. 5. The FDTD simulation results and
MATLAB plots for the theoretically derived equations are pre-
sented in Fig. 5, which represents the E-eld intensity and
phase patterns observed with different radii of hexagonal grat-
ings inscribed onWeyl semimetals at r0 = lSPP, 2lSPP, 6lSPP, and
8lSPP under RCP illumination for wavelength of 350 nm leading
to lSPP = 352.8 nm. The number of optical vortices was 1 when
the lens radius was lSPP. Then it started to increase astronom-
ically with the lens radius. For lens radius r0 = 2lSPP, a new 2nd
layer with the number of optical vortices as 6 started to exist and
© 2024 The Author(s). Published by the Royal Society of Chemistry
the 1st layer became very prominent. With the lens radii r0 =

6lSPP and 8lSPP, the numbers of distinct vortex layers were 4 and
5 surrounded by a somewhat ambiguous optical vortex layer.
The number of optical vortices formed in the nth layer was
found to follow the empirical formula of 6(n − 1).

This sort of ‘scaling behaviour’ was further validated by theo-
retical calculations, as shown in Fig. 5m–p. It is evident that the
MATLAB plots of the theoretical calculation corroborated well
with the FDTD results. Such a behaviour will be extremely bene-
cial in memory decoding applications, where each vortex can be
utilized for reading information purposes. Also, such a simplicity
of scaling can make the hexagonal lens a very popular lens
structure. The ‘scaling behaviour’ is also counterintuitive in some
senses, because if we increase the lens radius the general intuition
is that the lattice constant of the vortices will increase63 or only the
intensity around the centre44 will change, keeping the number of
optical vortices the same. Instead of this, we get an escalation of
the number of optical vortices.

We further delved into the reasoning behind the optical
singularities of different plasmonic structures from the unied
mathematical equation for a polygonal lens in ESI S9.† It has
been demonstrated in S9 that singularity points emerge at the
centre of the lens structure, (i.e. at co-ordinates r, q = 0, 0) and

at the co-ordinates r; q ¼ �nlspp;� np
3
, where n takes any
Nanoscale Adv., 2024, 6, 5960–5970 | 5967
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Fig. 5 Theoretical plots [(a), (b), (c), (d), (i), (j), (k), and (l)] and FDTD simulations [(e), (f), (g), (h), (m), (n), (o), and (p)] of a hexagonal lens with varying
radii of r0 = lspp,(a, e, i, and m), 2lspp (b, f, j, and n), 6lspp, (c, g, k, and o), (d, h, l, and p) 8lspp for RCP at 350 nm wavelength.
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integer value starting from 1. The range of n is proportionally
dependent on the radius of the lens structure. However,
increasing the radius indenitely is not feasible due to the
limited propagation length of plasmons.

This is where Weyl semimetals, such as MoTe2, prove advan-
tageous. MoTe2 has a higher gure of merit (FOM) than most
noble metals, allowing plasmons to travel farther before their
amplitude diminishes. This extended propagation distance with
MoTe2 offers greater exibility in increasing the radius of the lens
structure compared to with noblemetals like Au and Ag, which, in
turn, enables the generation of a larger number of vortices.
Conclusion

In summary, we presented here an optimized plasmonic lens
structure inscribed on Weyl semimetals based on unied mathe-
matical formulations. We further compared the colour contour
plots made with MATLAB with FDTD simulations. We observed
the generation of more optical vortices in a hexagonal lens than
circular lens within the same etching radius span, which implies
a larger area density of optical vortices in this plasmonic lens
structure, followed by two counterintuitive phenomena. The rst
one was the increment of the number of optical vortices with the
lens radius instead of the lattice constant and second, the number
of optical vortices decreased when number of sides of the lens
5968 | Nanoscale Adv., 2024, 6, 5960–5970
increased. With the help of the above observations and aer
comparing every possible polygonal lens structures, we came to
the conclusion that the hexagonal lens structure is the best plas-
monic lens structure in terms of optical vortices generation.
Furthermore, the generalized mathematical expression proposed
in this work can be used to calculate the performance of any
plasmonic lens.
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