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Compressed sensing is an image reconstruction technique to achieve high-quality results from limited

amount of data. In order to achieve this, it utilizes prior knowledge about the samples that shall be

reconstructed. Focusing on image reconstruction in nanotomography, this work proposes

enhancements by including additional problem-specific knowledge. In more detail, we propose further

classes of algebraic inequalities that are added to the compressed sensing model. The first consists in

a valid upper bound on the pixel brightness. It only exploits general information about the projections

and is thus applicable to a broad range of reconstruction problems. The second class is applicable

whenever the sample material is of roughly homogeneous composition. The model favors a constant

density and penalizes deviations from it. The resulting mathematical optimization models are

algorithmically tractable and can be solved to global optimality by state-of-the-art available

implementations of interior point methods. In order to evaluate the novel models, obtained results are

compared to existing image reconstruction methods, tested on simulated and experimental data sets.

The experimental data comprise one 360° electron tomography tilt series of a macroporous zeolite

particle and one absorption contrast nano X-ray computed tomography (nano-CT) data set of a copper

microlattice structure. The enriched models are optimized quickly and show improved reconstruction

quality, outperforming the existing models. Promisingly, our approach yields superior reconstruction

results, particularly when only a small number of tilt angles is available.
1 Introduction

Projection-based nanotomography techniques, including elec-
tron tomography (ET), nano X-ray computed tomography (nano-
CT) and micro X-ray computed tomography (micro-CT), are
designed to gain three-dimensional (3D) information from
a series of two-dimensional (2D) projections of an object on
a nm to mm scale.1–3 The object, called sample or specimen, is
placed on a sample holder between a typically stationary X-ray
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or electron beam source and a detector array in a trans-
mission electron microscope or X-ray microscope. The projec-
tions encode information on interaction of the initial beam
while penetrating through the sample. To obtain easily inter-
pretable and reconstructable contrast, the measured intensities
should exhibit a monotonic relationship to specic sample
properties such as local density (i.e., mass attenuation) and
thickness. In ET, this can be realized by using the so-called
high-angle annular dark-eld (HAADF) scanning transmission
electron microscopy (STEM) imaging mode,4 whereas in nano-
and micro-CT measurements, this is the case using the
absorption contrast mode.5,6 In all cases, the sample holder or
stage is tilted to perform projections from different tilt angles of
the object. A visual representation of this process is depicted in
Fig. 1. Mathematically, the projections can be modeled as an
idealized, noiseless system of linear equations

Rf = p, (1)

where the vector f˛ℝn denotes the pixel brightness, p˛ℝm the
projection data and the matrix R˛ℝm�n a discretized variant
Radon transform. To be more precise, each row of R
© 2024 The Author(s). Published by the Royal Society of Chemistry
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corresponds to a single projection ray. An entry of a row displays
how much of a pixel is passed by the ray in relation to its side
length. Multiple projection geometries including parallel, fan,
and cone beams can be modeled in this way.7 However, as (1)
describes an idealized setting, introducing uncertainties, such
as noise, potentially render (1) infeasible.

Therefore, image reconstruction is usually performed via
error minimization:

min
f
kRf � pk22; (2)

which, due to the convexity of the norm kxk2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi2
s

, can be

solved efficiently to global optimality with, e.g., gradient-based
methods. In this work, we focus on the realistic and very
natural setting where only few projections of the sample can be
acquired. This is true, e.g., if projections are expensive, time-
consuming or if beam-sensitive materials are studied, which
can only withstand a certain X-ray or electron dose. Under these
conditions, it is crucial to take only a small number of projec-
tions, the fewer the better. Few projections lead to m � n. As
a result, the linear equation system (1) is highly under-
determined and, consequently, the information is highly
undersampled.

Established iterative reconstruction techniques to solve (2)
are, e.g., the simultaneous algebraic reconstruction technique
(SART)8 and the simultaneous iterative reconstruction tech-
nique (SIRT).9,10

Compressed sensing (CS), also named compressive sensing or
compressive sampling, is a thoroughly studied signal processing
technique to achieve improved reconstructions from such
undersampled information by using prior knowledge about the
reconstructed signal. In particular, considering the potential
sparsity of the underlying signal in a known transform domain
can crucially improve the reconstruction as was demonstrated in
the seminal paper of Candès et al.11 CS has a wide range of
applications, see, e.g., Qaisar et al.12 To this end, compressed
sensing is oen combined with a regularization term such as
high order total variation (HOTV),13 wavelets,14 total generalized
variation (TGV)15 and total variation (TV) regularization.16 Leary et
al.16 provide numerical results specically for nanotomography
and solves the resulting modied CS with a conjugate gradient
descent algorithm. It thus serves as our second benchmark apart
from a simple SIRT approach that solves (2) directly. In addition,
other image reconstruction techniques such as total variation
Fig. 1 Principle of projection-based nanotomography: a tilt series of
projections from an object is acquired and, after an alignment with
respect to the common tilt axis, the reconstruction of the object is
calculated.

© 2024 The Author(s). Published by the Royal Society of Chemistry
regularized discrete algebraic reconstruction technique (TVR-
DART)7 aim to steer the solution to discrete gray values while also
minimizing the total variation. Since TVR-DART is a well-
established tool, we use it as benchmark as well.

The mathematical reconstruction scheme of CS is described
in Section 2. This work aims at improving this scheme by
incorporating prior knowledge about the sample as additional
constraint classes. The goal is to reduce artifacts and achieve
better reconstruction quality in case of undersampled informa-
tion. Two such classes of constraints are individually derived and
explained in Section 3. On the one hand, they consist in the
algebraic formulation of strict upper bounds for pixel intensities
that eliminate artifacts outside of the reconstructed samples. On
the other hand, we also introduce so upper bounds for pixel
intensities with which deviations above a certain value can be
penalized. This latter constraint class is applicable to homoge-
neous samples that are composed of only one material density
and exploits this problem-specic fact to increase reconstruction
quality. Hence, the CS algorithm including these additional
constraints will be referred to as compressed sensing for homo-
geneous materials (CSHM). For an optimal exploitation of these
constraints, the parameter selection is crucial and is therefore
illustrated in Section 4 along with our benchmark algorithms. To
evaluate the practical impact of the new constraint classes, they
are applied to one simulated and two experimental data sets, one
acquired with electron tomography, the other with nano-CT (see
Section 5). The results are shown in Section 6, where compari-
sons to existing state-of-the-art algorithms are performed. It turns
out that the new model leads to high-quality reconstructions
within short time when compared to existing models, in partic-
ular, if only a few number of projections are available. A discus-
sion of the results and some future extensions and applications
are given in Section 7.
2 Compressed sensing framework

The following description of the CS framework is based on
Leary et al.16 The rst major assumption in CS is that there exists
a known basis transformation j˛ℝn�n of the vector f, that is to
be recovered, to a vector c˛ℝm with m � n nonzero coefficients
ci. In this case, we say that the image f is compressible in j.
Consequently, it suffices to only gather information in the
compressed form, i.e., instead of recording samples of f directly,
one records well-chosen samples bi of linear combinations

bi ¼
Pn
j¼1

fij fj. Here, f˛ℝm�n denotes known sampling coeffi-

cients, which are oen inherent to the respective application,
e.g., in a tomographic experiment, the measurements b denote
the value of line integrals with respect to projected lines
through the sample, whereas the lines itself are dened by f.

The second assumption in CS is that in order to recover f
efficiently, one requires the matrices j and f to be rather
dissimilar. Similar matrices lead to redundant constraints
c= jf, b= ff and add little value by themeasurements b asmost
of the coefficients bi are close to zero. To this end, one measures
the dissimilarity or incoherence of j and f. In the present
Nanoscale Adv., 2024, 6, 3934–3947 | 3935
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paper, as well as in other nanotomography applications, inco-
herency with respect to the sensing matrix R and the trans-
forming matrix j is controlled by the measuring process. Using,
e.g., HAADF-STEM imaging, incoherency is ensured by the
independence of the different scanning position measure-
ments.17 With these two requirements, a reconstruction
scheme, enforcing both sparsity in the transform domain and
data consistency with the measurements, can be formulated. In
particular, given the lp norm for x˛ℝk; p$ 1 dened by

kxkp :¼
 Xk

i¼1

jxijp
!1

p

;

we focus on the Basis pursuit denoising (BPD) model intro-
duced by Chen et al.18 for image reconstruction. For a broader
overview on BPD as well as other image reconstruction models,
we refer to the seminal book of Foucart and Rauhut.19 In BPD,
data consistency is enforced by penalizing deviations in the
objective function, where l $ 0 weighs the sparsity

min
f $ 0

kRf � pk22 þ lkjf k1: (3)

Measuring the sparsity of jf directly via the non-convex l0
norm, dened by ‖x‖0 d j{i: xi s 0}j, generally leads to a more
complex problem (3). Instead, the l1 norm is applied, to ensure
sufficient sparsity, ideally restricting jf to at most as many non-
zero components as the number of projections m.20 The BPD
problem formulation (3) is widely used in the literature, e.g., in
Lustig et al.14 or in Block et al.21

The main focus of this work lies in the reconstruction of
homogeneous materials. The latter are of frequent interest in
nanotomography, such as in the 3D investigation of porous
supports for applications in heterogeneous catalysis,22 particle
chromatography,23 fuel cells24 or battery electrodes.25 For
homogeneous materials, reconstruction algorithms based on
combinatorial optimization models have been presented in
Liers and Pardella.26 Since homogeneous materials consist of
only one approximately constant density value (i.e., composi-
tion or material phase), they provide additional information
that is known beforehand. In particular, being composed of
only one density value, these reconstructions are expected to
exhibit either areas of said density or empty space (typically
lled with vacuum or air), with only a few sharp edges in
between. This promotes sparsity in its spatial nite differences.
Exploiting this sparsity with compressed sensing is called total
variation (TV) minimization and is oen applied in the litera-
ture, e.g., by Sidky and Pan27 or Leary et al.16 It uses the a priori
knowledge that most pixels are surrounded by pixels of the
same grey level.

For a quadratic picture with n = l2 pixels, the sparsifying TV
transform jTV ˛ {−1, 0, 1}2(n−l)×n is indirectly dened like in
Block et al.21 by:

kf kTV :¼ kjTVf k1 :¼
Xn
j¼1

kVfjk1 ¼
Xn
j¼1

��Vxfj
��þ ��Vyfj

��; (4)
3936 | Nanoscale Adv., 2024, 6, 3934–3947
where for every j ˛ {1, ., n}, we dene

Vfj := (Vxfj, V
yfj), (5a)

Vxfj :¼
(
fjþ1 � fj if j mod ls0;
0 if j mod l ¼ 0;

(5b)

Vyfj :¼
(
fjþl � fj if j# n� l;
0 if j. n� l:

(5c)

For solving the CS optimization problems, several efficient
algorithms are known, such as interior point methods (IPM),28

conjugate gradient methods16 as well as multiple heuristic
approaches like ASD-POCS.27

2.1 TVR-DART

We revisit the TVR-DART algorithm, developed by Zhuge et al.,7

which is an image reconstruction technique specically devel-
oped for samples consisting of only a few different density
values. It combines the ideas of compressed sensing and
discrete tomography. Homogeneous samples in nano-
tomography are one of many applications. We use the image
reconstructions computed by this algorithm as a benchmark
later in Section 6.

TVR-DART starts with estimating parameters by means of
a SIRT reconstruction. Then the following optimization
problem is solved

min
r1 ;.;rG ;s1 ;.;sG�1 ;f

kRSðf ;P; T Þ � pk22 þ l
X

1# j# n

MdðVSðVf ;P; T ÞÞ:

(6)

Here, r1, ., rG are the unknown different material density
values of the sample and P :¼ fr1;.; rGg. The number of
density values, G$ 1, is assumed to be known in advance. s1,.,
sG−1 are the thresholds between the density values
ðT ¼ fs1;.; sG�1gÞ, setting the turning points of when a pixel
density is pushed to either the lower or the higher density value.
This is done by applying a differentiable so segmentation
function S to each individual pixel density fj. The function
smoothly drives them towards the values in P. The optimization
problem (6) is now solved for the smooth image Sðf ;P; T Þ.
Zhuge et al.7 chose S as a smooth approximation of a piecewise
constant staircase function with values in P and jumps in T .
Instead of using the TV-norm for the sparsity term as in usual
TV minimization, a differentiable norm is suggested using
a Huber loss function Md with d = 10−4.

Although the formulation is natural, it comes with the
computational complexity that (6) is an unconstrained contin-
uous however non-convex optimization problem. Zhuge et al.
use an alternating heuristic minimization procedure to nd
solutions in a short amount of time, starting with an initial
reconstruction produced by SIRT. While TVR-DART oen
appears effective in practical scenarios, its authors acknowledge
its divergence under specic conditions, implying the absence
of a guaranteed high-quality solution. This behavior is common
when aiming to solve non-convex optimization problems
© 2024 The Author(s). Published by the Royal Society of Chemistry
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through local heuristics. In order to avoid these drawbacks, the
newly introduced compressed sensing extensions of this work
are all convex, enabling the utilization of efficient interior point
methods.

3 Incorporating problem specific
information

In this section, we introduce model extensions to increase the
quality of the reconstructed images. They counteract different
kinds of artifacts that typically appear in image reconstructions.
In the following, the terms hard and so upper bounds are
used. Hard bounds mean bounds on variables that are enforced
by a constraint and cannot be violated in a solution. So
bounds, on the contrary, are bounds on variables that are not
enforced but promoted by penalizing violations in the objective
function weighted by an appropriately chosen parameter.

3.1 Hard upper bound on f in image reconstruction

With (1), i.e., assuming perfect projections without noise, it
holds that

pi ¼
Xn
j¼1

Rijfj ; c1# i#m; (7)

with p$ 0, R$ 0 and f$ 0. This implies that if a pixel j of image
f gets passed by a projection ray i, meaning Rij > 0, its density

value fj satises Rijfj #
Pn
j¼1

Rijfj ¼ pi and thus the following vari-

able bound emerges:

fj # min
1# i#m:Rijs0

pi

Rij

; c1# j# n; (8)

We note that on the one hand, the bound
pi
Rij

is loose for rays i

that pass through multiple sample-containing pixels j. This

then causes the projection value pi ¼
Pn
j¼1

Rijfj to be large.

However, on the other hand, it is advantageous for rays that hit
no sample pixels. Indeed, they have a rather small projection
value pi. As a consequence, all pixels passed by such a ray are
restricted by a very tight bound (8). This nudges the algorithm
towards reconstructions that correctly consider little to no
material at these pixels, even if that would be benecial for the
overall error minimization. Hence, the algorithm provides
reduced undersampling artifacts (e.g., streaking artifacts)
outside of the reconstructed sample, assuming the sample does
not ll out the whole eld of view of the microscope or detector
and that the sample is surrounded only by air or vacuum. This
effect is observed in the results later in Section 6. We note that
the impact of (8) is dependent on the average noise level of the
background – the higher the noise level, the looser the bounds.
Therefore, a mean background noise subtraction preprocessing
step should be applied before reconstruction.

As already stated, (7) holds for many projection geometries,
making the proposed bounds (8) applicable to a broad range of
© 2024 The Author(s). Published by the Royal Society of Chemistry
different tomography image reconstruction problems. In
particular, the bounds can also be easily implemented in the
SIRT algorithm, in the same manner as non-negativity
constraints, which are common practice. This was tested for
this work as well, but the effects were neglectable. For the sake
of completeness, an evaluation of the bounds to SIRT is
provided in the ESI.†
3.2 So upper bound on f for homogeneous materials

Contrary to the hard upper bound (8), the following class of
constraints describes suitable bounds for sample pixels,
assuming a constant material density over the whole sample. In
materials science, such homogeneous samples occur
frequently. For the following bounds, we assume such a homo-
geneous sample with the single density value u˛ℝ$ 0. If u is not
known in advance, it can be estimated. This can be done effi-
ciently by reconstructing the same sample at a lower resolution
and calculating a mean of all (bigger) positive values.

The idea of the constraints is to quadratically penalize the
density values that exceed u. Therefore, we dene an auxiliary
variable vector d˛ℝn and add the constraints

dj $ fj − u, c1 # j # n, (9)

dj $ 0, c1 # j # n, (10)

to the model. Additionally, we add the quadratic term

mkdk22 ¼ m
Xn
j¼1

dj
2 (11)

to the objective function of (3). The parameter m has to be
chosen appropriately, which is further analyzed in Section 4.1.

As a result of the quadratic formulation, the higher the
reconstructed intensity of a pixel is above the density u, thus
being a potential artifact, the more it is penalized. This leads to
a reconstructed image with fewer large deviations above u, so
that the density values tend to be comparable over the whole
sample. A possible downside of this model is that projection
artifacts, e.g., non-linear contrast effects like remaining Bragg
contrast contributions in HAADF-STEM imaging of crystalline
specimen, which otherwise would be reconstructed as
a brighter spot in the material, could now be wrongly distrib-
uted onto other pixels. Especially feature edges, e.g., pore edges,
are prone to receive such material, since in undersampled data,
the placement of edges is not always clear. The here proposed
so constraints can thus potentially lead to decreasing pore
sizes in porous specimen. However, the quadratic nature of the
penalty keeps this effect small. These effects can be observed
later in Section 6 and are further discussed in the ESI† on
analyzed local thickness maps and pore size distributions of the
differently reconstructed slices.

Next, we go one step further and discuss the usage of more
advanced modelling techniques from mathematical optimiza-
tion. One could argue that, if homogeneous samples contain
only two pixel density values, 0 and u, density values of f in the
Nanoscale Adv., 2024, 6, 3934–3947 | 3937
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space between 0 and u have to be penalized as well. In principle,
this can be accomplished by the class of constraints

dj $ jfj − ubjj, c1 # j # n, (12)

bj ˛ {0, 1}, c1 # j # n. (13)

Consequently, all pixel values aremoved towards either 0 oru,
with small differences allowed if they lead to better data consis-
tency or smaller spatial nite differences. Edge pixels, where only
a fraction of a pixel contains material and the rest is background,
which are usually present in experimental data, contradict the
idea of (12) and (13). However, the higher the resolution, the less
proportion of such pixels exist, so this drawback can be consid-
ered as neglectable for high-resolution images. Despite their
modelling strengths, including binary variables signicantly
increases the problem's complexity. These variable turn the
problem into a mixed-integer quadratic program (MIQP), which
is NP-hard in general, i.e., it is widely expected to not be effi-
ciently solvable. In particular, this makes the problem consider-
ably more difficult than the original convex quadratic program.

Applying a linear or semidenite programming (SDP) relax-
ation to the binary variables (13) leads to an equivalent refor-
mulation of the so upper bounds (9) and (10). The question if
stronger relaxations can increase reconstruction quality further
remains an interesting research question. In the remainder of
this article however, we focus on (9) and (10) and postpone
algorithms involving binary variables or stronger relaxations of
those to future research.

In the following, we thus consider model

min
f
kRf � pk22 þ lkf kTV þ mkdk22 (14a)

dj $ fj − u, c1 # j # n, (14b)

dj $ 0, c1 # j # n, (14c)

fj #min
i˛Aj

pi

Rij

; c1# j# n; (14d)

fj $ 0, c1 # j # n. (14e)

This problem will be referred to as compressed sensing for
homogeneous materials (CSHM) because it exploits the homo-
geneity of the sample.

4 Algorithmic details

In this work, we focus on two-dimensional (2D) image recon-
structions. For a parallel beam geometry and single tilt axis
tomography experiments, 3D problems can be split into inde-
pendent 2D problems, making the proposed optimization
problem applicable by consecutively running it for 2D data.

The new proposed reconstruction scheme was implemented
in Python. It utilizes the ASTRA Toolbox, developed by Van Aarle
et al.29 and the TVR-DART Toolbox, developed by Zhuge et al.7

For solving the CS problem (14), a state-of-the-art primal-dual
interior point method (IPM), or barrier method30 (Gurobi
3938 | Nanoscale Adv., 2024, 6, 3934–3947
10.0.0) is used. A main advantage of an IPM consists in the fact
that it can very efficiently solve large-sized, linearly constrained
optimization problems with convex quadratic objective func-
tions which is exactly the form of (14).

4.1 Selection of parameters

The objective function parameters of (14), l and m, have to be
chosen beforehand. Here, l, in the following lCS, is the weight
of the total variation and m the penalty for exceeding the mean
density u. This is somewhat similar to TVR-DART (6), where the
parameter l, in the following denoted by lTVR, has to be chosen
as well.

Several proposals in the literature for choosing lCS, e.g., by
Chen et al.18 or Jin and Rao,31 did not lead to satisfying results.
For reasons of simplicity, lCS was thus empirically chosen in the
implementation of this work. The projection data sets showed
the property that lCS can be chosen independently of pixel size
or number of projection angles and yet perform well (not always
optimal) for all 2D slices of a data set. The fact that lCS does not
have to be increased with the number of projection angles or
image pixels, despite the increasing error minimization term,
can be interpreted in the following way. First, with more image
pixels and thus higher resolution, or more information about
the picture through more projection angles, the quality of
images returned by only error minimization of (2) increases,
and the undersampling artifacts decrease. A regularizing term
lCS‖f‖TV, which is counteracting the undersampling artifacts, is
needed less and less.

Furthermore, the two new constraints introduce an additional
smoothing effect. The so upper bounds penalize bright spots
that show bigger densities than material density u and push the
exceeding material to other pixels. Those other pixels are lying
inside the sample because the hard upper bounds enforce pixels
outside of the sample to be 0 (or nearly 0). This smoothes the
reconstructed sample. In this implementation, the parameter
was empirically chosen as lCS = 20 000 for the simulated, lCS =
4000 for the ET data set of the zeolite particle, and lCS = 3 for the
nano-CT acquisition of the copper microlattice.

The parameter m in (14a) species the weight of the penalty
for exceeding u with pixel densities fj. Since more projection
angles or a higher pixel count generally does not lead to an
increasing error term ‖d‖22, but u-exceeding artifacts remain (in
contrast to undersampling artifacts), m has to be scaled
correspondingly.

In X-ray and electron microscopy imaging, u-exceeding
artifacts may occur due to non-linear contrast relationships
between measured intensity and the specimen's mass and
thickness (i.e., local mass attenuation coefficients) caused by,
e.g., non-linear mass-thickness contrast4 or remaining Bragg
scattering effects32,33 in HAADF-STEM imaging.

Thus, in order to keep our penalty m‖d‖22 relevant with
increasing problem size and corresponding increasing recon-
struction error term ‖Rf − p‖22, we scale m with the problem size
as follows:

m ¼ 5a
l

256
; (15)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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where a species the number of projection angles and l the
number of pixels per row of the reconstructed image. The

constant factor of
5

256
was empirically chosen as it produced

good results in preliminary tests.
The authors Zhuge et al.7 suggest to choose the TVR-DART

penalization parameter lTVR ˛ [10, 100]. However, this did not
produce the visually best results, so instead the parameter is
also chosen empirically for TVR-DART in order to guarantee
a fair comparison. The chosen values are depicted below the
reconstructions.

4.2 Reconstruction benchmark and hardware

To evaluate the quality of the developed constraints in CSHM, it
is compared to three existing reconstruction techniques,
namely SIRT (with enforced positivity in each step), CS and TVR-
DART. Here, CS refers to the solution of (3) with TV minimiza-
tion of (4) and no additional constraints, using the same IPM as
CSHM. The IPM is run with a solution tolerance of 10−6. The
number of iterations that the comparison algorithms SIRT and
TVR-DART are supposed to perform when reconstructing
images are set to 1000 for SIRT and 250 for TVR-DART. The
initial SIRT reconstruction, which TVR-DART uses as a starting
point, also runs for 1000 iterations. Note that TVR-DART can
also terminate earlier by fullling a convergence stopping
criterion before reaching the maximum number of iterations.

All following image reconstructions presented in Section 6
were performed on a laptop computer with 16 GB RAM, an AMD
Ryzen 9 5900HX with Radeon Graphics, 3301 MHz, 8 CPU cores,
and 16 logical processors. For a GPU-accelerated version of
SIRT, a NVIDIA GeForce RTX 3050 Laptop GPU was used.

5 Experimental details

Image reconstructions considered in this article are performed
on three data sets: one simulated phantom object slice (Fig. 4a)
with added random Poisson noise and two experimental data
sets, one acquired by ET and one by nano-CT.

The ET data in Fig. 2 comprises a macroporous MFI-type
zeolite particle synthesized by Machoke et al.34 A full tilt series,
as shown in SI Video 1,† in a tilt-angle range of 180° with 1° tilt
Fig. 2 Exemplary projections of experimental ET data from different p
a tomography tip: (a) 20°, (b) 90°, (c) 160°. See SI Video 1† for an animat

© 2024 The Author(s). Published by the Royal Society of Chemistry
increment (in total 180 projections) of the particle on top of the
plateau of a tomography tip (so-called 360°-ET or on-axis ET) was
acquired using a FEI Titan3 80–300 transmission electron
microscope operated at an acceleration voltage of 200 kV in
HAADF-STEM imaging mode (image size 1024 pixels × 1024
pixels; pixel size 3.55 nm) and a Fischione Model 2050 On-Axis
Rotation Tomography sample holder (E.A. Fischione Instru-
ments, Inc.). HAADF-STEM imaging assures an approximately
parallel beam geometry and a monotonous relationship between
measured intensities, sample mass (density), and thickness, so
that the Radon transform can be applied for reconstruction. For
more experimental details, please refer to Przybilla et al.35

The nano-CT data set in Fig. 3 shows a copper microlattice.
These copper microlattices were manufactured using an addi-
tive micromanufacturing technique based on localized electro-
deposition in liquid (CERES system – Exaddon AG,
Switzerland).36,37 The electrochemical ink required for the elec-
trodeposition is supplied with a hollow atomic force micro-
scope (AFM) cantilever with a small orice (∼300 nm) and the
metal ions get reduced on the conductive substrate that acts as
the working electrode. Copper microlattices were built in
a voxel-by-voxel manner using precise piezo positioners which
move the AFM cantilever aer each voxel deposition to a new
location based on the deection of the AFM cantilever sensed
using a laser based optical tracking system.

The nano-CT experiment was performed using a ZEISS Xra-
dia 810 Ultra laboratory-scale X-ray microscope equipped with
a 5.4 keV rotating anode Cr source in absorption contrast and
large-eld-of-view (LFOV) mode. The LFOV mode covers a eld
of view (FOV) of 65 mm × 65 mm with a spatial resolution down
to 150 nm and a pixel size of 63.89 nm. A tilt series with 40
projections in a tilt-angle range of 180° (tilt increment 4.5°) and
an exposure time of 300 s per frame was acquired, as shown in
SI Video 2.† We assume parallel beam geometry and a beam
attenuation according to Beer–Lambert law, so that the Radon
transform can be applied for reconstruction using the projec-
tion data p=−ln I/I0, where I is the measured intensity and I0 is
the unattenuated incident beam intensity. The nano-CT
projection images in Fig. 3 are displayed with inverted
contrast. Please refer to SI Video 2† for the animated video of
the original absorption contrast nano-CT tilt series.
rojection angles of a macroporous zeolite particle on the plateau of
ion of the full tilt series.

Nanoscale Adv., 2024, 6, 3934–3947 | 3939
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Fig. 3 Exemplary projections of experimental absorption-contrast nano-CT data set from different projection angles of a copper microlattice
structure: (a) 0°, (b) 10°, (c) 30°. See SI Video 2† for an animation of the full tilt series.
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The 360°-ET tilt series was aligned by cross correlation in FEI
Inspect 3D version 3.0. The nano-CT tilt series was aligned
using the adaptive motion compensation (AMC; based onWang
et al.38) procedure implemented in the native ZEISS soware
(XMController).

Local thickness maps39 of the pore space and, from this,
corresponding pore size distributions were determined (see SI
Fig. 4–9) using the FIJI local thickness plugin (FIJI40 version
2.14.0/1.54i) in the segmented reconstructed slices of the
porous zeolite particle using Otsu thresholding41 in FIJI (version
2.14.0/1.54i).
6 Computational results

As an objective quality measure for the results of the simulated
data set reconstructions, the relative mean error (RME)

RME :¼

Pn
j¼1

���fj � ~f j

���
Pn
j¼1

���~f j��� (16)
Fig. 4 “Ground truth” images for following reconstructions: (a) simulated
180 projections in a 180° tilt-angle range of a macroporous zeolite partic
a 180° tilt-angle range of a copper microlattice structure.

3940 | Nanoscale Adv., 2024, 6, 3934–3947
can be calculated, like in Zhuge et al.,7 comparing the recon-
structed image f and the original image without noise (~f ). Since
there exist no ground truth images for the experimental data,
the RME cannot be calculated there. Instead, one can calculate
the raw data coverage (RDC)

RDC :¼
Pm
i¼1

��Rf * � p
��

Pm
i¼1

jpj
(17)

that displays how well the projection of a reconstruction f*,
attained with (possibly limited) projection data p, aligns with all
projection data �p of all �m available angles. �R is the corre-
sponding radon matrix. Note that the RDC is not as meaningful
or reliable as the RME concerning reconstruction quality. This
is due to the fact that the noise in the original projection data �p
is not known and therefore part of the comparison. For a visual
comparison, Fig. 4 shows “ground truth” images of the 2D slices
that are reconstructed later in this section. Since there are no
ground truths for the experimental data, the standard image
reconstruction method SIRT is applied to the whole available
phantom structure, (b) SIRT reconstruction with 1000 iterations using
le, (c) SIRT reconstruction with 1000 iterations using 40 projections in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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projection data (10242 pixels each, 180 angles in Fig. 4b, 40
angles in Fig. 4c) to attain comparison images.

6.1 Results

As compressed sensing is designed to solve image reconstruc-
tion problems with undersampled data, meaning only a few
projection angles are available or the projection range contains
a missing wedge, primarily those problem settings are studied.
The projection angles in the following reconstructions are
always equidistantly spread over the available angular range.

That is, 0° to 179° if there is no missing wedge, and x
2

�
to�

180� x
2

��

if there is a missing wedge of x°.

The CSHM technique is compared to the existing image
reconstruction techniques CS, SIRT (with non-negativity
constraints), and TVR-DART. Except for SIRT, all algorithms
are specically designed to solve problems with undersampled
projection data. The evaluation is separately performed for
simulated, experimental, and missing wedge projection data.

6.1.1 Simulated data. First, we compare reconstructions of
the simulated data set with 5122 pixels and only 5 projection
angles (no missing wedge). The results are displayed in Fig. 5,
where corresponding running times and RMEs are noted below
the reconstructions. The small number of only 5 angles was
chosen because the shape of the object is very simple and 5
angles are already enough for good reconstructions in CS
approaches. For SIRT, however, this number of projection
angles is too small. Its reconstruction in Fig. 5a is far from
Fig. 6 Results for simulated data with 5122 pixels, 20 projection angles,

Fig. 5 Results for simulated data with 5122 pixels, 5 projection angles, l

© 2024 The Author(s). Published by the Royal Society of Chemistry
accurate, which is emphasized by an RME of 0.1933. Both CS
and CSHM in Fig. 5b and d produce good results with a quali-
tative advantage of CSHM. This is also reected in the relative
mean errors (0.0559 vs. 0.0397). The TVR-DART result in Fig. 5c
is better than the one from SIRT, but worse than CS and CSHM
reconstructions. Concerning the running times, SIRT is the
fastest approach, followed by TVR-DART. CSHM does not only
produce qualitatively better results than CS, but is also about
three times faster. This is owed to the hard upper bounds
eliminating a great number of variables.

In Fig. 6, the same reconstructions are performed with 20
projection angles. The SIRT reconstruction in Fig. 6a still
contains blurry artifacts inside the sample with an RME of
0.0997. CSHM is again about three times faster than CS while
producing an about 1.5 times better RME, even though visually
both reconstructions look very accurate. Albeit visually compa-
rable to the CS and CSHM reconstructions, the produced image
of TVR-DART in Fig. 6c exhibits a much larger RME of 0.1166
compared to CS with 0.0281 and CSHM with 0.0184.

By varying the objective function parameter lTVR in the TVR-
DART problem (6), it becomes apparent that choosing
a smaller parameter lTVR ˛ [10, 100], as suggested by the
authors,7 the obtained RME is much lower. For example, lTVR =

10 reaches an RME of 0.0420 for the reconstruction problem of
Fig. 6. However, the algorithm then does not converge in the
given iteration limit, and the reconstructed image looks visually
compared much worse. The empirically optimized parameter
lTVR = 500 that was used in Fig. 6c aimed at producing the
lCS = 20 000 and lTVR = 500.

CS = 20 000 and lTVR = 500.

Nanoscale Adv., 2024, 6, 3934–3947 | 3941
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visually best result, not the lowest RME. A comparison of RME-
optimized images and visually optimized images can be found
in the ESI.† A possible explanation for this apparent contradic-
tion can be found by looking at the solution variables. It seems
a much larger penalization parameter leads to a lower material
density estimation variable r2 (G = 2) than in a smaller penali-
zation parameter case. This means the overall image gray values
are pressed down by the penalization causing a higher RME.

To get some more insights, a comparison in RME and
running time is displayed in Table 1 for a smaller pixel count of
2562 and different numbers of projection angles. The best RME
of every row is displayed in bold. Here, the TVR-DART penali-
zation parameter lTVR was chosen to produce the best RME
result, not the best visual result.

SIRT solved every problem in under 10 seconds. Both CS and
CSHM, which is consistently faster than CS, exhibit strictly
monotonically increasing running times, which is expected for
increasing problem sizes solved with an IPM. The biggest
problem with 180 projection angles could not be solved
anymore by CS, because the computer ran out of memory. The
running times of TVR-DART are very low for all reconstructions
except for the one using projections from 5 angles, indicating
that the algorithm failed to converge with only 5 angles of
information but managed to do so for every other number. This
claim is supported by comparing the relative RME differences
between 5 and 10 projection angles for all algorithms, showing
by far the largest for TVR-DART.
Table 1 Results for simulated projection data with 2562 pixels, lCS= 20 0
value for each number of projection angles is highlighted in bold

Proj. angles

Running time (in seconds)

SIRT CS TVR-DART CSH

5 3 21 61 11
10 3 30 8 15
15 3 54 8 16
20 3 59 4 21
30 3 112 4 25
45 3 276 7 52
60 4 519 6 70
90 4 931 6 207
180 7 — 13 1745

Fig. 7 Results for experimental data set of a zeolite with 5122 pixels, 20

3942 | Nanoscale Adv., 2024, 6, 3934–3947
Aer a monotonically decreasing RME for SIRT from 5 to 20
angles, its RME increases slightly again until it reaches its
minimal RME of 0.0746 with 180 projection angles. This
minimum of SIRT is bigger than the RME that all the other
algorithms achieved with any number of projection angles, except
TVR-DART with 5 angles. The RME of CS decreases monotonically
until 45 projection angles, then slightly increases and decreases
again. Its minimal RME of 0.0234 is reached with both 30 and 45
angles. The RME of TVR-DART decreases in every step except for
the last one where it increases slightly. Its minimal RME of 0.0221
is marginally better than the one from CS. CSHM is able to reach
a lower RME already with 15 projection angles, decreasing further
in each step until a minimum of 0.0141 at 180 angles.

In all out of the nine cases, CSHM reached the lowest RME
out of the four algorithms. It produced a better reconstruction
with only 15 angles than any of the other algorithms did for any
given number of projections while maintaining a running time
#60 seconds for problems with 45 or fewer angles. Note that the
RME of CSHM acquired with 10 projection angles is already very
small. This proves the strength and high efficiency of CSHM for
sparse data sets. Indeed, it yields very good and high-quality
results with relatively low running times in particular in the
situation when reconstructing from only a few number of
projections. Having only a low number of projections at hand is
a typical situation in many settings. This advantage is further
fostered in the reconstructions of the following experimental
data sets.
00, lTVR= 10, and different amounts of projection angles. The best RME

Relative mean error (RME)

M SIRT CS TVR-DART CSHM

0.1862 0.0522 0.1537 0.0397
0.1101 0.0322 0.0375 0.0233
0.0842 0.0264 0.0365 0.0202
0.0773 0.0248 0.0314 0.0178
0.0799 0.0234 0.0282 0.0168
0.0845 0.0234 0.0278 0.0159
0.0843 0.0241 0.0236 0.0150
0.0854 0.0237 0.0221 0.0148
0.0746 — 0.0225 0.0141

projection angles, lCS = 4000 and lTVR = 2000.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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6.1.2 Experimental data. Since the experimental data sets
do not have a ground truth image, the following reconstructions
are only compared visually and by the RDC, a quality measure
that is not robust against artifacts appearing in the projection
data before reconstructing.

In Fig. 7, reconstructions of the experimental electron
tomography projection data of the zeolite particle sample with
SIRT, CS, TVR-DART and CSHM are displayed. The images
contain 5122 pixels and 20 projection angles (no missing wedge)
were used. Below the reconstructions, the corresponding
running times and RDCs are noted. The running times are
comparable to the observations from the simulated data set:
SIRT is by far the fastest algorithm, followed by TVR-DART, and
CSHM is considerably faster than CS. In terms of quality, the
SIRT reconstruction in Fig. 7a exhibits a few artifacts outside of
the sample and shows frequently alternating brightness inside
the material, which should not be the case for a homogeneous
sample. The reconstruction from CS in Fig. 7b has less bright-
dark alternation than SIRT but a few of those artifacts can be
observed here, as well. CSHM produces a visually better looking
reconstruction for the zeolite in Fig. 7d. It displays almost no
artifacts outside of the sample, due to the hard upper bounds,
and has a nearly constant material density over the sample, due
to the so upper bounds. The shape of the pores in the CSHM
reconstructions might be a little more compressed than in
reality, as, e.g., the indentation on the upper le side of the
particle in Fig. 7d appears a little pressed together compared to
the 180 angles SIRT reconstruction in Fig. 4b. The TVR-DART
reconstruction in Fig. 7c exhibits an even more homogeneous
density over the whole sample than CSHM, but also a similar
possible pore compression. The overall structural delity seems
to be ner, however does not necessarily match the ground
truth. For instance, very narrow pore channels appear in
between several pores, which do not exist in the SIRT recon-
struction with 180 projections. The corresponding raw data
coverage values support the visual evaluation that the SIRT
result is slightly worse than the CS result. However, the RDC of
the CS result with 8.0577 is better than the RDC of 8.4071 for
CSHM, despite CSHM being visually the better reconstruction.
This may be owed to noise during the projection data acquisi-
tion that is reconstructed with CS but penalized and lessened by
CSHM. The RDC is therefore only a rough quality measure here.
Fig. 8 Results for experimental data set of a zeolite with 5122 pixels, 30

© 2024 The Author(s). Published by the Royal Society of Chemistry
The raw data coverage of 16.8910 of TVR-DART is comparatively
way too large here. The same reasoning as explained for the
RME in the simulated data can be applied here. An RDC of
11.3882 could be reached by TVR-DART with lTVR = 10 but the
visual result is much worse than the one depicted in Fig. 7c, see
the ESI† for a comparison.

In Fig. 8, the same zeolite reconstructions are performed
with 30 projection angles. All the reconstructions improved by
small amounts, the TVR-DART one a little more than the others.
In a same manner, the RDC values improved for all algorithms,
mostly for TVR-DART, however, its RDC of 11.8708 is still way
larger than the others. Again, the raw data coverage value of the
CS reconstruction is better than the one of the CSHM recon-
struction, whereas visually, the one from CSHM is a more
realistic image of a homogeneous sample.

Fig. 9 compares the different reconstructions of an exem-
plary slice from the copper microlattice nano-CT tilt series in
absorption contrast from Fig. 3 using 40 projection angles.
From a qualitative perspective, CSHM and CS provide the best
and cleanest reconstructions with no streaking artifacts in the
inside of the lattice structure and especially also not in the
outside regions due to the hard upper bounds. The bright main
copper strut features appear more homogeneous in intensity for
CSHM due to the so upper bounds, with slightly higher
intensity variations in the CS slice. Although TV-DART provides
the better result, both SIRT and TVR-DART reconstructions
show artifacts around the outside of the specimen, and, in the
sample interior, remaining streaking artifacts and stronger
contrast variations are observed. Similar to the ET data set, the
reconstruction delity of TVR-DART seems to be ner, however
does not necessarily match the ground truth and is further
expressed in a higher amount of noise and artifacts. Due to the
increased amount of projection angles, also the running time of
CS and CSHM are increased, whereas SIRT is the fastest, and
also TVR-DART seems to have converged very quickly. With
respect to the RDC, all four reconstructions exhibit similar
values, with CSHM just showing the lowest RDC.

Moreover, we determined local thickness maps and corre-
sponding pore size distributions for the reconstructed slices of
the porous zeolite particle (see SI Fig. 4–6 in the ESI†), which
offer an alternative to judge the delity and precision of the
different reconstruction methods. Please refer to the ESI† for
projection angles, lCS = 4000 and lTVR = 2000.

Nanoscale Adv., 2024, 6, 3934–3947 | 3943
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Fig. 9 Results for experimental data set of a Cu-microlattice with 5122 pixels, 40 projection angles, lCS = 3 and lTVR = 7500.
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the local thickness maps, the pore size distributions and an
explanation and interpretation of the data.

6.1.3 Missing wedge. In some nanotomography applica-
tions, the angular tilt range of the projections is limited due to,
e.g., shadowing of the sample holder, leading to so-called
missing-wedge reconstruction artifacts.16 In Fig. 10, CSHM is
compared to SIRT, CS, and TVR-DART on the simulated and the
zeolite particle ET data sets with 5122 pixels and a missing
wedge of 60°. The respective projection angles are equidistantly
spread over the remaining angular range of 120°. Beneath the
reconstructed slices, the corresponding RME/RDC values and
running times are displayed.

The magnitude of the running times of the algorithms are
comparable to the cases without missing wedge. CSHM
outperforms the other algorithms for the simulated data set
(Fig. 10a–d), both visually and regarding to the relative mean
Fig. 10 Results for a missing wedge of 60° with 5122 pixels and 11 project
the ET data set (e)–(h). lTVR = 100 for the simulated, lTVR = 5000 for th

3944 | Nanoscale Adv., 2024, 6, 3934–3947
error. For the zeolite, CSHM also reaches the best RDC value,
while being visually the best reconstruction. The typical elon-
gation of reconstructions with missing wedge in vertical direc-
tion can be seen in both CSHM reconstructions of Fig. 10d and
h, but the effect is relatively small when compared to the SIRT
and TVR-DART reconstructions. In Fig. 10h, the pore at the
lower part of the zeolite is most likely a distorted and errone-
ously reconstructed indentation with merged borders, which
can be deduced from a comparison with the 180 angles SIRT
reconstruction without missing wedge in Fig. 4b. This merging
of pore walls cannot be observed in the full tilt-angle range SIRT
reconstruction, nor in the missing-wedge SIRT, CS, and TVR-
DART reconstructions in Fig. 10e–g. However, in those recon-
structions, the missing-wedge effect causes a much stronger
erroneous merging of pores (instead of pore walls), which are
separate in Fig. 4b, compared to CSHM.
ion angles for the simulated data set (a)–(d) and 21 projection angles for
e ET data.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3na01089a


Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
28

/2
02

5 
4:

54
:4

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Similarly to the full tilt-angle range reconstructions, we
determined local thickness maps and corresponding pore size
distributions for the reconstructed slices with missing wedge of
the porous zeolite particle (see SI Fig. 7 in the ESI†). Please refer
to the ESI for the results and an explanation and interpretation
of the data.
7 Conclusion

The previous section provided results obtained with the two
newly developed constraints of this work. CS was combined
with both hard and so upper bounds, resulting in the here-
called compressed sensing for homogeneous materials
(CSHM) algorithm. CSHM was compared to SIRT, CS, and TVR-
DART on simulated and experimental two-dimensional projec-
tion data from different nanotomography techniques, namely
360°-ET and nano-CT. Different problem settings were studied,
including problems with a missing wedge.

Regarding reconstruction quality, the results of CSHM are
very convincing and of high quality. In all cases for the simu-
lated data set, CSHM achieved the lowest relative mean error.
CSHM also showed signicantly decreased running times
compared to CS, when solved with the same IPM. Both artifacts
outside and inside of the reconstructed samples were reduced
in comparison to CS, especially regarding the intensity of
unexpected brighter spots inside and streaking artifacts outside
of the samples. The artifacts outside of the samples were
reduced by the hard upper bounds. Bounding variables to (near)
0 lets the solver eliminate a lot of variables resulting in faster
solving and less required memory than without the constraint.
This effect relies on a preprocessing step of subtracting the
mean background noise, to have a background intensity near 0.
The preprocessing step can be applied, if a mean background
noise value can be estimated, e.g., if there are rays known that
only pass through vacuum or air and do not hit the sample. The
hard bounds are not only applicable to homogeneous samples,
but to a much broader range of image reconstruction problems.
They are especially efficient, when the sample is surrounded by
vacuum or air. The artifacts inside the sample are reduced by
the so upper bounds, which are only applicable to homoge-
neous samples. They penalize larger deviations above the
calculated homogeneous material density u, leading to the
density of the reconstructed sample being closer to homoge-
neity. A slight drawback of CSHM was shown in form of
a decrease in feature sizes, e.g., pore sizes, by distributing
exceeding material on the feature edges in the CSHM recon-
structions. However, this effect is very small.

An advantage of CSHM compared to TVR-DART is the
consistency of good solutions. From a visual perspective, TVR-
DART performs very well for some instances, possibly better
than CSHM. However, when applying quality measures like
relative mean error or raw data coverage, CSHM reconstructions
strongly outperform visually good looking TVR-DART recon-
structions. Better values can be reached for TVR-DART by
reducing a penalty parameter, but then in some instances TVR-
DART does not converge to a solution and returns bad image
© 2024 The Author(s). Published by the Royal Society of Chemistry
reconstructions. CSHM performs consistently well, even for very
few projection angles.

Missing-wedge problem reconstructions of CSHM show
typical missing-wedge artifacts like elongation and the merging
of features that are separate in reconstructions without missing
wedge. Similar effects are observed for reconstructions of all the
comparing algorithms. In comparison, CSHM exhibits the
fewest merging of pores and an elongation similar to CS and
better than TVR-DART.

Using more projection angles or a higher pixel count
increases the running time for CSHM. Then, TVR-DART might
become attractive with shorter running times, as the increment
in quality of CSHM opposite TVR-DART might not be worth the
large increment in running time anymore. However, as Table 1
indicates, the CSHM reconstructions do not improve by much
anymore for an increasing number of projection angles,
compared to a reconstruction with only a few angles, which is
already very accurate.

This justies reconstructing images with only a few projec-
tion angles, keeping the running time within an acceptable
range. When reconstructing with only very little information
(very few projection angles), CSHM outperforms TVR-DART in
quality, as TVR-DART does not converge to a good reconstruc-
tion. Then, CSHM represents the most efficient choice for
image reconstruction. To decrease high running times, existing
work can be applied to the used IPM. Multiple approaches were
proposed in the literature, e.g., using a matrix-free IPM to speed
up the search step of the Newton method, developed by Foun-
toulakis et al.,42 or accelerating the IPM by performing parallel
computations on the GPU, where promising results were ob-
tained by Lee et al.43

In conclusion, CSHM represents a competitive alternative to
existing algorithms for smaller and medium-sized image
reconstruction problems of homogeneous samples. It provides
high quality results for highly undersampled data in nano-
tomography, including missing-wedge problems. Non-
homogeneous sample reconstructions can still benet from
the hard upper bounds that reduce artifacts around the studied
objects. Furthermore, an extension of the so upper bounds to
a version that can handle samples composed of few, but more
than one, density values is thinkable. This is a question for
future work.
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