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hanced imaging analysis of
nanoparticles using machine learning methods

Kaeul Lim and Arezoo Ardekani *

Nanoparticle (NP)-based technologies have gained significant attention in targeted drug delivery,

encompassing chemotherapies, photodynamic therapy, and immunotherapy. Hyperspectral imaging

(HSI) emerges as a label-free, minimally invasive, and high-throughput technique for quantitative NP

analysis. Despite its growing importance, the application of HSI to nanoparticle analysis, especially for

label-free characterization and classification, remains limited. Here, we propose a novel method

integrating hyperspectral imaging with a spectral noise reduction method and machine learning (ML) for

robust nanoparticle classification. There are many challenges to extracting information from noisy and

overlapping particles in HSI data. To surmount these challenges, we propose a spectral angle matching

(SAM) algorithm to effectively denoise hyperspectral datasets. Complementing this, we employ a support

vector machine (SVM) algorithm for classification, leveraging preprocessed HSI data to extract unique

spectral signatures. Our hyperspectral imaging classification of multiple nanoparticle types reveals

distinct spectral characteristics inherent to each class. The classification accuracy reaches 99.9% for

single nanoparticle types, highlighting the efficiency of our method. In the case of classifying multiple

particle types, the overall accuracy also reaches 99.9%. Visualization of the NP classification map further

demonstrates the efficacy of our model. The application of the SAM-SVM algorithm in hyperspectral

analysis outperforms traditional SVM methods in classifying multiple samples, highlighting the potential

of our nanoparticle analysis. Our findings not only address the challenges posed by noisy and

overlapping particles but also demonstrate the potential of hyperspectral imaging in advancing real-time

and label-free detection systems for diverse biomedical applications.
Introduction

Nanoparticles (NPs), structures with at least one spatial
dimension less than 100 nanometers, have ubiquitous appli-
cations in advanced materials engineering and biomedical
engineering. Nanoparticle characterization typically focuses on
size, morphology, and surface charge using microscopic tech-
niques. The demand for a novel and precise characterization
method is crucial, especially for distinguishing properties
among nanoparticles with similar size and shape. Spectral
imaging technologies have become increasingly attractive due
to their noninvasive nature. In particular, Raman spectroscopy
(RS) enables to probe very small quantities of materials with
high spatial resolution at the micro- and nanoscales from the
spectral features.1–4 Although applications of RS in macrolevel
diagnosis have been attempted, it is very time-consuming to
scan a large area of interest, as scan windows are small and
must be repeated. Thus, in general, using RS as a mapping tool
is limited5,6 in analyzing nanoparticle systems due to slow
acquisition times. In contrast, hyperspectral imaging (HSI)
niversity, West Lafayette, Indiana, USA.

the Royal Society of Chemistry
techniques have emerged as smart analytical tools by inte-
grating both spectroscopic and imaging techniques into one
system to cope with the increasing demand to attain both
spectral and spatial information.7–9 This holds many potential
advantages for region identication on a large scale, given that
it scans large areas quickly.

HSI can capture a large spectral range, from the ultraviolet to
the infrared, providing abundant information for each image
pixel.10,11 Hyperspectral camera sensors measure the light re-
ected, absorbed, and scattered by materials illuminated by
a light source. HSI is a powerful tool expanding into the realm of
biological and medical sciences, which holds a proven record of
success in astronomy, geosciences, agriculture, and environ-
mental monitoring, among other applications. Since HSI was
originally developed for remote sensing and space applica-
tions,12,13 machine learning-based classication for HSI is mostly
focused on remote sensing data;14–18 only a few studies investigate
pharmaceutical applications at the nanoscale.19–22Combining the
spatial-scanning hyperspectral imaging methodology with dark
eld microscopy is considered highly advantageous for optical
studies of nanoscale materials. As an emerging imagingmodality
for medical applications, HSI offers great potential for classifying
nanoparticles without the need for labeling.7,23–25
Nanoscale Adv., 2024, 6, 5171–5180 | 5171
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HSI yields a hyperdata cube with continuous spectral and
spatial information in one measurement, allowing non-contact
sensing. When the HSI system scans a sample, it provides
higher spectral resolution and more continuity between spec-
tral bands than traditional multispectral uorescence micro-
scopes.8 The spectral signature is the consequence of molecular
absorption and particle scattering, allowing to distinguish
between materials with different characteristics. In problems
with an unknown target spectrum, the continuous spectral data
is enough to reveal each sample's unique spectral signature.
This allows distinguishing spatially and spectrally overlapping
components in nanoparticle samples.26,27 Moreover, this
method is sensitive to subtle spectral changes, ensuring
discrimination of chemical or biological entities.

HSIs oen suffer from various types of noise, such as
random noise, stripe noise, and dead pixels.13,28,29 These issues
can potentially hinder classication model development and
yield misleading results. Therefore, it is critical to address these
challenges and ensure the availability of high-quality data for
the subsequent analysis.30,31 Various preprocessing methods are
commonly applied to hyperspectral data to improve the
performance of the classication model. One of the most
common preprocessing techniques in signal and image pro-
cessing is the application of spectral range normalization, such
as Min–max scaling and Standard Normal Variate (SNV)
normalization. So far, there is no preprocessing method applied
to the nanoscale. This paper proposes a modied spectral angle
mapper (SAM) based image preprocessing method to denoise
hyperspectral images. The SAM utilizes spectral angular infor-
mation of hyperspectral image data and calculates the spectral
similarity between the image spectrum and the reference
spectra signature. The SAM is suitable for building a fast, effi-
cient, and universal framework to adapt to different HSI data.
The reference spectrum can either be attained from a manu-
facturer or extracted directly from the HSI data.32,33

We show the effect of the HSI denoising technique as a pre-
processing step for HSI classication. The image preprocessing
step before machine learning-based classication can greatly
enhance classication performance by extracting only repre-
sentative features. Various machine learning-based methods
have been developed for hyperspectral image classication
based on statistical parameters such as articial neural
networks (ANNs),34 minimum distance classiers,35 k-nearest
neighbors (k-NN),36 Gaussianmaximum likelihood estimators,37

convolutional neural networks (CNNs),38 and support vector
machines (SVMs).39 Each of these methods brings unique
strengths in dealing with hyperspectral data.

Particularly, SVM has been widely applied to identify features
with the multiclass problem and is an effective method of
statistical learning theory. The challenge of limited training
samples relative to the abundance of spectral bands, coupled
with the high correlation among these bands, oen compro-
mises classication accuracy. The inherent noise among spec-
tral bands also makes hyperspectral image classication
challenging. The attraction of this method lies in its ability to
locate the optimal hyperplane between the class of interest and
the rest of the classes. It achieves separation in a new high-
5172 | Nanoscale Adv., 2024, 6, 5171–5180
dimensional feature space by considering only the training
samples that lie on the edge of the class distributions, referred
to as support vectors. This technique can overcome the diffi-
culties present in classifying the limited hyperspectral data.
Using kernel functions further enhances the classier's exi-
bility, making it robust against outliers.

Conversely, CNNs, while favored for their automatic feature
extraction from images, tend to require a large number of labeled
datasets for effective generalization. Deep learning models are
computationally intensive and oen require signicant compu-
tational resources, especially during training. In this paper, we
mainly propose the effect of the preprocessing step alongside
machine learning-based classication. The classication was
executed using the SVM technique driven by its distinct advan-
tages over other methods. SVM possesses effective generalization
ability, making it adept at recognizing patterns and making
accurate predictions on previously unseen data.40–42

Addressing the challenge of overtting in small datasets, the
risk of overtraining or overtting models is a common concern.
SVM effectively mitigates this risk, demonstrating resilience
against overtraining even when faced with limited data points.
This characteristic ensures that our classication model
remains reliable, avoiding excessive adaptation to the pecu-
liarities within the training set. This instills condence in the
accuracy of our nanoparticle classication results. SVM can
minimize the risks of overtraining with small datasets and
efficiently handles the computational demands of hyperspectral
image analysis. This strategic choice enhances the reliability
and effectiveness of our machine learning-based approach to
nanoparticle classication.

In this paper, we present a novel approach aimed at reducing
image noise within HSI data, focusing on its applicability in
nanoparticle classication. We introduce the Spectral Angle
Matching-Support Vector Machine (SAM-SVM) method, which
combines spectral similarity analysis to enhance the accuracy of
HSI image classication. Through quantitative comparisons
with traditional SVM techniques without the preprocessing
step, our study aims to improve the classication performance
while ensuring time efficiency, particularly in the context of
complex nanoparticle analysis. The proposed SAM-SVMmethod
has the potential to revolutionize hyperspectral imaging for
nanoscale applications, offering a rapid, label-free classication
approach crucial for advancements in drug delivery and
biomedical applications.

The remainder of this paper is organized as follows: the
experimental setup, preprocessing procedures, machine
learning model, and comprehensive analysis of ndings. By
addressing the unique challenges posed by nanoscale mate-
rials, our work contributes to the advancement of hyperspectral
imaging for precise nanoparticle characterization, lling
a crucial gap in the current state of research.

Methods
Image acquisition and preprocessing

HSI system obtains scattered light spectra from a sample
through line-by-line spatial scanning, where each pixel's
© 2024 The Author(s). Published by the Royal Society of Chemistry
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information represents the spectrum at that location. The core
components of a typical HSI system are shown in Fig. 1. The HSI
image cube has two spatial (x,y) and one spectral (l) dimension,
which can be viewed as a stack of spectral sub-images as illus-
trated in Fig. 1. The HSI system consists of an illumination unit,
a light-dispersive device (spectrophotometer), a camera, and
a computer equipped with image acquisition soware. The
sensor is positioned above the target, the same as the light
source. A pair of polarizers are positioned in front of the sensor
and the light source to remove saturation and isolate informa-
tion from the sample.

The proposed nanoparticle spectral analysis consists of HSI
image acquisition, preprocessing, extraction of spectral
proles, building an ML-based classication model, and then
nanoparticle classication. The simultaneous identication of
multiple nanoparticles within a sample is conducted. The
overall analysis process is shown in Fig. 2.

Dark-eld images were recorded by using an enhanced dark-
eld illumination system (CytoViva, Auburn, AL) attached to the
Nikon ECLIPSE Ni-E microscope. The system consisted of
a CytoViva 150 dark-eld condenser in place of the microscope's
original condenser attached via a ber optic light guide to the
lamp source. A 60× oil immersion color-corrected objective
(Nikon UPlanAPO uorite, N.A. 1.35–0.55) was integral to the
system. A 150 W DC-regulated halogen ber optics light source
(Dolan Jenner DC-950, Massachusetts, USA) was used, which
covers a wavelength range from approximately 360 nm to
2400 nm. The hyperspectral image of the sample was acquired
with a resolution of 2 nm in the wavelength window of visible
near-infrared (VNIR, 400 nm–1000 nm) using a 60× objective
lens in each 5.2 nm-sized image pixel.

The acquired HSI image undergoes correlation in both the
spatial and spectral domains. The hyperspectral data is rst
preprocessed to adapt them for subsequent feature extraction.
Spectral information representing the physicochemical prop-
erties of the sample is extracted directly from the segmented
Fig. 1 The components of an HSI system (right) and HSI data cube (left

© 2024 The Author(s). Published by the Royal Society of Chemistry
objects in the image, serving as the main region of interest. In
most circumstances, the extracted spectral data contain noise
and variability, and this variability is one of the most chal-
lenging problems in HSI data analysis. If the extracted data
exhibits a low signal-to-noise ratio, preprocessing steps become
imperative. The denoising process employs a combination of
background subtraction and inpainting methods for both
spatial and spectral enhancement. Fig. 2 shows the nano-
particle classication workow. The image preprocessing
module is illustrated in Fig. 2b–d. An example of the pre-
processing result is shown in Fig. 3.

Spectral angle mapper (SAM) is a similarity measure used for
HSI data, which groups samples according to a library of
reference spectra.43,44 Reference spectra can be selected from
a library of reference spectra or estimated based on the particle
segmentation data. Since HSI is benecial as a label-free
method, it is crucial to be able to extract reliable reference
spectra from unknown samples. The SAM-based algorithm also
proposes a reliable method for estimating the reference spectra
and validating the method.

The SAM algorithm determines the spectral similarity
between the reference spectra and test spectra by calculating the
angle between the two spectra, treating them as vectors in
a space with dimensions equal to the number of bands.45–47 The
spectral angle a is calculated by using:

a ¼ cos�1

0
BBBB@

Pnb
i¼1

tiriffiffiffiffiffiffiffiffiffiffiffiPnb
i¼1

ti2

s ffiffiffiffiffiffiffiffiffiffiffiPnb
i¼1

ri2

s
1
CCCCA (1)

where nb represents the number of bands in the image, t
represents the pixel spectrum, and r represents the reference
spectrum. According to the availability of prior information,
such as the public spectral library, we derive a known reference
spectral prole from the public spectral library or derive
).

Nanoscale Adv., 2024, 6, 5171–5180 | 5173
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Fig. 2 Flowchart of our method (a) original hyperspectral image datacube (b) spectral angle mapping (SAM) score map (c) SAM-based pre-
processed hyperspectral image (d) particle segmentation result (e) segmented particles' reference spectra (f) ground truth image for machine
learning model training (g) example result of the SAM-SVM classification.

Fig. 3 Hyperspectral image processing and analysis.
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a spectral signature prole from our HSI data. This adaptability
is particularly valuable when dealing with unlabeled NP
samples. This technique effectively addresses the challenge of
blind source or unlabeled data, as it operates under the
assumption of little to no prior knowledge about the compo-
nents that comprise the HSI signal.

The spatial distribution of illumination intensity becomes
inhomogeneous and nontrivial for a large captured area.
Normalization of spectra can lead to minimizing bias from
nonuniform spatial illumination, different particle types, or
5174 | Nanoscale Adv., 2024, 6, 5171–5180
different light intensities. Measurement normalization greatly
affects performance, especially when machine learning is used.
Moreover, it is necessary in order to convert HSI measurements
into reectance ratios. In addition, in the case of NP spectra,
noise affects the location of a peak instead of the height of the
peak. Therefore, that peak shi might disappear with spectral
ltering.44

The normalized reectance spectrum is utilized for the
preprocessing step. Normalizing the spectral values of every
pixel Pl at a certain wavelength (l) to the sum of the spectral
values of all pixels at all wavelengths (n) using the following
equation results in a spectral value Xl, which is independent of
the illumination spectral power distribution, illumination
direction, and object geometry.48 This way, bias is removed from
reectance measurements.

Xl ¼ PlPn
l¼1

Pl

(2)

To extract spectral data, particle segmentation was carried
out, the main purpose of which was to separate only nano-
particles from the background. Nanoparticles are identied and
differentiated based on the spectral angle value in each pixel.
The entire scanned region (1024× 200 pixels) was designated as
the region of interest (ROI) for each particle sample. The sample
concentration is 0.099 mgmL−1, with a sample volume of 15 mL.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The result of particle segmentation is shown in Fig. 2d. The
average spectra of all segmented particle pixels within each ROI
were then calculated and presented in Fig. 2e. We acquired
more than three sample datasets to extract representative mean
spectra of each nanoparticle shown in Table 1.

This preprocessed method is validated through a spectra
comparison between the estimated average spectra in Fig. 4 and
the uorescent particle manufacture catalog's spectra. The
estimated mean spectra in Fig. 4 are in agreement with the
catalog spectra, specically its spectra peak location. Yellow-
green uorescent particles show a reectance peak at 515 nm,
and europium chelate uorescent particle shows a reectance
peak at 605 nm. In this manner, we can also obtain the repre-
sentative spectral signature of an unknown sample. The average
reectance spectra of three nanoparticles were used to generate
a ground-truth map for the SVM model in the ML-based clas-
sication step.
Machine learning-based classication

The classication was performed aer the above-mentioned
preprocessing stages. We addressed the hyperspectral image
classication problem using the support vector machine tech-
nique. Among the large variety of classiers available, SVM was
selected in this study because of its (i) great generalization
ability, (ii) low overtraining risk due to small datasets, and (iii)
low computational load.49–51

SVM works by mapping data of low-dimension space into
a higher-dimension space in which a separating hyperplane is
constructed to realize linear classication. It separates the data
into different categories by nding the best hyperplane and
maximizing the distance between points. In practice, most
classication problems cannot be solved by using a simple
hyperplane as the decision boundary. In such a case, a more
complex and elaborate decision boundary is required. By
introducing a kernel function, the computational complexity
will be effectively reduced. The most typical transformation
function is the radial basis function (RBF) kernel.

The RBF kernel is one of the most powerful, useful, and
popular kernels in the SVM family of classiers. Unlike linear or
polynomial kernels, RBF is more complex and efficient at the
same time that it can combine multiple polynomial kernels of
different degrees to project the nonlinearly separable data into
higher dimensional space so that it can be separable using
a hyperplane. The RBF kernel works by mapping the data into
a high-dimensional space by nding the dot products and
squares of all features in the dataset and then performing the
Table 1 The accuracy of SVM classification for the single nanoparticle
type against the background

Dataset
Traditional SVM
accuracy (%)

SAM-SVM
accuracy (%)

Yellow green uorescent particles 80.0 99.9
Europium chelate uorescent
particles

80.0 99.9

Flash red uorescent particles 78.5 99.9

© 2024 The Author(s). Published by the Royal Society of Chemistry
classication using the basic idea of linear SVM. For projecting
the data into a higher dimensional space, the RBF kernel uses
the so-called radial basis function, which can be written as:

K(X1,X2) = exp(−g‖X1 − X2‖
2) (3)

where ‖X1 − X2‖
2 is the squared Euclidean distance and g is

a user-dened parameter. RBF is especially effective for
addressing classication tasks due to its fast convergence speed
and its capability to approximate any continuous functions with
arbitrary precision. In this study, the SVM model was estab-
lished to discriminate different nanoparticle types. Model
performance was evaluated in terms of classication accuracy,
including calibration accuracy and prediction accuracy.

As noted above, both the spectral and the spatial features
inuence a pixel's class label prediction. On the other hand, as
the geographically close pixels tend to belong to the same class,
predicting the class label of a pixel should take into account the
class labels of the surrounding pixels. Hence, a good hyper-
spectral image classication method should consider both the
spectral and spatial features together. Fig. 5, 6 and 7 show
preprocessed images and ground truth images for the training
of the SVM model. We split the data into train and test (80 : 20)
to ensure the classication algorithm is able to generalize to
unseen data well. For multi-class classication, the regulariza-
tion parameters C and g are decided. We also choose pseudo-
random number generation for shuffling the data for proba-
bility estimates.52,53 Themajor task of the confusion matrix, also
known as the error matrix, is to compare whether the classi-
cation result matches the ground truth or not.

Xi;j ¼

2
666664
x11 x12 . x1c
x21 x22 . x2c

« « ⋱ «
xc1 xc2 . xcc

3
777775

Here, c denotes the number of categories, Xij (i, j = 1, 2, ., n)
represents the number of samples, and Xij represents the
samples that were successfully predicted.

Each pixel in hyperspectral images contains a spectrum
covering the whole spectral range of the hyperspectral imaging
system. In order to better evaluate the performance of this
method in the experiment, Overall accuracy (OA) is used to
evaluate the classication performance of the model. Overall
accuracy refers to the percentage of correctly predicted sample
pixels compared to the total number of pixels. The number of
correctly classied pixels is distributed along the diagonal of the
confusion matrix, and the total number of pixels is equal to the
total number of pixels of the ROI.

OA ¼

Pn
j¼1

hjj

N
� 100% (4)

where hjj is the number of correctly classied pixels distributed
along the diagonal of the confusion matrix, N is the total
number of samples, and n is the number of categories.
Nanoscale Adv., 2024, 6, 5171–5180 | 5175
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Fig. 4 Spectral validation (a) yellow-green fluorescent particles (b) europium chelate fluorescent particles.
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The advantage of acquiring spectral and spatial information
simultaneously provides the feasibility of predicting chemical,
physical, and category information of each pixel within the
samples, based on the established calibration models. The
average spectra from all pixels within the sample were used for
visualization in this study. Generating classication mapsmade
it possible to visualize category information for the samples,
which was benecial for a convenient and intuitive distinction
of different nanoparticle types.
Results and discussion

The SVM-based classier was employed for each of the three
related classication problems: (1) a single nanoparticle type
against the background (2) two different nanoparticles, and (3)
three different nanoparticles. In order to verify the advantages
of our method in nanoparticle classication using hyper-
spectral images, our method is compared with the traditional
SVM method. While our method shares the same model struc-
ture as the SVM in this paper, the distinction lies in the pre-
processed HSI data and its corresponding ground truth data.
The comparison of classication accuracy with the traditional
standalone SVMmethod is shown in Table 1. We acquired three
datasets for each nanoparticle type as shown in Tables 1 and 2
to train the machine learning model. The samples were imaged
at 60× using reected darkeld microscopy. The hyperspectral
image consists of 476 spectral channels across a broad range of
wavelengths (400–1000 nm) with 1000 × 200 pixel images at
each wavelength. We also tested the accessibility of particle size
by our method to maintain optimal classication accuracy. The
nanoparticle samples and single particle classication results
corresponding to their size are summarized in Table 2. Fig. 5
shows a classication example for a single particle type,
Table 2 The summary of single nanoparticle classification samples

Particle size 500 nm 300 nm 100 nm 44 nm

Overall accuracy (%) 99.9 99.9 99.9 99.9

5176 | Nanoscale Adv., 2024, 6, 5171–5180
specically utilizing europium chelate uorescent particles. Our
method successfully identies nanoparticles as small as 44 nm
in size, exemplifying the effect of our method and its further
availability.

The main objective is to identify and classify different NPs
based on the signature of spectrum proles. In the training
phase of this work, 80% of pixels were randomly selected and
labeled by ground-truth data to determine the weights and
biases. The other 20% of pixels were then used in the testing
phase to evaluate the classication performance.

Table 1 shows the classication accuracy of two different
methods for the single particle classication case. The overall
accuracy of our SVM model aer applying SAM is improved by
over 20% compared with the traditional SVM model, which is
visually shown in Fig. 5. Fig. 5 shows the input data including
(a) the original HSI image before image preprocessing, (b) the
ground truth image to train the machine learning methods, (c)
a classication example of the traditional SVM method, (d)
a classication example of our SAM-SVM method, (e) the
confusion matrix of the traditional SVM result, and (f) the
confusion matrix for our method. The results highlight the
signicance of the preprocessing step to achieve a better clas-
sication performance. The overall accuracy is 99%, which is
the ratio of pixels correctly classied and the total number of
testing pixels on the three datasets, corresponding to the single
particle classication case. The confusionmatrix analysis shows
that the SAM-SVM model is performing well. The classication
results in Fig. 5(d) clearly show that the present method works
well in the presence of noisy points or missing data points. The
classication accuracy is much higher than the traditional SVM
method, as shown in Table 1.

Fig. 6 illustrates the classication results for two different
nanoparticles analyzed by using our SAM-SVM method. Two
classes of interest are considered, namely: NP1 (europium
chalate uorescent nanoparticle) and NP2 (yellow green uo-
rescent nanoparticle). The ground truth image was generated by
applying the SAM method based on the reference spectral
prole presented in Fig. 4. Accurate classication becomes
particularly demanding in the analysis of nanoparticle mixtures
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Classification maps for europium chelate fluorescent particles (a) raw image (b) ground truth image (c) classification result of the
traditional SVM (d) classification result of our method (e) the confusion matrix of the traditional SVM result (f) the confusion matrix for our result.
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due to overlapping particles, necessitating the segmentation of
individual nanoparticles. To address this issue and minimize
the misclassication of overlapping particles, we employed the
SVM classication method using spectral features. In Fig. 6, we
can see that the particle classication prediction accuracy
exceeds 90%. Only a small number of pixels were found to be
misclassied, attesting to the robustness and effectiveness of
our method.

Fig. 7 illustrates the classication results for three different
nanoparticles. Three classes of interest are considered, namely:
NP1 (europium chelate uorescent nanoparticle), NP2 (yellow
green uorescent nanoparticle), and NP3 (plum purple
Fig. 6 Classification maps for the two fluorescent particle mixture cas
confusion matrix for our result.

© 2024 The Author(s). Published by the Royal Society of Chemistry
uorescent nanoparticle). We can nd that the particle classi-
cation accuracy exceeds 90%.

While SVM methods offer a solid foundation for classica-
tion, they typically struggle with the high degree of spectral
similarity found among nanoparticles. In specic, it was limited
to classifying overlapped nanoparticles with multiple types.
Similarly, approaches employing CNNs, despite their prowess
in feature extraction, require substantial labeled datasets and
are computationally intensive. In summary, our SAM-SVM
model exhibits outstanding nanoparticle classication perfor-
mance, driven by its robust preprocessing steps and optimized
classication parameters. The SAM-SVM model demonstrates
e (a) raw image (b) ground truth image (c) classification result (d) the
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Fig. 7 Classification maps for the three fluorescent particle mixture case (a) raw image (b) ground truth image (c) classification result (d) the
confusion matrix for our result.
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exceptional performance, particularly in the challenging task of
classifying nanoparticles with overlapping features.
Conclusion

This paper proposes a novel approach, leveraging HSI
combined with ML algorithms for the precise classication of
multiple nanoparticles that exhibit similar shapes and sizes.
Our study explores the untapped potential of hyperspectral
imaging and machine learning-based classication specically
tailored for nanoparticles. Both the spectral and spatial features
of HSI are exploited to enhance the overall accuracy of image
classication with the SVM. The SAM is applied to preprocess
the HSI data and generate ground truth images. Our novel HSI
classication method, SAM-SVM, combines spectral angle
mapping and support vector machine. Compared to existing
methods, our approach yields a signicant improvement in
overall accuracy and classication results. This model achieves
the highest overall accuracy of 99.9% in both single particle
classication and multiple particle classication, affirming the
efficacy of our algorithm in the challenging nanoscale domain.

The principal advantages of this technique are its non-
contact, non-invasive, and label-free nature. This not only
establishes its practicality but also positions it as a trans-
formative tool for the characterization of nanoscale materials.
In future studies, this technique can offer a reliable and effi-
cient method for distinguishing nanoparticles in diverse prac-
tical applications. In the pharmaceutical industry, our method
can signicantly enhance the development and quality control
of drug delivery systems by enabling the characterization of
nanoparticle carriers. Similarly, in materials science, the ability
to accurately classify nanoparticles opens up new avenues for
creating advanced materials with tailored properties. We aim to
broaden the scope of our method to include the classication of
various biological particles. This expansion has the potential to
catalyze substantial progress in biomedical research, particu-
larly in the characterization and development of nanoparticle-
5178 | Nanoscale Adv., 2024, 6, 5171–5180
based therapeutics and diagnostic tools. By harnessing the
capabilities of HSI and ML, our work lays a foundation for
cutting-edge research at the intersection of nanotechnology and
biomedical sciences, promising breakthroughs in diverse
applications.
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