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as a versatile matrix for gold
nanoparticle-based SERS substrates

Saloni Sharma,a Rajesh Kumar *b and Ram Manohar Yadav *ac
As an effective and ultrasensitive molecule detection technique,

surface-enhanced Raman spectroscopy (SERS) needs efficient and

highly responsive substrates to further enhance its sensitivity and

utility. In this work, the preparation and characterisation of

polyacrylonitrile/gold nanoparticle (PAN/AuNPs) composite porous

films have been described for SERS-based detection of methylene

blue (MB) dye. The PAN/AuNPs composite films were prepared with

a simple dip coating technique, yielding a highly porous structure with

uniformly dispersed Au nanoparticles (AuNPs). Scanning electron

microscopy (SEM) revealed a linked pore network within the films. In

X-ray diffraction (XRD), the characteristic crystal peak of AuNP clusters

was observed, proving the presence of AuNPs in the composite. UV-vis

absorption spectra also indicated the existence of the AuNPs. The

methylene blue (MB) dye has been detected using PAN/AuNPs

composite SERS substrates. These substrates showed excellent

sensitivity by detecting 50 nM dye concentration and enhancing the

Raman peak intensity at 1622 cm−1. The SERS enhancement factor (EF)

for MB detection was determined to be around 106, demonstrating the

remarkable sensitivity of the PAN/AuNPs composite porous films. The

findings demonstrate the enormous potential of PAN/AuNPs

composite porous films as reliable SERS substrates, displaying their

efficacy in detecting trace levels of analytes in chemical and biological

sensing applications.
1. Introduction

The research eld of molecular sensing has been fundamentally
transformed by surface-enhanced Raman spectroscopy (SERS),
which uses ultrasensitive detection and identication of analytes
at the single-molecule level.1–4 The method is primarily based on
the localised surface plasmon resonance (LSPR) phenomenon.5,6
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LSPR occurs when molecules are in close proximity to nano-
structures made of noble metals, which causes the Raman signal
to be amplied.7,8 SERS uses the electromagnetic and chemical
phenomena that occur when analyte molecules are near nano-
structures to amplify Raman signals.9–16

Gold nanoparticles (AuNPs) have been widely employed in
SERS substrates because of their exceptional plasmonic prop-
erties, high chemical stability, and ease of functionalization.17–23

LSPR is one of their unique optical properties that can consid-
erably amplify the Raman signals of surrounding analyte
molecules. By carefully controlling their size, shape, and inter-
particle spacing, AuNPs may be made to exhibit LSPR, making
them ideal candidates for boosting SERS signals. Au has been
widely employed in SERS active substrates by numerous
researchers.24–31 However, synthesizing AuNPs has always been
challenging due to the tedious routes and use of harsh
chemicals.32–38 Here, gold nanoparticles (AuNPs) are syn-
thesised from gold chloride hydrate (HAuCl4$3H2O) using
a simple and straightforward approach utilizing dime-
thylformamide (DMF).39–41 Using DMF as a solvent and reducing
agent, it has been previously shown that the metallic nano-
structures of gold, silver, and other metals can form in various
ways.42–44 Here, a simple pathway has been introduced to
synthesize AuNPs directly in PAN/DMF solution. This approach
has the benet of being a surfactant-free synthesis. Meanwhile,
polymer nanocomposites not only enhance the overall surface
properties but also give support to the reusable lm.45

Polyacrylonitrile (PAN) has good mechanical qualities,
chemical stability, and processability, which make it suitable
for SERS applications as a base material.46–52 Using PAN as the
composite matrix allows for the immobilisation of metal
particles while preserving and even enhancing their strength
and SERS performance. In addition, PAN lms have a tendency
to be porous due to their structure during deposition. The pores
in lms can facilitate the deposition of photonic materials at
precisely regulated locations.53–56 The SERS-active sites may be
improved through controlled deposition, which results in
uniformly sized and packed AuNPs. The interaction volume
Nanoscale Adv., 2024, 6, 1065–1073 | 1065
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between the analyte and the SERS-active substrate can be
increased owing to the porous PAN layer, which can facilitate
the penetration of analyte molecules into the pores. The
sensitivity of SERS measurements improves, and so does the
signal-to-noise ratio.

Methylene blue (MB) dye has been tested as an analyte
which is utilized in many industrial domains due to its vivid
blue colour, especially in paper and textiles.57–59 When
appropriately handled for medical and research purposes,
MB is considered relatively non-toxic to people. However, its
use in higher dosages may harm the environment and
human health. Usually, the water contaminated by MB dye
is discharged into aquatic bodies by industrial wastes.
Monitoring the presence of MB is crucial for assessing its
effects on the environment and for xing effective miti-
gating measures. Also, to safeguard aquatic life, it is
important to nd MB in wastewater.60,61

So far, a number of different strategies have been sug-
gested for the detection of dyes, such as colorimetry, uo-
rescence spectroscopy, thin-layer chromatography (TLC),
ultraviolet-visible spectroscopy, high-performance liquid
chromatography (HPLC), and a number of electrochemical
approaches.62–72 However, because of their intricate
construction, these instruments alter water molecules'
physical and chemical properties, giving false readings.
Therefore, the necessity for a more approachable strategy
has drawn researchers to SERS.73–79 Due to the distinctive
ngerprints of each dye, SERS can offer excellent selectivity
in complex dye mixtures.80

Systematically analysing the results of this research will
aid in the development of PAN/AuNPs composite materials for
SERS applications that are highly efficient for the detection of
MB. The formation of a PAN/AuNPs composite lm for SERS
applications is the primary goal of this study. It was intended
to observe the fabrication process to study the composite
morphology, including the distribution of AuNPs inside the
PAN matrix. The composite lm was characterized for its
structural and optical characteristics through sophisticated
spectroscopic and microscopy techniques. It was simulta-
neously tested as a SERS substrate and the composite's
effectiveness in detecting and identifying MB analyte was
assessed. This research will help to improve molecular
sensing technologies based on SERS, enabling sensitive and
targeted detection in biomedical diagnostics, environmental
monitoring, and food safety.26,81–97
2. Experimental section
2.1. Materials/chemicals

Dimethylformamide (DMF) solution and polyacrylonitrile (PAN)
(molecular weight: 150 000) were acquired from SRL Chemicals
and Sigma Aldrich, respectively. DMF has a density of 0.947–
0.949 g ml−1 with 99% purity, and PAN has a density of 1.184 g
ml−1 at 25 °C. Finar Chemicals provided methylene blue
(molecular weight: 373.9) and gold chloride (HAuCl4$3H2O)
(molecular weight = 393.83) for the experiment.
1066 | Nanoscale Adv., 2024, 6, 1065–1073
2.2. Preparation of the PAN/AuNPs composite and its lm

Fig. 1 shows the schematic illustration for the formation of the
PAN/AuNPs composite and its lm using the dip coating tech-
nique. Initially, 10% PAN solution was made by combining 1 g
of PAN powder with 10 ml of DMF solvent. The solution was
continuously stirred at 50 °C for 2 h to ensure that PAN was
entirely dissolved in the solvent and a transparent solution had
been obtained. A 20 mM aqueous gold chloride (HAuCl4$3H2O)
solution was carefully mixed with a polyacrylonitrile (PAN)
solution to create a composite solution. While the PAN/DMF
combination was being stirred at 50 °C, 1 ml of the 20 mM
gold chloride solution was gradually added. This caused the
gold chloride to be reduced, vividly changing the solution's
colour to a distinctive red, which indicates the creation of gold
nanoparticles (AuNPs). Surprisingly, the AuNPs spontaneously
clustered without stabilising or capping agents. Making use of
this special method, a thin composite lm was painstakingly
created. This straightforward process probably inuences
further research or applications in areas like materials science
or nanotechnology, where regulated nanoparticle assembly is
essential.

The thin lm was coated with a dip coating process. The
glass substrate was dipped into the produced composite solu-
tion for 30 seconds at a speed of 3 mm s−1. Following this
process, the composite solution was consistently applied to the
substrate. The PAN/AuNPs composite lms were then heated at
75 °C for two hours for annealing.
2.3. Characterization

The pure PAN and PAN/AuNPs composite lm crystal structures
were examined by X-ray diffraction (XRD: PANalytical, X'Pert3
Power) with Cu–K radiation, l= 1.54 Å in the selected 2q range (2q
= 10–50°) at a scanning rate of 0.01° s−1. Field-emission scanning
electron microscopy (FESEM) was used to analyze the surface
morphology and microstructure of the PAN and its composite
lms (FESEM: Carl Zeiss MERLIN VP Compact). The accelerating
voltage used to produce the FESEM images was 5 kV. The optical
properties of the lms were tested with Agilent Cary 5000 UV
spectrometer equipment. It was used to conduct UV-visible
absorption spectroscopy in the UV to NIR region (200–600 nm).

Various concentrations of MB solutions in methanol, from
5 nM to 5 mM, were produced for the SERS experiment. Two
microliters of MB dilutions were dropped and dried on pure
PAN and PAN/AuNPs composite-based lms and were examined
in the SERS experiment. A confocal microscope with a 100×
objective lens housed in a WITec alpha 300 Raman instrument
was used to record SERS signals at room temperature. An
excitation laser (Nd-YAG laser, 532 nm, 40 mW) was used to
excite the substrate plasmons to collect the enhanced SERS
data, with a 1 second accumulation time for eachmeasurement.
3. Results and discussion
3.1. Structural characterization

3.1.1. Characterization of the PAN/AuNPs composite lm.
As shown in Fig. 2, the surface morphology of PAN and PAN/
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic representation of SERS substrate preparation.
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AuNPs composites was examined using FESEM. FESEM
images show that the lms of PAN and PAN/AuNPs compos-
ites displayed complex porous patterns that contain micron-
Fig. 2 FESEM images of (a) PAN, (b) PAN/AuNPs composite film at
magnification.

© 2024 The Author(s). Published by the Royal Society of Chemistry
sized length cavities. Despite there being striking visual
similarities between PAN and PAN/AuNPs composite lms,
the PAN/AuNPs composite showed improved porosity and
25k× magnification and (c) PAN/AuNPs composite film at 100k×

Nanoscale Adv., 2024, 6, 1065–1073 | 1067
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luminosity around the pore edges. The enhancement in the
number of pores may be credited to the addition of AuNPs,
which allowed for clear differentiation. It is expected that all
AuNPs were covered by the polymer matrix and thus did not
appear on the surfaces of the PAN/AuNPs composite lm as
seen in the SEM micrographs (Fig. 2b and c).

Fig. 3a displays the X-ray diffraction (XRD) pattern of PAN
and PAN/AuNPs composites. The (100) crystal plane of PAN
is shown by a signicant high-intensity diffraction peak in
the XRD spectrum of PAN at 2q = 17.1°. However, the
diffraction peak intensity reduces when AuNPs are added to
PAN. The AuNP (111) crystal plane is also represented by
a small diffraction peak at 38.1°. The cluster formation of
the AuNPs, which subsequently lowers the overall crystal-
linity of the PAN/AuNPs composite, is responsible for the
decrease of the diffraction peak intensity in the PAN/AuNPs
composite. Due to the presence of AuNPs, this phenomenon
was accompanied by converting some of the PAN crystalline
areas into a less crystalline phase. As seen in Fig. 3b from the
absorption spectra of UV-visible spectroscopy, AuNPs in
cluster form were absorbed by the PAN polymer.
Fig. 3 (a) XRD and (b) UV visible spectra of PAN and PAN/AuNPs
composite film.

1068 | Nanoscale Adv., 2024, 6, 1065–1073
3.2. Surface-enhanced Raman spectra (SERS) from
methylene blue (MB)

A signicantly enhanced signal of the MB peak at 1622 cm−1

was observed on SERS substrates produced by adding an
aqueous 20 mM Au solution to the PAN/DMF solution and MB
concentrations as low as 50 nM could be detected (Fig. 4a). The
SERS amplication shown in the PAN/AuNPs composite porous
lms may be caused by the unique properties of the AuNPs
embedded within the porous PAN matrix. The inclusion of
AuNPs in the PAN matrix creates the LSPR effect, which is
responsible for the enhancement. There may be several “hot
spots” where electromagnetic enhancement greatly amplies
the Raman signals of MB molecules due to the porous structure
of the lm, which offers a sizable surface area. The uniform
distribution of SERS-active sites produced by the dispersion of
AuNPs throughout the PAN matrix ensures consistent and
repeatable SERS signals. The strong interaction between MB
molecules and the AuNPs further enhances the SERS effect,
leading to the observed EF value of 106 (Fig. 4a).

Hence, the porous structure and the development of hot
spots could be the two main causes of the amplication of MB
molecule SERS signals in the PAN/AuNPs composite lms as
explained in Fig. 4b. The PAN/AuNPs composite lms have
a highly porous structure with multiple linked voids and pores
Fig. 4 (a) SERS spectra of pure PAN and PAN/AuNPs composite film
tested with MB and (b) schematic representation of SERS related
observations.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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all over the substance. The large surface areas offered by the
porous PAN/AuNPs composite result in a large number of
spaces and edges where MB molecules can be adsorbed. The
high surface area to volume ratio increases the likelihood of
analyte–nanoparticle interactions and SERS activity. Because
there are more scattering events, MB molecule's SERS signals
are amplied, producing stronger Raman intensity. Further-
more, the porosity model makes it simple for MB molecules to
permeate the lm, increasing the analyte accessibility to the
AuNPs incorporated into the PAN matrix.

In the presence of AuNPs in the PAN matrix, strong electro-
magnetic elds are formed around the NPs due to LSPR effects
(Fig. 4b). These electromagnetic elds are stronger at “hot
spots,” and these hot spots have a high concentration of elec-
tromagnetic energy, which amplies the Raman signals of
nearby molecules like MB. Due to the signicant electromag-
netic eld augmentation, their Raman scattering signals are
greatly enhanced when MB molecules are adsorbed onto these
hot spots or sharp corners (Fig. 4a). The chemical interaction
between the analyte and the AuNPs is improved by the LSPR-
induced hot spots, which function as nanoscale antennas.
The enhanced sensitivity and detection capabilities of the
system are the result of enhanced energy transfer and Raman
scattering made possible by the increased contact.

Therefore, the PAN/AuNPs composite porous lms also have
good repeatability and stability, making them acceptable for
real-world molecular sensing and detection uses. Their capacity
for large-scale production is further increased by the simple and
affordable synthesis process.

The enhancement factor (EF) can be calculated by

EF = (ISERS/IRaman)(Nb/Nads) (1)

where ISERS is the signal intensity of SERS spectra, IRaman the
signal intensity of normal Raman spectra, Nb the number of
molecules on the bulk sample and Nads the number of probed
molecules contributing to SERS.
4. Conclusions

In this investigation, Surface-Enhanced Raman Spectroscopy
(SERS) was employed to assess the effectiveness of PAN/AuNPs
composites in detecting methylene blue (MB). The utilization
of SERS with AuNPs proved to be a highly effective analytical
approach for the detection of methylene blue (MB) with
remarkable sensitivity and specicity. The dip-coated PAN/
AuNPs composite lm displayed an enhanced SERS signal of
MB at 1622 cm−1, which was remarkably increased with an EF of
106 when 50 nM MB solution was tested. The strong electro-
magnetic elds produced by Localized Surface Plasmon Reso-
nance (LSPR) surrounding the hotspot and porous structure
may be responsible for the increased sensitivity. The composite
porous lms of PAN and AuNPs demonstrated remarkable
stability and repeatability, making them appropriate for real-
world uses in various pollutants and molecular sensing and
detection. Their simple and economical synthesis procedure
further enhances their potential for large-scale production.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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