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Resistance to platinum-based chemotherapy is the major cause of poor prognosis and cancer-associated
mortality in ovarian cancer patients, so novel therapeutic strategies to restore platinum sensitivity are
needed to improve patient outcomes. Sphingosine Kinase (SphK) 1 is involved in regulating multiple pro-
survival pathways, key mediators in the sensitivity of tumor cells toward platinum. By encapsulating CBP
and the SphK1 inhibitor PF543 in PLGA (poly lactic-co-glycolic acid) nanoparticles, a dual-drug delivery
system (C/PNPs) was formed to simultaneously deliver CBP and PF543. The physicochemical
characteristics, cell uptake rate and biodistribution behavior of C/PNPs were evaluated. Then the anti-
tumor ability of C/PNPs in vitro and in vivo was further investigated. The C/PNPs could deliver CBP and
PF543 simultaneously to a platinum-insensitive cell line (SKOV3) both in vitro and in vivo. Furthermore,
benefiting from the enhanced permeability and retention (EPR) effect of PLGA NPs, C/PNPs exhibited an
improved tumor region accumulation. As a result, a synergistic anti-tumor effect was found in the
SKOV3 tumor-bearing mice, with tumor volume inhibiting rates of 84.64% and no side effects in major
organs. The mechanistic studies confirmed that the inhibition of SphK1 by PF543 sensitized SKOV3 cells
to CBP chemotherapy, partly by inhibiting the CBP-induced activation of pro-survival pathways,
including ERK, AKT and STAT3 signaling. Our study reveals that C/PNPs can serve as an efficient dual-
drug delivery system to restore platinum sensitivity in ovarian cancer models partly through inhibiting
platinum-induced pro-survival pathway activation.
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1 Introduction

Ovarian cancer is the leading cause of death from gynecological
malignancy, with approximately 12 810 deaths and nearly 19
880 new cases estimated for 2022 in the United States.!
Debulking surgery combined with platinum-based chemo-
therapy is the current first-line treatment for ovarian cancer.”
Although initial ovarian cancer response rates to platinum-
based chemotherapy are high, most of the ovarian cancer
patients developed resistance to platinum during the period of
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treatment,® which is the major cause of poor prognosis* and
ovarian cancer-associated mortality. Thus, novel therapeutic
strategies to restore platinum sensitivity are needed to improve
patient outcomes.

Extensive published evidence has demonstrated that platinum
resistance stems from three primary mechanisms: (1) increased
drug efflux and/or reduced drug uptake, (2) enhanced DNA repair
and (3) upregulation of anti-apoptotic factors.>® Pro-survival
pathways are reported to play critical roles in the sensitivity of
tumor cells toward platinum through these mechanisms. For
example, signal transducer and activator of transcription 3
(STAT3), extracellular signal-regulated kinase (ERK) or protein
kinase B (PKB/AKT) pathway activation can mediate the alterations
of molecules involved in apoptosis, assist ovarian cancer cells to
evade death, and ultimately cause the platinum-resistance of
ovarian cancer.” Moreover, the AKT pathway could promote CDDP
efflux and resistance by up-regulating drug transporters.® Accord-
ingly, co-interfering with these specific pro-survival pathways may
emerge as a promising strategy for overcoming platinum resis-
tance. Therefore, we wondered whether there might be one major
mediator regulating these signaling pathways.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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PF543, a sphingosine kinase (SphK) 1 inhibitor, might be
a suitable candidate drug because SphK1 plays important roles
in regulating pro-survival pathways in cancer. SphK1 is an
important signaling enzyme that could catalyze the phosphor-
ylation of sphingosine and sequentially yield abundant
sphingosine-1-phosphate (S1P).° It is well known that SphK1
could promote cell growth, inhibit apoptosis, and facilitate
oncogenesis.'” Researchers have found that the expression of
SphK1 was up regulated in many solid tumors." And the down-
regulation of SphK1 by inhibitors or genetic means could be
used as a novel way to suppress the growth of tumor.’> Our
previous studies have revealed that SphK1 mediated AKT and
ERK pathways in ovarian cancer models." Moreover, SphK1 was
reported to regulate the STAT3 pathway and promote the
development of colitis-associated cancer, bladder cancer and
non-small cell lung cancer."'® Importantly, previously we
found that the expression level of SphK1 was higher in ovarian
cancer cells and even higher in platinum-insensitive ovarian
cancer cells, compared with the expression in normal controls,"”
which suggested that SphK1 may be involved in the platinum
resistance of ovarian cancer. Based on these findings, we
hypothesized that the combination of platinum drugs and
PF543 may restore platinum sensitivity in ovarian cancer
models.

Each chemotherapy drug or combination has nonspecific or
systemic side effects, such as acute nephrotoxicity and adverse
gastrointestinal reactions. As a solution, our previous studies
showed that poly lactic-co-glycolic acid (PLGA) based nano-
particles (NPs) reduced these adverse effects, achieved sus-
tained release and had good safety.’®'® In recent years, PLGA-
based nanoparticles (NPs) have been studied in the field of
drug delivery, including the delivery of various anticancer
drugs, protein or peptide drugs, and bacterial or viral DNA.>***
Therefore, PLGA NPs are particularly attractive for clinical
application as drug delivery systems.

Based on the above scientific background, we investigated
the role of PLGA nanoparticle co-delivery of carboplatin (CBP)
and PF543 in restoring platinum sensitivity in platinum-
insensitive ovarian cancer models. Owing to the enhanced
permeability and retention (EPR) effect, C/PNPs showed an
improved tumor preferential accumulation and cellular uptake
rate. Moreover, mechanistic studies showed that PF543, an
SphK1 inhibitor, significantly inhibited the CBP-induced acti-
vation of pro-survival pathways, including ERK, AKT and STAT3
pathways. As a result, synergistic anticancer effects were ach-
ieved both in vitro and in vivo (Scheme 1).

2 Materials and methods

2.1. Materials

PLGA (50:50) was obtained from Ruixi Biological Technology
(Xi'an, China). Coumarin-6 and DiR iodide were purchased
from MedChemExpress (Monmouth Junction, NJ, USA). CBP
and PF543 were obtained from Sigma-Aldrich. Antibodies tar-
geting SphK1 (catalog: 12071, rabbit), ERK (catalog: 4695,
rabbit), p-ERK (catalog: 4370, rabbit), AKT (catalog: 4691,
rabbit), p-AKT (catalog: 4060, rabbit), STAT3 (catalog: 4904,
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rabbit), p-STAT3 (catalog: 9145, rabbit) and GAPDH (catalog:
97166, mouse) were bought from Cell Signaling Technology
(Danvers, MA, USA). Antibody targeting p-SphK1 (catalog:
SP1641, rabbit) was purchased from ECM Biosciences.

2.2. Cell culture

The human ovarian cancer cell line SKOV3, which is insensitive
to platinum,** was purchased from the Cell Bank of Type
Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). The cells were cultured in DMEM medium
supplemented with 10% FBS and 1% penicillin-streptomycin at
37 °C in 5% CO,.

2.3. Synthesis and characterization of C/PNPs

C/PNPs were formulated by the double emulsion technique.**
We tested the encapsulation efficiency of different ratios of
PF543 and CBP ranging from 5:1 to 1:20. Finally, we confirm
that 0.05 mg PF543 and 5 mg CBP added to 5 mg PLGA could
achieve the best encapsulation efficiency of both of these drugs.
Briefly, 5 mg PLGA and 0.05 mg PF543 were dissolved in 0.5 mL
dichloromethane (DCM). 50 puL RNase-free water containing
5 mg CBP was added to the above DCM solution. Then the
mixture was sonicated at 30% power and pulsed (2 s on/2 s off)
for 5 min using a probe sonicator (Scientz Biotechnology,
China). 4 mL of 1% F68 solution was added dropwise to
a continuously vortexed tube with the above primary emulsion
and sonicated with the same setting to form a double emulsion.
A rotary evaporator (Yarong, China) was used to remove DCM
from C/PNPs under reduced pressure. The C/PNPs were
collected after centrifuging at 15 000 rpm for 20 min at 4 °C and
washed twice with double-distilled water to remove unen-
trapped drugs. The constructed C/PNPs were screened by
testing both the morphological features and encapsulation
efficiency. Compliant C/PNPs were lyophilized for long-term
storage. Based on our previous study,' 100 pg of Coumarin-6
or DiR was added to 5 mg PLGA and the preparation was the
same as the construction of C/PNPs. The size and { potential of
C/PNPs were tested with a Zetasizer (Nano ZS, Malvern, U.K.).
The morphology of C/PNPs was determined using a trans-
mission electron microscope (FEI Co., Hillsboro, OR). The CBP
or PF543 encapsulated in C/PNPs was measured by high-
performance liquid chromatography (HPLC, Agilent 1200).
The encapsulation efficiency (EE%) was calculated as follows:
EE% = (CBP or PF543 entrapped in NPs/CBP or PF543 initially
added) x 100%.

2.4. Drug release of C/PNPs

C/PNPs were suspended in PBS and incubated at 37 °C under
constant rotation. At different time points, an ultrafiltration
tube (Millipore, MWCO = 100 kDa) was used to ultra-filter these
suspensions. Dialysis tubes (MWCO = 3.5 kDa) containing 1 mL
of sample were immersed into 19 mL of PBS with 1 M sodium
salicylate along with shaking at 100 rpm. At indicated time
points, 200 uL aliquots from the flask were removed for the
concentration detection of CBP or PF543 by HPLC and 200 uL of
fresh PBS containing sodium salicylate were added back.

Nanoscale Adv., 2024, 6, 4082-4093 | 4083
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Scheme 1 Nanoparticle co-delivery of carboplatin and PF543, a specific SphK1 inhibitor, restores platinum sensitivity in ovarian cancer by
inhibiting the platinum-induced activation of pro-survival pathways, such as ERK, AKT and STAT3 signaling.

2.5. Invitro cellular uptake

To make the nanoparticles visible, Coumarin-6-loaded nano-
particles (Coumarin-6-NPs) were formulated. SKOV3 cells
seeded in six-well plates (5 x 10° cells per well) were cultured
with free Coumarin-6 or Coumarin-6-NPs at a Coumarin-6
concentration of 2 ug mL™". After 4, 8, 12, and 24 h, the cells
that ingested the fluorescent dye were observed under a fluo-
rescence microscope after DAPI staining.

2.6. Cytotoxicity assay

SKOV3 cells were seeded at 3000 cells per well in 96-well plates
and cultured overnight. Free drugs or drug-loaded nano-
particles were added at an indicated CBP concentration and
a fixed PF543 concentration (100 nM). After 48 h, cell viability
was detected with a Cell Counting Kit-8 (CK04; Dojindo,
Kumamoto, Japan) according to the manufacturer's protocol.
The absorbance was measured with a microplate reader
(Thermo Scientific, MA, USA) at a wavelength of 450 nm. To
estimate the biocompatibility of the PLGA NPs, cells were
incubated with the PLGA NPs for 24 h, 48 h and 72 h, and then
the cell viability was assessed by the same method.

2.7. Cell apoptosis analysis

SKOV3 cells were treated with NPs, free CBP, CNPs, free PF543,
PNPs, free CBP + PF543 or C/PNPs at a fixed CBP dose (5 uM)
and PF543 dose (100 nM) for 48 h. The cells were harvested and
double-stained using an Annexin V-FITC Apoptosis Detection
Kit (559763; BD-Pharmingen, San Diego, CA, USA) following the

4084 | Nanoscale Adv., 2024, 6, 4082-4093

manufacturer's instructions. The apoptosis rates of cells were
analyzed using FlowJo software (Version X; TreeStar, Ashland,
OR, USA).

2.8. Western blot

Western blotting was performed as previously described.”
Briefly, RIPA lysis buffer (P0013; Beyotime, Nantong, Jiangsu,
China) supplemented with protease inhibitor cocktail (ST506;
Beyotime, Nantong, Jiangsu, China) was used to split SKOV3
cells or tumor tissue after indicated treatments. The BCA
reagent (P0012; Beyotime, Nantong, Jiangsu, China) was used to
determine the concentration of proteins. The protein was added
into 10% standard SDS gel for electrophoresis until proteins of
different molecular weights were separated. Then the protein
was transferred to a PVDF membrane (R1CB73920; Millipore,
Billerica, MA, USA). The PVDF membrane with protein on it was
blocked using 5% bovine serum albumin for 1 h at room
temperature. Then the membrane was probed with the indi-
cated primary antibodies at 4 °C overnight. TBST was used to
wash the PVDF membrane. After washing, the membrane was
incubated with indicated secondary antibodies for 1 h at room
temperature. Indicated proteins on the membrane were visu-
alized with an Odyssey Film Scanner.

2.9. In vivo imaging and biodistribution studies

Female BALB/c nude mice (4 to 6 weeks old, 18-22 g) were ob-
tained from the Chinese Academy of Sciences and kept in
a room at 22 °C with 55% relative humidity and controlled light

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4na00227j

Open Access Article. Published on 14 June 2024. Downloaded on 1/21/2026 7:41:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

@

-— =N
9

(&)
1

Intensity (percent)

o
1

100 10! 102 108 10*

Size (d.nm)

m

100+

80

60 -
—— Free CBP
-=— CNPs

«~ C/PNPs

40-

204

Cumulative release of CBP(%)

0 T T T T T T T
1 4 10 24 72 120 168
Time(h)

View Article Online

Nanoscale Advances

400000~
£ 300000
3
O 200000
©
© 100000+
0 T T T T 1
-150-100 -50 0 50 100 150
Zeta potential (mV)
&
& 100~
@
w
L 80-
5
2 60-
3 —»— Free PF543
o 404
o -= PNPs
T 204 ~ CIPNPs
2
E
8 0 T T

T T T T T
10 24 72 120 168
Time(h)

1 4

Fig.1 Preparation and characterization of C/PNPs. (A) Schematic description of the C/PNPs carrying CBP and PF543 in the core. (B) TEM image
of C/PNPs. Scale bar, 100 nm. Size distribution (C) and ¢ potential (D) of C/PNPs. Data are mean + SD (n = 3). (E) Release profiles of free CBP,
CNPs, and C/PNPs. Data are mean =+ SD (n = 3). (F) Release profiles of free PF543, PNPs, and C/PNPs. Data are mean + SD (n = 3).

for one week of acclimation before use in the experiments. All
the animal experimental procedures were conducted with the
approval of the Animal Experimentation Ethics Committee of
Shanghai Jiao Tong University. The subcutaneous xenograft
model was established by injecting SKOV3 cells (2 x 10° cells)
into the right foreleg of mice. Whole body fluorescence images
were obtained using an in vivo imaging system (Xenogen, USA)
(Ex/Em: 748/780) at 2, 8, 24 h, and 48 h after injection of free DiR
or DiR-NPs at a DiR concentration of 0.4 mg kg™ '. Tumors and
major organs were collected for ex vivo imaging.

2.10. In vivo antitumor study

The subcutaneous xenograft model was established using the
method mentioned above. The mice were randomly divided

© 2024 The Author(s). Published by the Royal Society of Chemistry

into 8 groups (n = 5) and injected with PBS, NPs, CBP, CNPs,
PF543, PNPs, CBP + PF543 or C/PNPs at a fixed CBP dose (2 mg
kg™ ') and PF543 dose (0.05 mg kg™ ') via the tail vein every 2
days. The tumor volume and the body weight of the mice were
monitored every 2 days. The tumor volume was calculated as
follows: volume = (width* x length)/2. Three days after the last
injection, the mice were sacrificed after blood collection. The
tumors were collected for TUNEL assay and the major organs
were collected for H&E staining. The white blood cell (WBC)
count, alanine aminotransferase (ALT), and aspartate trans-
aminase (AST) were measured to further evaluate the biosafety
of PLGA-based formulations. Histological sections of the heart,
liver, spleen, lung and kidney were stained with hematoxylin—
eosin and observed under a microscope.

Nanoscale Adv., 2024, 6, 4082-4093 | 4085


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4na00227j

Open Access Article. Published on 14 June 2024. Downloaded on 1/21/2026 7:41:37 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale Advances

A

Free Coumarin-6

Coumarin-6-NPs

12h

24h

W

Coumarin-6-NPs M Free Coumarin-6

ok

100 =
*k ** i T
i‘ | |
=0 =0 N

4h 8h 12h 24h

(o]
o

N B O
o O o o

Coumarin-6 intake ratio(%)
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2.11. Statistical analysis

The experiments were performed in triplicate. Statistical anal-
ysis was performed using SPSS software (IBM Corporation,
Armonk, NY, USA). The values were presented as mean + SD
and analyzed by a ¢-test (p < 0.05 was considered significant).

3 Results and discussion

3.1. Preparation and characterization of C/PNPs

CBP/PF543 co-loaded nanoparticles (C/PNPs) were formulated
according to a double-emulsion solvent evaporation method,*®
as shown in Fig. 1A. The CBP-loaded nanoparticles (CNPs) and
PF543-loaded nanoparticles (PNPs) were produced by the same
method. The transmission electron microscopy (TEM) imaging
revealed that C/PNPs possessed a typical spherical shape and

4086 | Nanoscale Adv, 2024, 6, 4082-4093
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good monodispersity with no aggregation (Fig. 1B). Dynamic
light scattering (DLS) data showed that the size of Si/PNPs was
about 187.9 nm and its { potential was about —35.53 mV
(Fig. 1C, D and Table S17). Previous research has indicated that
PLGA NPs could efficiently encapsulate chemotherapeutic
drugs or genes."®***” Our studies showed that both CBP and
PF543 were encapsulated efficiently in both single agent and
dual agent NP formulations. The EE% of CBP and PF543 in C/
PNPs was 82.37 £+ 0.13% and 89.23 + 0.03%, respectively
(Table S27).

The release of CBP and PF543 in C/PNPs was next characterized.
With respect to both CBP and PF543, a gradual release of approxi-
mately 80% occurred within 24 h and the sustained release
continued over 168 h (Fig. 1E and F). These data suggested that
there was a sequential and slow release of both CBP and PF543
within C/PNPs compared to the rapid release of free CBP and PF543.

3.2. Cellular uptake

The appropriate particle size helps nanoparticles permeate
tumor sites and be taken by tumor cells.”® Coumarin-6 was used
to imitate drugs®* and the cellular uptake of PLGA NPs for the
SKOV3 cells was investigated using fluorescence microscopy
(Fig. 2A). The uptake of free Coumarin-6 reached a peak at 24 h
with an intake ratio of 17.5%. However, the uptake rate of
Coumarin-6-NPs obviously enhanced over time, with an intake
ratio of 83.4% at 24 h (Fig. 2B). The data suggest that the uptake
of drugs was enhanced by PLGA NPs. The appropriate size
mainly contributed to the endocytosis of the NPs.*® In conclu-
sion, PLGA NPs could successfully overcome the obstacle of
cellular uptake in drug delivery.

3.3. Invitro antitumor effects and alteration of pathways

The dose-dependent cytotoxicity of free CBP, CNPs, free PF543,
PNPs, free CBP + PF543, and C/PNPs was evaluated (Fig. 3A).
The results showed that a low dose of PF543 (100 nM) itself had
nearly no influence on the viability of SKOV3 cells. At each CBP
concentration, the cell viability displayed a gradual decrease in
the sequence of free CBP, CNPs, free CBP + PF543, and C/PNPs.
Compared with free CBP, free CBP + PF543 and C/PNPs
exhibited enhanced cell killing effects. Furthermore, the
apoptosis rates of SKOV3 cells treated with different formula-
tions were tested (Fig. 3B and C). At a constant CBP concen-
tration of 5 uM, there was a gradual increase in the apoptosis
rate exhibited in the following sequence: free PF543 < PNPs <
free CBP < CNPs < free PF543 + CBP < C/PNPs. These results
indicated that inhibiting SphK1 expression in SKOV3 cells by
PF543 could sensitize cancer cells to the CBP treatment.
Moreover, the encapsulation of CBP and PF543 by PLGA NPs
further enhanced the anti-tumor efficacy.

It has been widely observed that the activation of pro-survival
pathways in cancer cells contributes to chemo-resistance and
tumor development.**** To identify the alteration of pro-
survival pathways induced by CBP, SKOV3 cells were treated
with 5 uM CBP. 12 h after treatment, the expressions of
phospho-ERK, phospho-AKT and phospho-STAT3 were signifi-
cantly upregulated (Fig. 3D). The activation of the ERK, AKT and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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STAT3 pathways was associated with drug resistance in ovarian
cancer.**® Therefore, we next explored the changes of the
expression of ERK, phospho-ERK, AKT, phospho-AKT, STAT3,
and phospho-STAT3 in the SKOV3 cells after incubation with
different formulations for 12 h. As shown in Fig. 3E, the ERK,
AKT and STAT3 pathways were obviously activated after the
treatment of CBP. Nevertheless, the activation of the pro-
survival pathways was partially inhibited by PF543 encapsu-
lated in C/PNPs. These data suggested that PF543 in C/PNPs
may sensitize SKOV3 cells to CBP partly by inhibiting the
CBP-induced activation of pro-survival pathways, including
ERK, ATK and STAT3 signaling. However, the exact mechanism
of C/PNPs is still far from clear. Other pathways, such as the
nuclear factor-«B (NF-kB) pathway and mTOR/S6K1 pathway,
are also associated with the platinum resistance of cancer.’”*®
Moreover, NF-kb and mTOR were reported to be regulated by
SphK1.***® Therefore, these pathways may also be involved in
the restoration of platinum sensitivity in ovarian cancer models
induced by C/PNPs. Further in-depth investigations are needed
to reveal the novel mechanisms.

4088 | Nanoscale Adv, 2024, 6, 4082-4093

3.4. Biodistribution and pharmacokinetics

An effective delivery system needs to accumulate the drug on
the tumor site and then improve the efficacy of the drug and
reduce the adverse effects on normal organs.** We investigated
the bio-distribution patterns of PLGA NPs using the SKOV3
subcutaneous xenograft mouse model. DiR was widely used as
a tracer in the studies of NPs since the dye can be stably retained
in NPs.*»* DiR was encapsulated in the PLGA NPs to form DiR-
loaded nanoparticles (DiR-NPs) for in vivo imaging. As shown in
Fig. 4A, no marked fluorescence signal was observed in the
tumor site after intravenous injection with free DiR during the
whole observation period of 48 h. In contrast, DiR-NPs signifi-
cantly increased the accumulation of DiR in the tumor site at
24 h probably through the EPR effect.

48 hours after injection, ex vivo imaging of primary organs
was performed (Fig. 4B). The quantitative estimation of bio-
distribution by using the average radiation efficiency showed
that the content of DiR in both tumor and liver sites of the DiR-
NP group was much higher than that of the free DiR group

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 In vivo antitumor effects. (A) Tumor growth profiles of SKOV3 tumor-bearing mice receiving intravenous injections of different formu-
lations every 2 days, for 9 injections, at a fixed CBP dose (2 mg kg™ and PF543 dose (0.05 mg kg™). Tumor weight (B) and photographs of the
collected tumor tissues (C) on day 33. (D) Representative images of TUNEL assay (scale bar, 50 um) of tumor tissue. (E) The effects of C/PNPs on
CBP-induced alteration of pathways in the tumors, as detected by western blotting. Data are given as mean + SD (n = 5 mice per group). *p <
0.05.

(Fig. 4C). However, there was no obvious difference in the 3.5. In vivo antitumor efficacy
content of the dye accumulated in the heart, spleen, lung or
kidney. These results were consistent with the well-known fact
that PLGA NPs have an effective tumor-targeting effect due to
their suitable size and the EPR effect.

The anticancer efficacy of C/PNPs was investigated in a SKOV3
subcutaneous xenograft mouse model. In order to demonstrate
that an optimal anti-tumor effect could be achieved by C/PNPs
at a low dose, the total dose of CBP used in mice in this study

© 2024 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2024, 6, 4082-4093 | 4089
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(2 mg kg~ " via tail-vein injection, for a total of nine injections)
was much lower than that of the human clinical equivalent
dosage.** As shown in Fig. 5A-C, the therapeutic effect of CBP at
a dose of 2 mg kg~ was mild. Similarly, the CNP group showed
a limited improvement in therapeutic effect. However, the

4090 | Nanoscale Adv, 2024, 6, 4082-4093

*p < 0.05 and NS indicates p > 0.05.

co-delivery of CBP and PF543 resulted in a synergistic effect in
inhibiting the growth of tumors, which was further increased by
delivering these drugs using PLGA NPs. The tumor volume
inhibiting rate was 84.64% for the group receiving C/PNPs,
whereas the tumor volume inhibiting rate was 2.94%, 2.65%,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.73%, 40.76%, 50.63% and 74.16% for the groups receiving
NPs, free PF543, PNPs, free CBPs, CNPs and free CBP + PF543,
respectively (Fig. 5A), which correlated well with tumor weight
changes (Fig. 5B). The tumor weight was 233.54 + 74.06 mg for
the group receiving C/PNPs, whereas the tumor weights were
893.08 £ 100.47, 899.48 £ 96.08, 943.95 + 104.4, 894.81 +
103.67, 618.78 + 52.41, 537.39 £ 67.64 and 354.6 + 66.54 mg for
the groups receiving PBS, NPs, free PF543, PNPs, free CBPs,
CNPs and free CBP + PF543, respectively. The apoptosis rates of
tumor cells were detected by TUNEL assay (Fig. 5D). Compared
with free CBP and CNPs, the apoptosis rate of tumor cells in free
CBP + PF543 and C/PNP groups was much higher. As shown in
Fig. 5E, the use of CBP or CNPs could activate the phosphory-
lation of SphK1 and then increase the expression of pro-survival
pathways like p-ERK, p-AKT and p-STAT3. Meanwhile the acti-
vation of pro-survival signaling pathways could be inhibited by
free CBP + PF543 or C/PNPS. These data showed that C/PNPs
had a more potent anti-tumor effect compared to single drug
loaded NPs or free drugs.

However, the subcutaneous xenograft ovarian cancer mouse
model was unable to simulate the development of ovarian
cancer in the human body. There are many disadvantages in
using this mouse model for evaluating the antitumor efficacy of
C/PNPs. In our further study, patient-derived xenografts of
ovarian cancer or orthotopic ovarian cancer-bearing mouse
models will be used to test the treatment efficacy of NPs.

3.6. Invitro and in vivo biosafety evaluation

The toxicity of NPs is the major problem in the application of NP
pharmaceuticals.*”® We first estimated the cytotoxicity of NPs on
a SKOV3 cell. The cell viability remained above 70% at different
time points ranging from 24 to 72 h and different concentrations
ranging from 25 to 600 pg mL ™" (Fig. 6A), which indicated the low
cytotoxicity of the PLGA NPs, which is necessary for a drug carrier.
Further study was performed to assess the biosafety in vivo by
evaluating the weight of mice in the different groups mentioned
above. Mice treated with PBS, NPs, free PF543, PNPs, free CBP +
PF543 and C/PNPs showed negligible body weight changes
throughout the whole treatment period, while a significant
weight loss was observed in CBP and CNP groups (Fig. 6B). Since
myelosuppression and hepatotoxicity are well-known adverse
effects in the clinical application of CBP,* further study assessed
the level of WBCs, ALT and AST. The results showed that mice
receiving free CBP exhibited obvious leukopenia rather than mice
treated with other different formulations. In contrast, there was
no significant difference in the levels of ALT or AST of mice in all
groups (Fig. 6C). No pathological changes were found in the slices
of the heart, liver, spleen, lung and kidney in all groups (Fig. 6D).
These results confirmed the good biocompatibility of C/PNPs.
Furthermore, the delivery of CBP by PLGA NPs may alleviate the
myelosuppression of CBP to some degree.

4 Conclusions

Overcoming platinum resistance remains a pressing challenge
in ovarian cancer therapy. We have developed PLGA NPs

© 2024 The Author(s). Published by the Royal Society of Chemistry
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capable of co-loading with CBP and the SphK1 inhibitor PF543
to restore platinum sensitivity. Firstly, PLGA NPs mediate highly
specific targeted delivery of CBP and PF543 to the tumor tissue
by the EPR effect. Secondly, the inhibition of SphK1 by PF543
could restore the platinum sensitivity of ovarian cancer partly by
suppressing the CBP-induced activation of multiple pro-survival
pathways, key mediators in the sensitivity of tumor cells toward
platinum. In addition to PF543, further exploration is needed to
explore other means of inhibiting SphK1, such as siRNA, shRNA
or CRISPR. It could be envisioned that this nanoplatform can be
further used for the co-delivery of platinum drugs with other
small molecule anticancer drugs or gene editing tools against
SphK1 to achieve a synergistic effect in treating tumors with
high expression of SphK1, such as lung cancer, breast cancer,
and ovarian cancer. Moreover, as platinum resistance is also
present in many other tumors, this dual-drug delivery system
may also be effective in the treatment of other platinum
insensitive cancers.
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