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images of nanoparticles to train
a neural network to classify nanoparticles for
crystallinity

Nina Gumbiowski,a Juri Barthel, b Kateryna Loza,a Marc Heggenb

and Matthias Epple *a

Machine learning approaches for image analysis require extensive training datasets for an accurate analysis.

This also applies to the automated analysis of electron microscopy data where training data are usually

created by manual annotation. Besides nanoparticle shape and size distribution, their internal crystal

structure is a major parameter to assess their nature and their physical properties. The automatic

classification of ultrasmall gold nanoparticles (1–3 nm) by their crystallinity is possible after training

a neural network with simulated HRTEM data. This avoids a human bias and the necessity to manually

classify extensive particle sets as training data. The small size of these particles represents a significant

challenge with respect to the question of internal crystallinity. The network was able to assign real

particles imaged by HRTEM with high accuracy to the classes monocrystalline, polycrystalline, and

amorphous after being trained with simulated datasets. The ability to adjust the simulation parameters

opens the possibility to extend this procedure to other experimental setups and other types of

nanoparticles.
Introduction

High-resolution transmission electron microscopy (HRTEM) is
an important analytical tool in nanoparticle research as size,
shape, and atomic structure of nanoparticles are directly re-
ected in the image contrast. However, analysing such HRTEM
images is oen a time-consuming and tedious, mostly manual
process. A conventional manual annotation can also lead to
a considerable degree of human bias in the data processing.
Manual analysis is especially limited when large amounts of
image data, for instance from in situ electron microscopy
experiments, are processed. Therefore, automated image anal-
ysis, including machine learning (ML), is increasingly used for
image analysis tasks in electron microscopy (for comprehensive
overviews on machine learning in electron microscopy see ref. 1
and 2). These are typically faster and more objective than
manual analyses. For instance, machine learning approaches
have been used to perform noise reduction, automated struc-
tural analyses of bulk materials in TEM images, as well as the
localization of individual atoms and lattice defects.3–9 However,
large amounts of manually classied training data are necessary
integration Duisburg-Essen (CENIDE),
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–4206
to train the neural networks that are used in machine
learning.10–12

For bulk analyses of HRTEM images of a given sample it is
not only of interest to know their size and shape, but also
features of their internal structure, e.g. to distinguish amor-
phous, single-crystalline, or polycrystalline congurations. The
nanoparticle crystallinity inuences their physical properties,
e.g. their luminescence,13,14 their metallic nature,15,16 and the
stability towards dissolution17 which can also effect their bio-
logical properties.18,19 Notably, a given sample may contain
a mixture of nanoparticles with different crystallinity.20 In that
case, the relative proportions of particles falling into one of
these classes are of interest. The principal difference between
the three classes of crystallinity is the degree of periodicity of
the atomic structure in the particle volume or its projected area,
which manifests itself as a corresponding periodicity in the
image contrast. The task of classifying samples according to
qualitative differences in periodicity in conned areas of an
image is a typical task of pattern recognition, which can be
performed in real space or in reciprocal space.

Usually, crystallographic analysis is performed by Fourier-
transformed HRTEM images and on the electron diffraction
patterns on individual particles, for example diffraction using
a parallel coherent electron beam.21,22 While electron diffraction
in cutting-edge microscopes offers the sensitivity to fully char-
acterize a single nanostructure, its success is usually limited to
larger features exceeding 3 nm.23 With other techniques like X-
ray powder diffraction, it is generally difficult to obtain
© 2024 The Author(s). Published by the Royal Society of Chemistry
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quantitative information on the ratio of amorphous to crystal-
line particles.24 Furthermore, X-ray diffraction averages infor-
mation over a large number of particles (unlike electron
microscopy which probes individual particles), making it blind
to variations within smaller clusters or nanoparticles. It also
does not give the particle sizes but the averaged size of crys-
talline domains in a sample. Thus it cannot distinguish
between twinned particles and individual particles.24

The assessment of crystallinity is particularly challenging
when ultrasmall nanoparticles (1–3 nm) are considered.25 These
are difficult to visualize and conventional electron diffraction is
challenging.26–28 Furthermore, they are sensitive to internal
change (like recrystallization) under the high-dose conditions
during electron diffraction.26,27 Gold nanoparticles are suitable
to address the question of crystallinity because they give a high
contrast (unlike the light platinummetals) and because they are
not sensitive to oxidation.26,27 Thus, gold represents a good role
model for ultrasmall nanoparticles and atom-sharp clusters
which has been studied to a considerable extent.

We have presented earlier a program based on machine
learning to analyse individual nanoparticles for their shape and
size from HRTEM images.29,30 Here we extend this approach to
an automated classication of nanoparticles with respect to
their crystallinity. As the generation of manually labelled
training data for this task is not only time-consuming but also
highly error-prone, different image simulation approaches were
tested to establish a feasible training pipeline. This follows
earlier approaches to train networks with simulated scanning
electron microscopy images for particle size analysis,7,31 created
by generative adversarial networks (GANs).32,33 We present
a fully automated classication of nanoparticles by machine
learning with respect to their crystallinity, fully based on
simulated training data.
Results and discussion

Even particles with the same crystal structure are usually found
in random orientations in a TEM image and therefore can lead
to a large number of different patterns in HRTEM images. Thus,
a machine learning-based procedure to classify the particles in
an HRTEM image-based on their crystallinity is urgently
needed. One of the most important factors for a successful
Fig. 1 Example images of the simple pattern simulation approach to trai
monocrystalline, and polycrystalline.

© 2024 The Author(s). Published by the Royal Society of Chemistry
machine learning model is the quality and quantity of adequate
training data. For a crystallographic classication of nano-
particles, a large amount of accurately labelled HRTEM images
is necessary. Manually classied HRTEM images would be
ideal, but it is a tedious process to classify thousands of parti-
cles. Furthermore, the human bias with respect to the classi-
cation of borderline cases immediately affects the quality of the
training data.34 Therefore, we have investigated approaches
applying synthetic HRTEM images to train the neural network.
Two different approaches to generate synthetic images were
explored, rst a simple pattern-based simulation, and second,
a more advanced simulation of HRTEM images by the soware
package “Dr Probe”.35 The quality of the classication aer
training was tested on a subset of the simulated images (test
dataset) and also on a manually labelled set of experimental
HRTEM images. This ensured that the network was applicable
to the experimental images and that the simulated images were
an adequate representation of experimental images.

As a rst very basic approach, the classication network was
trained on simple pattern images as shown in Fig. 1. The
training was performed with such patterns without the back-
ground signal of the thin amorphous support that is typical for
HRTEM images of supported nanoparticles, i.e. with the
depicted quadratic images.

The training was rst performed for two classes (amorphous
and crystalline) and then extended to three classes (amorphous,
monocrystalline, polycrystalline). The network showed a very
good performance on the simulated test dataset which was
a subset of 20% of the simulated images that were not used in
the training process for the classications amorphous/
crystalline (denoted as “two-class” in the following) and
amorphous/monocrystalline/polycrystalline (denoted as “three-
class” in the following). However, a test on experimental
HRTEM images of ultrasmall gold nanoparticles (1–3 nm) gave
disappointing accuracies (Table 1). This indicates that simple
patterns are not suitable to train a network to classify experi-
mental HRTEM images.

Simulations of HRTEM images with atomic structure models
of gold nanoparticles and thin amorphous support lms were
performed with the soware Dr Probe.35 A dataset was created
that consisted of simulated images of ultrasmall gold nano-
particles on a support of amorphous carbon as shown by the
n a neural network to classify particles into the categories amorphous,

Nanoscale Adv., 2024, 6, 4196–4206 | 4197
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Table 1 Performance evaluation metrics for the network trained on a dataset that consisted of patterned images, tested on the test dataset, and
on a dataset of manually labelled experimental HRTEM images of ultrasmall gold nanoparticles

Class

Simulation test dataset Experimental HRTEM dataset

Accuracy [%] Precision [%] Recall [%] Accuracy [%] Precision [%] Recall [%]

Two-class Amorphous 100 100 100 56.3 28.8 20.7
Crystalline 100 100 65.0 74.3

Three-class Amorphous 99.5 100 100 51.74 76.6 59.9
Mono-crystalline 99.5 99.0 20.6 38.4
Poly-crystalline 99.0 99.5 47.4 44.9

Fig. 2 3D model of a gold nanoparticle on a support of amorphous
carbon used for the HRTEM image simulation. The edge length of the
cubic box is approximately 6 nm. The rendering was performed with
the program Mercury.36

Fig. 3 Different types of gold nanoparticles from the ChemTube3D dat

4198 | Nanoscale Adv., 2024, 6, 4196–4206
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example in Fig. 2. Gold nanoparticles on a carbon sample
holder can be considered as a good model system which is also
easily experimentally accessible. Note that we did not consider
strict crystallographic structures in this approach, i.e. all
patterns with a regular pattern indicating a translation
symmetry were considered and classied as crystalline.

Different models of gold nanoparticles were used for the
simulations, taken from the ChemTube3D database (Fig. 3).37 In
addition, spherical cut-outs of the gold fcc structure were
prepared. Furthermore, amorphous gold nanoparticles were
simulated by a custom-made Python script. The presence of
amorphous (or disordered) nanoparticles is a peculiarity in the
ultrasmall size regime where each particle consists of only a few
hundred atoms.26

In addition to variations of the structure models, some
imaging parameters (including the most volatile optical
parameters like defocus and two-fold astigmatism) were varied
with each simulation within reasonable ranges. Examples of the
simulated HRTEM images are shown in Fig. 4 together with an
experimental HRTEM image for comparison. Extensive data
augmentation of the primary dataset by rotation, brightness
and contrast augmentation, x- and y-axis rotation, noise addi-
tion etc. was carried out to increase the number of available
aset37 used for the simulation of HRTEM images.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Left: Representative simulated images: two examples of an Au147 icosahedron structure from the ChemTube3D database,37 two spherical
fcc cut-outs, and two examples of generated amorphous particles. Right: A cut-out from an experimental HRTEM image showing two crystalline
gold nanoparticles is shown for comparison.

Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

/1
5/

20
26

 1
:4

0:
57

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
training images (see Materials and methods part). Before
training on these images, they were processed by the ANTEMA
soware to separate the particle from the background (cut-out
procedure based on machine learning) as described earlier.30

An inadvertent inclusion of background into the particle area of
interest was therefore avoided. Thus, the training process was
kept as similar as possible to the processing of experimental
HRTEM images.

The rst network trained by a more realistic image simula-
tion by the Dr Probe soware was named “SimulationC” and
consisted of images based on the ChemTube3D models,
spherical fcc cut-outs, and the generated amorphous particles,
all on a thin amorphous carbon support. The network was
trained to distinguish two classes (amorphous and crystalline)
and reached an accuracy of 91.2% on the test dataset and of
75.2% on the dataset of experimental HRTEM images (Table 2).
A closer inspection showed that the network was especially
error-prone on images with a strong amorphous background
signal. The low precision of 60.9% for the class “crystalline”
indicates that the network tended to falsely classify crystalline
particles as amorphous.
Table 2 Performance evaluation metrics for the SimulationC network tra
support, tested on a separate dataset of simulated images and a dataset

Class

Simulation test data

Accuracy [%] Precision [%] Recal

Amorphous 91.2 85.8 89.6
Crystalline 94.2 92.0

© 2024 The Author(s). Published by the Royal Society of Chemistry
For this reason, further images were simulated with stronger
amorphous background signal. Instead of increasing the
thickness of the amorphous carbon lm, which would require
a serious increase of computation time of the simulation, the
background signal was effectively enhanced by preserving the
support lm thickness, and with this keeping the number of
atoms the same but substituting the carbon atoms by silicon
atoms. Now the signal of the amorphous background was
stronger, reducing the contrast between the background and an
amorphous particle (Fig. 5).

The network was trained on an extended dataset that con-
tained the images of nanoparticles from SimulationC and the
new nanoparticles on a silicon support. It was denoted as
“SimulationC+Si”. For two classes, this network showed a much
higher accuracy of 98.7% on the test dataset than the network
SimulationC. The accuracy of the network on experimental
HRTEM images was also strongly enhancedwith 89.3% (Table 3).
Obviously, the inclusion of images with stronger amorphous
background signals improved the network performance on
experimental HRTEM images by generating a more realistic
simulation of the level of disturbing background signal.
ined on simulated images of gold nanoparticles on amorphous carbon
of manually labelled experimental HRTEM images

Experimental HRTEM dataset

l [%] Accuracy [%] Precision [%] Recall [%]

75.3 84.7 76.7
61.1 72.5

Nanoscale Adv., 2024, 6, 4196–4206 | 4199
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Fig. 5 Change of the amorphous support film in the simulation from carbon to silicon. Note the increased contrast of the support film due to the
stronger scattering power of silicon compared to carbon.

Table 3 Performance evaluation metrics for the SimulationC+Si network trained on of gold nanoparticles on a layer of amorphous carbon and
a layer of amorphous silicon support, tested on the simulation test dataset and a dataset of manually labelled experimental HRTEM images

Class

Simulation test dataset Experimental test dataset

Accuracy [%] Precision [%] Recall [%] Accuracy [%] Precision [%] Recall [%]

Amorphous 98.7 98.0 99.3 89.3 78.6 93.9
Crystalline 99.4 98.1 96.6 87.1
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To extend this approach to three classes, simulations of
polycrystalline particles were necessary. The polycrystalline
particles were simulated on carbon and silicon supports by
stitching together either two or three differently rotated mono-
crystalline fcc cut-outs (Fig. 6). The crystallographic orientation
of the domains was not considered. The network trained on this
dataset is denoted as “Poly” in the following. This network
reached an accuracy of 96.3% on the simulation test dataset for
three classes. As might have been expected, errors were mainly
made in the distinction between polycrystalline and mono-
crystalline particles. This was also found with experimental
HRTEM test images where the network achieved an accuracy of
78.0%. The main error occurred for polycrystalline particles that
were wrongly labelled as monocrystalline, leading to a low
precision score of 48.9% for the class monocrystalline (Table 4).
Aer classications with a low certainty of assignment (<80%)
4200 | Nanoscale Adv., 2024, 6, 4196–4206
were excluded and categorized as undened, the accuracy
increased to 85.4% and the precision for the class mono-
crystalline increased to 63.2%. However, this put many particles
into the non-assignable category “unknown”. Further errors
occurred in the class polycrystalline as shown in the confusion
matrix (Fig. 7). The deletion of all classications with a certainty
of assignment below 80% le 19.3% of all particles in the
manually labelled dataset categorized as unknown, an accept-
able small fraction given that much larger datasets can be eval-
uated with our automated approach.

The classication network “Poly” together with the 80%
omission rule was then included into the soware package
ANTEMA30 to fully analyse particles in HRTEM images in terms
of size, shape and structure. Fig. 8 shows a visualization of the
combination of particle detection with ANTEMA and the clas-
sication by the network trained with the Poly dataset for an
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Examples of simulated HRTEM images of polycrystalline particles generated by stitching together differently rotated monocrystalline
particles with either two or three different domains. The support in the simulation was silicon in all cases.

Table 4 Performance evaluation metrics for the network “Poly”, trained on all data that had been simulated by Dr Probe,35 i.e. from atomic
structure models of amorphous, monocrystalline, and polycrystalline gold nanoparticles on amorphous carbon and silicon supports. The
performance was tested on the test dataset and a dataset of manually labelled real HRTEM images

Class

Test dataset Real HRTEM dataset

Accuracy [%] Precision [%] Recall [%] Accuracy [%] Precision [%] Recall [%]

Amorphous 96.3 99.7 98.2 78.0 81.3 87.9
Monocrystalline 96.4 93.0 48.9 77.7
Polycrystalline 94.2 97.8 92.4 71.8
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image of gold nanoparticles. The ANTEMA soware was able to
detect the particles, and the classication algorithm classied
the nanoparticles based on their crystallinity. The particles at
the border of the image were removed by post-processing in the
ANTEMA soware to avoid incomplete particles. The analysis by
the combined programs took only a few seconds, i.e. this
approach was much less time intensive than the usual manual
analysis. Clearly, the automated analysis gives correct results in
most cases. The classication of nanoparticles by size and
shape by ANTEMA has been reported earlier.30

It should be emphasized that gold nanoparticles represent
a particularly good system for this approach because they have
a high electron contrast and do not tend to be oxidized.38

Therefore, this analysis was possible even for the challenging
© 2024 The Author(s). Published by the Royal Society of Chemistry
case of ultrasmall nanoparticles (1–3 nm). This approach will
become easier for larger particles (like plasmonic particles), but
more difficult for metal particles of lighter elements like silver
or the light platinum metals. This is due to the decreasing
contrast from these lighter elements that makes the identi-
cation of a crystal lattice difficult or even impossible in the
ultrasmall particle size range.26–28

In principle, it is also possible to analyse crystalline nano-
particles by 2D-Fourier Transformation (2D-FT). This has been
demonstrated by Zhu et al.39 who have applied this method to
7 nm iron oxide nanoparticles. However, the contrast of ultra-
small nanoparticles analysed here is much lower, therefore the
analysis will be much more difficult. Furthermore, this is just
another method of image analysis, based on training the neural
Nanoscale Adv., 2024, 6, 4196–4206 | 4201
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Fig. 7 Normalized confusion matrix and performance evaluation metrics for the network “Poly” after omission of all classifications with an
accuracy below 80%.

Fig. 8 HRTEM image of gold nanoparticles and the combination of the particle detection software ANTEMA30 with the particle classification
based on crystallinity as implemented here. The particles were classified as either amorphous, monocrystalline, or polycrystalline.
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network with 2D-FT images. Therefore, we do not expect amajor
difference to real-space training as performed here, but this can
only be shown in a strict comparison of both methods. It is also
an open question how this approach would work on twinned
particles that consist of more than one crystalline domain. The
current algorithm was designed to cut out individual particles
from the image by segmentation. If such a cut-out particle
would consist of more than one crystalline domain, Fourier
transformation would give erroneous results.
Conclusions

Ultrasmall nanoparticles with a diameter of 1–3 nm can have an
internal crystallinity which is difficult to assess due to their
small size, even in high-resolution transmission electron
microscopy. Nevertheless, the automated analysis of ultrasmall
gold nanoparticles with respect to their crystallinity is possible
by application of a suitable machine learning procedure. The
necessity for huge training datasets was solved by realistic
simulations of HRTEM images of gold nanoparticles on an
amorphous support lm. Thus, the human bias and the
4202 | Nanoscale Adv., 2024, 6, 4196–4206
extensive work required by manually classifying thousands of
particles can be avoided. The simple approach of pattern-based
images was not successful as obviously these patterns are not
sufficiently similar to HRTEM images for training. In contrast,
HRTEM image simulations can be used to train a neural
network for particle classication into the categories amor-
phous, monocrystalline, and polycrystalline. However, it turned
out that small experimental details like the disturbing signal
due to the amorphous support lm had a strong inuence on
the quality of the training. This was demonstrated by the
signicant increase in the level of assignment by changing the
support material from carbon to silicon in the simulated
images. The simulation is based on specic experimental
parameters of the electronmicroscope used but can in principle
be generalized to create any kind of dataset representing
a variety of HRTEM imaging conditions. Furthermore, it easily
permits to change the chemical nature of the nanoparticle, e.g.
from gold to other metals or oxides, thus it can be used for
different kinds of materials. Of course, the classication of
ultrasmall nanoparticles is particularly challenging due to the
small number of atoms involved. Consequently, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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classication of larger particles should be possible along the
same way with even higher accuracy as the periodicity in the
HRTEM images is stronger. Further adaptations of the simu-
lation les to produce more realistic images with more noise
may further increase the accuracy of a network trained on such
simulated data.

In summary, the combination of a particle detection
approach with ANTEMA with the particle classication pre-
sented here enables an automated large-scale analysis of
particle crystallinity from HRTEM images with the possibility of
analysing thousands of particles within a few minutes. This
strongly speeds up the analysis of samples that would otherwise
remain insufficiently characterized and gives a statistically
reliable assessment of the properties of a particle population.
Materials and methods
Electron microscopy

High-resolution transmission electron microscopy (HRTEM)
was performed with an aberration-corrected FEI Titan trans-
mission electron microscope equipped with a Cs-image
corrector (CEOS Company), operating at 300 kV.40 The nano-
particle dispersion was drop-cast on a copper grid that was
coated with an ultrathin amorphous carbon lm. Representa-
tive TEM images of ultrasmall metallic nanoparticles (1–3 nm)
were used for validating the neural networks trained on arti-
cial images.
Image simulation

Image patterns for the classes amorphous, monocrystalline, and
polycrystalline were generated from synthetic patterns with
a custom-made MATLAB script.41 Images of the class amorphous
were generated by placing randomblack and white dots on a grey
background and adding salt and pepper noise with a noise
density of 0.5. Images of the class monocrystalline were gener-
ated by overlaying two sinus functions with random frequency
values in range 0.05 to 0.55 at randomly set angles and adding
salt and pepper noise with a noise density of 0.5. Images of the
class polycrystalline were generated by stitching together two or
three images of the class monocrystalline with the same sinus
frequency. All training images were quadratic as shown in Fig. 1.
Table 5 Overview of the training datasets generated with image pattern
particles used in each class

Dataset Description

Pattern Simple pattern approach with added noise
SimulationC Simulation with Dr Probe on a carbon support with

models for crystalline particles created with ChemT
and fcc cut-outs

SimulationC-Si SimulationC dataset + simulations with Dr Probe on
support with particle models for crystalline particle
with ChemTube3D and fcc cut-outs

Poly SimulationC-Si dataset + simulations with Dr Probe
polycrystalline (twinned) particles generated from fc
on amorphous carbon support as well as on silicon

© 2024 The Author(s). Published by the Royal Society of Chemistry
HRTEM images were simulated with the soware Dr Probe,
based on a Python interface.35,42,43 All generated images depicted
gold nanoparticles. The atom packing models were partially
acquired from ChemTube3D which are based on calculations by
Barnard et al.44,45 and also generated by dedicated scripts with
the tools implemented in the Dr Probe soware and the emilys
Python package.37,46 The data from ChemTube3D provided 16
monocrystalline and 6 twinned models (Fig. 3). Further mono-
crystalline models were generated by cutting out spheres of
random sizes between 1 and 3 nm from the fcc structure of gold
(ICSD 52700).47 Further polycrystalline particles were generated
by cutting two differently rotatedmonocrystalline spheres of the
same size (1 to 3 nm) along the same axes with a random
distance from the particle centre between 0 nm and half of the
radius of the particle. The rst part of the rst sphere and the
second part of the second sphere were then stitched together to
produce a polycrystalline particle. With a 50% chance this
procedure was repeated with the resulting polycrystalline
particle and another rotated monocrystalline particle of the
same size. For this, the polycrystalline particle was randomly
rotated before cutting it so that the previous cutting axis and the
new cutting axis were not parallel. Amorphous particle models
were generated by randomly positioning atoms in a spherical
volume and then removing all positions that had a distance to
other atom positions below 0.248 nm, following the procedure
given by Novaes et al.48

Each particle was then placed into a cubic box with a side
length of about 6 nm with the emilys toolbox.46 An amorphous
carbon support layer, representing the sample holder, was
added below the particle by the same generative approach as
used above with the amorphous gold nanoparticles. The lled
volume was a cuboid with the length and width of the cubic box
and a randomly set thickness between 1 and 3 nm. The
minimum distance between the carbon atoms was set to
0.160 nm. The support was generated individually for each
simulation, ensuring a variable support structure, a variable
support thickness, and a variable background noise in the
simulation. To increase the amorphous background signal,
images were also generated by replacing the carbon atoms in
the support by silicon atoms, leaving all other parameters and
atom positions unchanged.
s and with Dr Probe after data augmentation, including the number of

Amorphous Mono-crystalline Poly-crystalline

1000 1000 1000
particle
ube3D

1252 1806 507

a silicon
s created

1998 2630 507

for
c cut-outs
support

1998 2630 3255
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The simulation of particles as depicted in Fig. 2 was per-
formed for an acceleration voltage of 300 kV. The focus spread
was randomly set to values between 4.5 and 5.5 nm. The defocus
was set to values in the range of −4 to 5 nm. The two-fold
astigmatisms in x- and y-coefficients were independently set
to values between −3.0 and 3.0 nm. In total, three different
datasets were generated as shown in Table 5.

Manually labelled set of HRTEM images

To test the performance of the trained network with real
HRTEM data, a set of metal nanoparticles from HRTEM images
was manually labelled. These particles were cut out from the
images with the ANTEMA soware.30 This soware is based on
a neural network trained to distinguish particles from back-
ground in HRTEM images by performing semantic segmenta-
tion. Thus, individual particles can be detected and isolated
from the background. The particles were manually classied as
monocrystalline, polycrystalline, or amorphous. Particles that
could not be assigned to a class by the examiner with a high
certainty were not used for the dataset and excluded from
training. The nal dataset consisted of 110 monocrystalline
particles, 380 polycrystalline particles, and 247 amorphous
particles. Chemically, it consisted mainly of gold nanoparticles
in a size range of 1 to 10 nm as well as some platinum and
silver–platinum nanoparticles for comparison.

Machine learning procedure

Multiple trainings were performed with different simulated
image datasets for training (Table 5) with the goal to assign the
particles cut out from real HRTEM images into either two
classes (amorphous and crystalline) or three classes (amor-
phous, monocrystalline and polycrystalline). The datasets
generated with the soware Dr Probe were pre-processed by
treating them with the ANTEMA soware to cut out the particle
from the image as was done with the real images. This removed
the background outside the particle (the support) but not the
inherent background noise level caused by the support lm
below the particle. The patterned datasets were not further pre-
processed. All simulated datasets were split into training, vali-
dation, and test datasets in a number ratio of 60 : 20 : 20.

Different neural networks that are available in the MathWorks
Deep Learning Toolbox were tested for the two-class classica-
tion.41 The best results were achieved with ResNet-101.49 There-
fore, this network was used for all further trainings. The weights
were initialized with pretrained weights from training with the
ImageNet dataset.50 As ResNet-101 has an image input size of 224
× 224 pixels, all images were resized to that size. To enhance the
training by presenting the network more variable data, extensive
data augmentation was applied. The images were augmented by
random scaling, rotation, x- and y-axis reection, as well as
brightness and contrast variation. Furthermore, a random
Gaussian lter with a square kernel was applied for image blur-
ring with a maximum Gaussian standard deviation of 2.

The training parameters were optimized by a Bayesian
optimization. Training was performed for maximum of 80
epochs. Validation was performed once every epoch to prevent
4204 | Nanoscale Adv., 2024, 6, 4196–4206
overtting. If the validation loss did not decrease for more than
ve validation cycles, the training was terminated. The initial
learning rate was set to 0.0085 and decreased every 20 epochs by
a drop factor of 0.62.

The computations were performed on a Dell Precision 7920
Tower equipped with an NVIDIA Quadro RTX 5000, 32 GB RAM,
and an Intel® Xeon® Gold 6226R processor.

The networks performance was evaluated on the test dataset
by the parameters accuracy, precision and recall.51 The
accuracy is a global metric, dened as the ratio of the correctly
classied true positives (TP) and true negatives (TN) to all
classied images including the false positives (FP) and false
negatives (FN).

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
(1)

The precision and recall values are class-based metrics. The
precision is the ratio of correctly classied images of one class
to the full number of images belonging to that class.

Precision ¼ TP

TPþ FP
(2)

The recall is the ratio of correctly classied images of one
class to the full number of images that were classied into
this class.

Recall ¼ TP

TPþ FN
(3)

Furthermore, the performance was evaluated on the manu-
ally labelled dataset of particles from HRTEM images to test
whether the network was applicable to real data.
Data availability

The code for the described image analysis, denoted with the
acronym ANTEMA, including reference images, is available
here:

� GitHub at https://github.com/ngumb/ANTEMA.
Further information on the ANTEMA soware package has

been published here:
� N. Gumbiowski, K. Loza, M. Heggen and M. Epple, Nano-

scale Adv., 2023, 5, 2318–2326.
HRTEM images were simulated with the soware Dr Probe,

based on a Python interface, as reported here:
� J. Barthel, Ultramicroscopy, 2018, 193, 1–11.
� J. Barthel, Dr Probe command-line tools for HR-(S)TEM

image simulation, https://github.com/ju-bar/drprobe_clt,
accessed 13.11.2023.

� F. Winkler and E. Julianto, drprobe_interface: Python
interface for the Dr Probe command line tools, https://
github.com/FWin22/drprobe_interface, accessed 14.11.2023.

The emilys Python package can be found here:
� J. Barthel, emilys: electron microscopy image analysis

tools, https://github.com/ju-bar/emilys, accessed 13.11.2023.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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