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High-entropy alloy screening for halide
perovskites†

Christopher P. Muzzillo, *a Cristian V. Ciobanu b and David T. Moore a

As the concept of high-entropy alloying (HEA) extends beyond metals,

new materials screening methods are needed. Halide perovskites (HP)

are a prime case study because greater stability is needed for photo-

voltaics applications, and there are 322 experimentally observed HP

end-members, which leads to more than 1057 potential alloys. We

screen HEAHP by first calculating the configurational entropy of 106

equimolar alloys with experimentally observed end-members. To

estimate enthalpy at low computational cost, we turn to the delta-

lattice parameter approach, a well-known method for predicting III–V

alloy miscibility. To generalize the approach for non-cubic crystals, we

introduce the parameter of unit cell volume coefficient of variation

(UCV), which does a good job of predicting the experimental HP

miscibility data. We use plots of entropy stabilization versus UCV to

screen promising alloys and identify 102 HEAHP of interest.

1. Introduction

Halide perovskites (HP) are a broad class of materials spanning
322 inorganic and hybrid organic–inorganic crystals. The pro-
totypical ABX3 HP has oxidation states of A+, B2+ and X�. The
HP’s divalent metal (B2+) constituent is octahedrally coordi-
nated to 6 halide ions (X�). These octahedra share corners to
form a three-dimensional inorganic framework that surrounds
the weakly-bonded A+ constituents in cuboctahedral sites.1,2

Entropy stabilization (ES) is an emerging method3–5 where
components are added to a given material until its configura-
tional entropy meaningfully alters its Gibbs free energy.

ES of HP is of interest for their many applications: for electro-
chemical energy storage materials, ES can enhance ion transport.6,7

For thermoelectrics, ES reduces thermal conductivity.8 For photo-
voltaics (PV), the enhanced stability of ES is desirable: the

photoactive polytypes of the prototypical inorganic HP PV absorber
CsPbI3 are metastable below B375 K.9 However, the negative
impact of ES on charge carrier transport or recombination may
limit its use to non-absorbing PV functions such as buffer layers,
transport layers or mechanical anchors.10 For other HP applications
such as light-emitting diodes (LEDs), lasers, neuromorphics, scin-
tillators, etc., the role of entropy is less clear, but such an extensively
inhabited class of crystals make HEAHP of general interest for
engineering, such that the boundaries of what is possible, feasible,
and useful warrant exploration.

Density functional theory (DFT) is currently being used to screen
HEA boride, carbide, and carbonitride ceramics.11 We stress that
computationally efficient prescreening methods are needed even for
choosing alloys for DFT because HEA have large unit cells, and the
322 experimentally observed HP can combine to form 1057 alloys
(considering equimolar compositions with up to 48 end-members).
In our first screening, we report the 106 HEAHP consisting entirely
of experimentally observed end-members. We then further screen
by quantifying their ideal mixing ES and estimate enthalpic penalty
using end-member unit cell volume coefficient of variation (UCV),
identifying 102 alloys with promising UCV-ES tradeoffs.

2. Results

Metal alloys are the prototypical ES case because they com-
monly have single site lattice structures. This makes metals
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New concepts
We demonstrate the new concept of using unit cell volume coefficient of
variation to approximate the enthalpic penalty of a given high-entropy
alloy candidate, and use it along with ideal sublattice configurational
entropy to map promising high-entropy alloy halide perovskites. While
lattice parameter differences have been used for 50 years to predict III–V
alloy miscibility, we extend this approach to non-cubic crystals for the
first time, and introduce it as a metric for high-entropy alloy materials
screening. This new approach is particularly valuable for guiding the
search for nonmetallic high-entropy alloys, which is in its infancy for
covalent-bonded and semiconducting materials.
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behave like ideal solid solutions, so their entropies increase
dramatically as components are added: the configurational
entropy of a 6-component equimolar mixture of (metal) elements
on a single sublattice is�4.5 kJ mol�1 at 300 K.12 ES of oxides has
been demonstrated in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O13 and many
other oxides.14 Although MgO, NiO, CuO, and ZnO have different
structures and a mean Gibbs energy of formation of �307 kJ
mol�1,15 the thermodynamics of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O were
predominated by entropy,13 despite possessing ES of only �2.0 kJ
mol�1 at 300 K. By comparison, HP ES should be relatively large
and easy to measure. We find 282 inorganic HP that have been
experimentally observed16–24 and theory suggests that many more
may exist,23–27 so a staggeringly wide combinatorial chemical
space can be drawn on to realize this potential. Moreover, weak
bonding allows entropy to dominate HP Gibbs energies.28

A given alloy composition change can be net stabilizing if
that change’s configurational ES outweighs any enthalpic
destabilization. In order to screen for promising alloy composi-
tions, we assume each sublattice (A cation, B cation, and X
anion) behaves like an ideal solid solution12 to calculate the
entropy of mixing (configurational entropy; S/R), as well as the
ES term in the Gibbs energy equation at 300 K:

S=R ¼ � 1

5

X
i

yAi ln yAi
� �

þ 1

5

X
j

yBj ln yBj

� � 
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ES term ¼ �TS ¼ RT
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(2)

R is the gas constant, T is temperature (K), and yA
i is the mole

fraction of the ith constituent on the A sublattice in ABX3.
Actual atomic distributions in (metal) HEA have been
considered,29,30 and simple scaling rules have been developed
to predict HEA stability for metals.31–37 Unlike metals, ABX3 HP
have covalent to ionic bonding and 3 distinct lattice sites (A, B,
and X), which limits how much they can be stabilized with
configurational entropy.38

In contrast to ES, estimating enthalpy for screening HEAHP
is challenging, leading to a tradeoff between accuracy and
computational (or experimental) cost. Experimentally screening
HEA is most accurate and most expensive. The next most
accurate and expensive method combines DFT with the special
quasirandom structures approach.39–44 Alternative approaches
have been developed to screen alloys45–48 and HEA,49–53 but
these are either too computationally expensive,49,51 need too
much experimental data,53 or use experiment-free phase dia-
grams to predict HEA with machine learning, which has limited
interpretability.50,52 An approach with even lower computa-
tional cost is to estimate mixing enthalpy, which is

proportional to the difference between the lattice parameters
of a III–V alloy’s constitutive end-members.54 Based on the
Hume–Rothery rules for metal alloying (minimize atomic radii
differences, match crystal structures, keep valency constant,
and keep electronegativity constant),55 Foster showed that
lattice parameter differences could be used to predict misci-
bility in III–Vs and II–VIs.56 Foster and Stringfellow used this
‘‘delta-lattice parameter’’ approach to correctly group the mis-
cibility of 9 ternary II–VI56 and 9 quaternary III–V57 alloy
systems, respectively, and the method was recently extended
to correctly group the miscibility of 18 ternary III–V alloy
systems,58 confirming broad accuracy in spite of its low com-
putational cost. To extend the delta-lattice parameter method
to non-cubic structures, we draw on Zen’s law: there is an
empirical linear relation between molar volume and composi-
tion of a solid solution.59 (Zen’s law simplifies to Vegard’s law60

for cubic structures with similar molar volumes.) Therefore, an
HP alloy’s unit cell volume is its weighted mean ( %Vw):

�Vw ¼
X
i

X
j

X
k

yAi y
B
j y

X
k Vijk3 (3)

Here Vijk3
is the unit cell volume of the end-member with the ith,

jth and kth constituent on the A, B and X sublattices, respec-
tively. To reduce complexity, we consider only equimolar com-
positions, which have the greatest ES term. (A semiconductor
alloy’s density of states can shift its entropic minimum away
from the equimolar composition,61 so other compositions
should be considered after the initial screening.) The equimolar
unit cell volume’s mean, standard deviation, and coefficient of
variation are:

�V ¼

P
i

P
j

P
k

Vijk3

N
(4)

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

P
k

Vijk3 � �V
� �2
N

vuut
(5)

UCV ¼ s
�V

(6)

Here %V is equimolar unit cell volume, s is equimolar alloy
unit cell volume standard deviation, UCV is equimolar alloy
unit cell volume coefficient of variation, and N is the number
of end-members. Atomic radius differences,62–64 lattice para-
meter differences,65,66 and atomic position differences67 have
been previously parameterized to screen metal HEA. We instead
parameterize unit cell volume to extend the approach to non-
cubic crystals. Although perovskite lattice parameter was pre-
viously shown to correlate with ionic radii,68,69 we use eqn (6) for
enthalpic penalty in HEA for the first time. We confirm agree-
ment with 42 out of 45 room temperature miscibility gap data
from III–V (Fig. 1 and Table S1, ESI†)57,58 and II–VI (Table S1,
ESI†)56 material systems. UCV correlates well with experimental
III–V and II–VI mixing enthalpy (Table S1 and Fig. S1, ESI†),
although future work using the elastic modulus or melting
temperature are expected to improve the fit.70 Using the phase
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boundary for HP in Fig. 2,71 22 out of 26 experimental HEAHP
data are grouped correctly. Mapping the boundary between
single-phase and multiple phase alloys with UCV-ES plots also
works for boride, carbide, and carbonitride ceramics: Fig. S2
and Tables S2, S3 (ESI†) show correct grouping of 56 out of the
64 miscibility data (88% accuracy). Good agreement with such
broad experimental data and no fitting parameters suggests the
UCV approach has sufficient accuracy despite its low computa-
tional cost. UCV allows us to directly compare cubic and
hettotype perovskites—the latter have distortions that reduce
symmetry, but are more common (e.g., CsPbI3’s metastable
polymorphs).1,2 There are more reports of single-phase inorganic
HEAHP (Table S4, ESI†)71–219 and hybrid organic–inorganic

HEAHP (Table S5, ESI†),220–285 but more investigation into
single-phase boundaries is needed to confirm the broadscale
applicability of UCV for screening HEAHP.

Using DFT we calculate mixing enthalpy of 6 HEAHP com-
positions. To make the computations tractable we approximate
a HEA’s mixing enthalpy by calculating the energy of 8 distinct
configurations of 40-atom unit cells and reference their mean
to that alloy’s constitutive end-members. The results in Fig. 3
and Table S6 (ESI†) confirm that UCV correlates with DFT
mixing enthalpy for HEAHP.

It was argued that for thermoelectric devices ES can enhance
crystal symmetry to preserve charge carrier transport despite
the disordered nuclei that impede phonons and reduce thermal
conductance.8,286 In CH3NH3PbI3 phonon lifetimes are shor-
tened by the organic cation’s entropy, which may improve
charge carrier recombination properties.287 HP’s peculiar semi-
conductor physics have been attributed to dynamic disorder,288

lattice softness and anharmonicity.289

Beyond PV absorbers, ES HP may be useful as oxygen
evolution electrocatalysis,71 electrochemical energy storage,86

thermoelectrics,8 light emitting diodes, photodetectors, PV
buffers, contacts, solid state radiation detectors, scintillators,
fuel cells, lasers, high temperature electronic components,
barocaloric materials for use in refrigeration, ferroelectrics,
and neuromorphic computers.

The disordered nuclei in ES HP may alter phonons, possibly
reducing thermal conductance. Restricted phonons can result in
slow cooling of hot charge carriers, similar to what is already
observed in HP as a result of light-induced lattice
distortions.290,291 On the other hand, local bonding distortions
in ES crystals should disrupt electron band energies, creating a
distribution of local energy states similar to what was described
for ion conductivity through ES materials.7 Thus, bulk 3D carrier
transport may suffer, but there may good charge carrier trans-
port along specific crystal directions.

Fig. 1 Experimental III–V single-phase alloy (pink circles) and multiple
phase (gray Xs) data,57,58 confirming that plotting the ES term at 300 K (or
S/R) as a function of UCV leads to a phase boundary near UCV of 0.03
(black dashed line) which is useful for screening HEA that have not yet
been experimentally synthesized.

Fig. 2 Experimental HP single-phase alloy (pink circles) and multiple
phase (gray Xs) data,71 confirming that plotting the ES term at 300 K (or
S/R) as a function of UCV leads to a phase boundary near UCV of 0.04
(black dashed line) which correctly groups 22 of the 26 data. Binary copper
alloys are excluded because the synthesis method did not produce phase
pure KCuF3.71

Fig. 3 DFT enthalpy of mixing as a function of UCV from DFT for the HEAHP
in Table S6 (ESI†), showing that UCV correlates with DFT mixing enthalpy.
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2.1 Mixing on all sublattices

Assuming equimolar compositions on each sublattice (A+, B2+, and
X� in ABX3), we calculate the 1 340 752 possible combinations of the
282 experimentally observed inorganic HP with 5 or more compo-
nents (Table S7, ESI†). The compositions with the greatest ES are in
Table 1. HP are mostly composed of halides, so most of the
compounds in Table 1 have 4 halide components. The greatest
ES,�3.22 kJ mol�1, is for CsB(Br,Cl,F,I)3 with 10 B-site components.
The next greatest ES, �3.17 kJ mol�1, is for (Cs,K,Rb)(Ca,Cd,Sn)-
(Br,Cl,F,I)3, as well as CsB(Br,Cl,F,I)3 with 9 B-site components.
(Cs,Rb)(Ca,Cd,Pb,Sn)(Br,Cl,F,I)3 has ES of �3.11 kJ mol�1.
CsB(Br,Cl,I)3 with 15 B-site components has ES of �3.00 kJ mol�1.

Next, we calculate most of the combinations of the 282 inor-
ganic HP with known lattice parameters in Fig. 4, where the ES
term at 300 K is plotted as a function of UCV. As Fig. 4(b) and
Table 2 show, HP are mostly composed of halides, so the greatest
ES comes from X-site mixing. However, X-site mixing drives
UCV higher: when all 4 halides are used, the ES term reaches
�3.17 kJ mol�1 but has UCV of 0.283 for Cs(Ca,Eu,Mg,Mn,Ni,Pb,-
Sn,Sr,Yb)(Br,Cl,F,I)3. When only 3 halides are used, an ES term
of �2.96 kJ mol�1 is achieved at the much lower UCV of 0.156
for Cs(Au,Ca,Eu,Ge,Mg,Mn,Ni,Pb,Sn,Sr,Ti,Tm,V,Yb)(Br,Cl,I)3. When
only 2 halides are used, an ES term of only �2.28 kJ mol�1 is
possible, but at UCV of only 0.106 for (Cs,K,Rb,Tl)(Ca,Cd,Mn)
(Br,Cl)3, while an ES term of �2.19 kJ mol�1 is reached at a UCV
of only 0.073 for (Cs,Rb)(Ca,Ge,Pb,Sn,Sr)(Br,Cl)3. We examine
1-halide compounds in the next section. Other compounds with
attractive UCV-ES term tradeoffs are in Fig. 4(b) and Table 3. These
specific compositions demonstrate that in general, mixing Br, Cl,
and I on the X-site, Cs and Rb on the A-site and Ge, Pb, and Sn on
the B-site are all promising. Less obvious constituents include F on
the X-site, K and Tl on the A-site and Ca, Cd, Eu, and Sr on the B-
site. Former work found the prospect of using hetero-valent sub-
stitutes on the B site to be promising.292

2.2 Mixing on only A and B sublattices (ordered valence band)

HP valence band maximum is dominated by (X) halide
with minor B cation contributions, while the conduction band
minimum is mostly determined by the B cation with small X

contributions.293 Therefore, to preserve order in the valence band
and keep valence band energy constant to facilitate hole transport,
A- and B-site cations can both be alloyed while the halide is kept
pure (1 component on the X sublattice). In this case, the greatest
ES term is only �1.68 kJ mol�1 for CsBCl3 with 29 B-site
components (Fig. 5). Other noteworthy compositions are shown
in Fig. 5(b) and Table 4. As discussed in the previous section, less
halide mixing translates to less ES but also lower UCV. Halide
segregation is a known issue in HP294 that could prevent the use
of mixing on the X-site for ES. If that is a limitation, then the
compounds in this section can still be used to achieve moderate
ES at low enthalpic penalties (low UCV), all while maintaining an
ordered valence band valuable for hole transport.

2.3 Mixing on only A and X sublattices (ordered conduction band)

To preserve order in the conduction band and conduction band
energy alignment to facilitate electron transport, mixing on the
A- and X-sites can be used. In this case, the greatest ES term is
�2.77 kJ mol�1 for (Cs,K,Rb,Tl)Cd(Br,Cl,F,I)3. Other noteworthy
compositions are shown in Fig. 6(b) and Table 5. We note that 3
of the compounds are entirely composed of end-members whose
experimental band gaps are known. The compounds’ band gaps
are estimated by averaging end-member values: 1.95 eV for
CsSnBrClI, 2.31 eV for CsPbBrClI, and 2.48 eV for CsGeBrClI.

2.4 Mixing on only A sublattice (ordered valence and
conduction bands)

To preserve order in the valence and conduction bands and
prevent changes in the valence and conduction band energy as
well as band gap, alloying on only the A-site should be used. In
this case, the greatest ES term is only �0.97 kJ mol�1 with UCV
of 0.063 for (Cs,In,K,Li,Na,Rb,Tl)CaBr3. Other compositions of
interest are shown in Fig. 7(b) and Table 6.

A-site and X-site segregation are both known issues in HP295

that could prevent the use of mixing on the A- and X-sites for
ES. If those are limitations, then the compounds in this section
can still be used to achieve weak ES at low enthalpic penalties
(low UCV), all while maintaining ordered valence and conduc-
tion bands valuable for both hole and electron transport.

Table 1 Inorganic HP compositions with the most negative ES term at 300 K whose end-members are all experimentally observed. We omit
compositions with an ellipsis (. . .) that are analogous to the row above them and have the same A- and X-site occupation

Alloy composition ES term (kJ mol�1) S/R

CsCa0.1Cd0.1Eu0.1Mg0.1Mn0.1Ni0.1Pb0.1Sn0.1Sr0.1Yb0.1Br0.75Cl0.75F0.75I0.75 �3.22 1.29
Cs0.33K0.33Rb0.33Ca0.33Cd0.33Sn0.33Br0.75Cl0.75F0.75I0.75 �3.17 1.27
CsCa0.11Cd0.11Eu0.11Mg0.11Mn0.11Ni0.11Pb0.11Sn0.11Sr0.11Br0.75Cl0.75F0.75I0.75 �3.17 1.27
. . .
Cs0.5Rb0.5Ca0.25Cd0.25Pb0.25Sn0.25Br0.75Cl0.75F0.75I0.75 �3.11 1.25
CsCa0.13Cd0.13Eu0.13Mg0.13Mn0.13Ni0.13Pb0.13Sn0.13Br0.75Cl0.75F0.75I0.75 �3.11 1.25
. . .
CsCa0.14Cd0.14Eu0.14Mg0.14Mn0.14Ni0.14Pb0.14Br0.75Cl0.75F0.75I0.75 �3.05 1.22
. . .
CsAu0.07Ca0.07Cd0.07Eu0.07Ge0.07Mg0.07Mn0.07Ni0.07Pb0.07Sn0.07Sr0.07Ti0.07Tm0.07V0.07Yb0.07BrClI �3.00 1.20
Cs0.33K0.33Rb0.33Ca0.5Cd0.5Br0.75Cl0.75F0.75I0.75 �2.97 1.19
. . .
Cs0.5K0.5Ca0.33Cd0.33Sn0.33Br0.75Cl0.75F0.75I0.75 �2.97 1.19
Cs0.5Rb0.5Ca0.33Cd0.33Pb0.33Br0.75Cl0.75F0.75I0.75 �2.97 1.19
. . .
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2.5 Organic A-site components (hybrid organic–inorganic HP)

The previous sections have only considered inorganic compounds,
but there are at least 22 organic cations that can substitute on the
A-site: methylammonium (MA; CH3NH3), formamidinium (FA;
HC(NH2)2), guanidinium (GA; C(NH2)3), dimethylammonium
(DMA; (CH3)2NH2), ethylammonium (EA; CH3CH2NH3), acetamidi-
nium (ACA; CH3C(NH2)2), ammonium (NH4), hydrazinium (HA;
N2H5), azetidinium (AZ; C3H6NH2), imidazolium (IM; C3N2H5),
trimethylammonium (TMA; (CH3)3NH), tetramethylammonium
(TEMA; (CH3)4N), arsonium, methylarsonium, methylphospho-

nium, aziridine, hydroxylammonium, phosphonium, antimonium,
PF4, NH2CHPH2, and NH2CHAsH2.296 Therefore, hybrid organic–
inorganic halide perovskites have an even larger chemical space
that can be tapped for ES than the pure inorganics.

Previous work found ES in (Cs,FA)PbI3,297 (FA,GA)PbBr3,298

(Cs,FA,MA)PbI3,299 (Cs,FA,MA)Pb(Br,I)3,221,300 and (Cs,FA,MA,Rb)-
PbI3,220,222 and ES was also recently demonstrated in double
HP28,301 and ‘‘hollow’’ HP.302 Long anneals of CH3NH3PbI3 were
argued to maximize configurational entropy of the organic cation,
which was found to stabilize the cubic polytype and improve

Fig. 4 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for all equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on all sublattices: (a) all data and (b) zoomed in, with
promising alloys labeled and in bold.

Table 2 Inorganic HP compositions with the greatest ES term at 300 K whose lattice parameters are known and end-members are all experimentally observed
with mixing on all sublattices. We omit compositions with an ellipsis (. . .) that are analogous to the row above them and have the same A- and X-site occupation

Alloy composition ES term (kJ mol�1) S/R UCV

CsCa0.11Eu0.11Mg0.11Mn0.11Ni0.11Pb0.11Sn0.11Sr0.11Yb0.11Br0.75Cl0.75F0.75I0.75 �3.17 1.27 0.283
CsCa0.13Eu0.13Mn0.13Ni0.13Pb0.13Sn0.13Sr0.13Yb0.13Br0.75Cl0.75F0.75I0.75 �3.11 1.25 0.276
. . .
CsCa0.14Eu0.14Mn0.14Pb0.14Sn0.14Sr0.14Yb0.14Br0.75Cl0.75F0.75I0.75 �3.05 1.22 0.271
. . .
Cs0.5Rb0.5Ca0.33Pb0.33Sn0.33Br0.75Cl0.75F0.75I0.75 �2.97 1.19 0.258
CsCa0.17Eu0.17Pb0.17Sn0.17Sr0.17Yb0.17Br0.75Cl0.75F0.75I0.75 �2.97 1.19 0.264
. . .
Cs0.33K0.33Rb0.33Ca0.5Sn0.5Br0.75Cl0.75F0.75I0.75 �2.97 1.19 0.273
CsCa0.17Eu0.17Mn0.17Sn0.17Sr0.17Yb0.17Br0.75Cl0.75F0.75I0.75 �2.97 1.19 0.276
. . .
CsAu0.07Ca0.07Eu0.07Ge0.07Mg0.07Mn0.07Ni0.07Pb0.07Sn0.07Sr0.07Ti0.07Tm0.07V0.07Yb0.07BrClI �2.96 1.19 0.156
Cs0.5Rb0.5Ca0.14Cd0.14Mn0.14Ni0.14Pb0.14Sn0.14Sr0.14BrClF �2.96 1.19 0.254
CsAu0.08Ca0.08Eu0.08Ge0.08Mg0.08Mn0.08Pb0.08Sn0.08Sr0.08Ti0.08Tm0.08V0.08Yb0.08BrClI �2.92 1.17 0.152
. . .
CsCa0.08Cd0.08Eu0.08Fe0.08Hg0.08Mg0.08Mn0.08Ni0.08Pb0.08Pd0.08Sn0.08Sr0.08Yb0.08BrClF �2.92 1.17 0.268
CsAu0.08Ca0.08Eu0.08Ge0.08Mg0.08Mn0.08Pb0.08Sn0.08Sr0.08Tm0.08V0.08Yb0.08BrClI �2.88 1.16 0.149
. . .
Cs0.5Rb0.5Ca0.17Ge0.17Pb0.17Sn0.17Ti0.17V0.17BrClI �2.88 1.16 0.152
CsAu0.08Eu0.08Ge0.08Mg0.08Mn0.08Pb0.08Sn0.08Sr0.08Ti0.08Tm0.08V0.08Yb0.08BrClI �2.88 1.16 0.152
. . .
Cs0.5Rb0.5Ca0.17Cd0.17Ni0.17Pb0.17Sn0.17Sr0.17BrClF �2.88 1.16 0.246
. . .
CsCa0.08Cd0.08Eu0.08Fe0.08Hg0.08Mn0.08Ni0.08Pb0.08Pd0.08Sn0.08Sr0.08Yb0.08BrClF �2.88 1.16 0.263
. . .
Cs0.33K0.33Rb0.33Ca0.25Cd0.25Mn0.25Sn0.25BrClF �2.88 1.16 0.265
CsCa0.08Cd0.08Eu0.08Hg0.08Mg0.08Mn0.08Ni0.08Pb0.08Pd0.08Sn0.08Sr0.08Yb0.08BrClF �2.88 1.16 0.266
. . .
CsCa0.2Eu0.2Pb0.2Sn0.2Sr0.2Br0.75Cl0.75F0.75I0.75 �2.88 1.16 0.254
. . .
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electrical properties.303 Entropy stabilization of HP nanocrystals
was recently demonstrated: Pb was substituted for Mg, Zn, and Cd
in CH3NH3PbBr3 to enhance stability, while narrow band emission
was retained.304 Unlike former reports,297,298 here we consider the
maximum feasible configurational ES, which restricts our focus to
alloys with a minimum of 5 components.

Mixing the 40 organic and 282 inorganic HP end-members,
we find 14 270 hybrid organic–inorganic HEAHPs consisting of
5 or more experimentally observed end-members (Fig. 8 and
Table S8, ESI†). Attractive UCV-ES term tradeoffs are in Table 7.
In general, smaller ES are possible at a given UCV, relative to the
inorganic HEAHPs in the previous sections. Table 7 mostly

consists of well-studied alloys based on Cs, MA, and FA, but the
less-studied Rb and K are also present. For PV-related Br, Cl, and I
systems, the B-site constituents are Ge, Sn and Pb. The F systems
are of interest for electrochemical applications and have smaller
unit cells, so NH4 and Na are allowed, Cd, Fe, and Mn are prevalent
while Tl, Co, Cu Fe, Mg, Ni and Zn are possible. (Cs,K,NH4,-
Rb,Tl)(Cd,Fe,Mn)(Cl,F)3 and (K,NH4,Rb,Tl)(Cd,Co,Cr,Cu,Fe,Mg,-
Mn,Ni,Sn,Zn)F3 have ES terms at 300 K of�2.39 and�1.84 kJ mol�1,
respectively. While inorganic HEAHP have more negative ES
terms as temperature increases, the organic components’ vola-
tility may limit this effect for organic HEAHP.

2.6 Non-equimolar compositions

For non-equimolar compositions, weighted standard deviation
(sw) and weighted coefficient of variation (UCVw) are:

sw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

P
k

yAi y
B
j y

X
k Vijk3 � �Vw

� �2
P
i

P
j

P
k

yAi y
B
j y

X
k

vuuuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

X
j

X
k

yAi y
B
j y

X
k Vijk3 � �Vw

� �2s (7)

UCVw ¼
sw
�Vw

(8)

The boundary between single-phase and multiple phase

Table 3 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on all sublattices

Alloy composition
ES term
(kJ mol�1) S/R UCV

Cs0.5Rb0.5Ca0.33Pb0.33Sn0.33Br0.75Cl0.75F0.75I0.75 �2.97 1.19 0.258
CsCa0.2Eu0.2Pb0.2Sn0.2Sr0.2Br0.75Cl0.75F0.75I0.75 �2.88 1.15 0.254
Cs0.5Rb0.5Pb0.5Sn0.5Br0.75Cl0.75F0.75I0.75 �2.77 1.11 0.239
Cs0.5Rb0.5Ca0.25Ge0.25Pb0.25Sn0.25BrClI �2.68 1.08 0.126
Cs0.5Rb0.5Ge0.33Pb0.33Sn0.33BrClI �2.54 1.02 0.119
Cs0.5Rb0.5Pb0.33Sn0.33Sr0.33BrClF �2.54 1.02 0.219
Cs0.5Rb0.5Ge0.5Pb0.5BrClI �2.34 0.94 0.112
Cs0.25K0.25Rb0.25Tl0.25Ca0.33Cd0.33Mn0.33Br1.5Cl1.5 �2.28 0.91 0.106
Cs0.5Rb0.5Ca0.2Ge0.2Pb0.2Sn0.2Sr0.2Br1.5Cl1.5 �2.19 0.88 0.073
Cs0.5Rb0.5Ge0.25Pb0.25Sn0.25Sr0.25Br1.5Cl1.5 �2.07 0.83 0.065

Fig. 5 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only A and B sublattices (ordered valence band): (a)
all data and (b) zoomed in, with promising alloys labeled and in bold.

Table 4 Inorganic HP compositions with attractive UCV-ES term at 300 K tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on only A and B sublattices (ordered valence band)

Alloy composition ES term (kJ mol�1) S/R UCV

Ag0.2K0.2Na0.2Rb0.2Tl0.2Co0.2Cu0.2Mg0.2Mn0.2Zn0.2F3 �1.61 0.64 0.095
Ag0.2K0.2Na0.2Rb0.2Tl0.2Co0.2Cu0.2Mg0.2Ni0.2Zn0.2F3 �1.61 0.64 0.141
CsAu0.04Ba0.04Ca0.04Cd0.04Cr0.04Cu0.04Dy0.04Eu0.04Fe0.04Ge0.04Hg0.04In0.04Mg0.04Mn0.04

Ni0.04Pb0.04Pd0.04Sc0.04Sn0.04Sr0.04Ti0.04Tm0.04V0.04Yb0.04Br3 �1.59 0.64 0.116
Cs0.25K0.25Rb0.25Tl0.25Cd0.2Cu0.2Mg0.2Mn0.2V0.2Cl3 �1.49 0.60 0.059
Cs0.33K0.33Rb0.33Au0.17Ca0.17Dy0.17Pb0.17Sn0.17Yb0.17I3 �1.44 0.58 0.052
K0.33Rb0.33Tl0.33Cd0.2Cu0.2Mg0.2Mn0.2V0.2Cl3 �1.35 0.54 0.038
K0.33Rb0.33Tl0.33Cu0.25Mg0.25Mn0.25V0.25Cl3 �1.24 0.50 0.030
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compositions has been mapped experimentally for
MAPb(Br,Cl,I)3.223 We calculate ES term at 300 K and UCVw for
MAPb(Br,Cl,I)3 in Fig. 8(a) and (b). While UCVw predicts the
general shape of the data, multiplying UCVw by a constant (C)
and adding it to ES term accurately predicts 52 out of the 56 data
(93%; Fig. 9(c)). ES0 combined effect on Gibbs energy (GES) is:

GES ¼ ES termþUCVwC ¼ RT
1

5

X
i

yAi ln yAi
� � 

þ 1

5

X
j

yBj ln yBj

� �
þ 3

5

X
k

yXk ln yXk
� �!

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

P
k

yAi y
B
j y

X
k Vijk3 � �Vw

� �2r
P
i

P
j

P
k

yAi y
B
j y

X
k Vijk3

0
BB@

1
CCAC

(9)

This new equation is Calphad with crystal structure inputs.
Empirically fitting C to the MAPb(Br,Cl,I)3 data yields C of 23 kJ
mol�1. On the other hand, a C value of 40 kJ mol�1 matches the
experimental data for CsPb(Br,Cl,I)3 (Fig. S3, ESI†), suggesting

Fig. 6 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only A and X sublattices (ordered conduction band):
(a) all data and (b) zoomed in, with promising alloys labeled and in bold.

Table 5 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on only A and X sublattices (ordered
conduction band)

Alloy composition ES term (kJ mol�1) S/R UCV

Cs0.33K0.33Rb0.33SnBr0.75Cl0.75F0.75I0.75 �2.62 1.05 0.248
Cs0.33K0.33Rb0.33CaBr0.75Cl0.75F0.75I0.75 �2.62 1.05 0.293
Cs0.5Rb0.5PbBr0.75Cl0.75F0.75I0.75 �2.42 0.97 0.234
K0.5Rb0.5SnBr0.75Cl0.75F0.75I0.75 �2.42 0.97 0.242
Cs0.33K0.33Rb0.33SnBrClI �2.19 0.88 0.125
CsEuBr0.75Cl0.75F0.75I0.75 �2.07 0.83 0.209
RbPbBr0.75Cl0.75F0.75I0.75 �2.07 0.83 0.230
RbSnBr0.75Cl0.75F0.75I0.75 �2.07 0.83 0.232
CsPbBr0.75Cl0.75F0.75I0.75 �2.07 0.83 0.236
Cs0.2K0.2Li0.2Rb0.2Tl0.2CaBr1.5Cl1.5 �1.84 0.74 0.085
Cs0.25In0.25K0.25Rb0.25SnBr1.5Cl1.5 �1.73 0.69 0.053
CsEuBrClI �1.64 0.66 0.058
RbGeBrClI �1.64 0.66 0.079
RbPbBrClI �1.64 0.66 0.092
KSnBrClI �1.64 0.66 0.098
CsPbBrClI (2.31 eV) �1.64 0.66 0.105
CsGeBrClI (2.48 eV) �1.64 0.66 0.127
CsSnBrClI (1.95 eV) �1.64 0.66 0.138
K0.5Rb0.5SnBr1.5Cl1.5 �1.38 0.55 0.023

Fig. 7 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only the A sublattice (ordered valence and
conduction bands): (a) all data and (b) zoomed in, with promising alloys labeled and in bold.
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enthalpic penalty plays more of a role in the latter. Altogether
we accurately predict 75 out of the 83 ternary data (91%),
showing that UCV-ES maps can rank alloys with different
constituents and different compositions.

2.7 Known experimental band gaps

Of the 282 experimentally observed inorganic HP compounds,
we find experimental band gaps for 19. Of the 1 340 752 alloy
compositions we consider, 73 are entirely composed of end-
members whose experimental band gaps are known. Fig. S4
and Table S9 (ESI†) show that they all contain Cs, most have Ge,
Pb or Sn, and most band gaps are wider than 2 eV. Bowing can
shift these band gap values, and experimental bowing data is in
Table 7 and Fig. S9 (ESI†).

2.8 Overall accuracy

Finally, we note the high accuracy of UCV separating experi-
mental miscibility data across crystal systems with a spectrum
of bonding character: from weak ionic HP (89% of 109 data) to
weak covalent II–VIs (83% of 18 data), covalent III–Vs (100% of
27 data), and finally to strong covalent boride, carbide, and
carbonitride ceramics (88% of 64 data). Overall accuracy for the
218 data is 89.4%. For comparison, the accuracy of Materials
Project DFT unit cell volumes relative to experiment is

92.6%.305 There are exceptions to UCV predicting miscibility:
KCo0.2Fe0.2Mg0.2Ni0.2Zn0.2F3 in Fig. 2, Hf0.2Mo0.2Nb0.2Ta0.2W0.2-
C0.5N0.5 in Fig. S2 (ESI†), and CsPb0.5Zn0.5Cl3, CsPb0.5Zn0.5Br3,
and CsPb0.5Zn0.5I3 in Table S4 (ESI†). These exceptions show
that crystal structure and Gibbs energy are more nuanced than
a single parameter can describe, but UCV captures 89% of HEA
mixing behavior.

3. Conclusions

We take a low computational cost approach to screening HEA
and employ it to identify promising inorganic and hybrid
organic–inorganic HEAHP. Drawing from the pool of 322
experimentally observed HP, we compute configurational
entropy stabilization (ES) of equimolar HEA. Starting with the
delta-lattice parameter approach for predicting III–V miscibil-
ity, we introduce the more generally applicable unit cell volume
coefficient of variation (UCV) to estimate enthalpic penalty of
HEA. UCV predicts the existing experimental III–V, II–VI, bor-
ide, carbide, carbonitride, and HP data well. We screen the 1057

possible HEAHP to report the 106 alloys consisting entirely of
experimentally observed end-members, then identify 102

HEAHP with promising UCV-ES tradeoffs. These results can
serve as a first screen for guiding more costly calculations and
experiments.

4. Methods

Throughout the literature, the boundary between what is con-
sidered perovskite and not considered perovskite is
ambiguous.1,2 We limit our search to the 282 inorganic and 40
organic ABX3 compounds that have been experimentally
observed and previously labeled as ‘‘perovskites’’ (Tables
S1018–20,27,111,112,115,123,179,306–539 and S11 (ESI†),315,466,524,526,540–558

respectively). We exclude the 90 inorganic HP that have been
proposed but not synthesized (Table S12, ESI†).23,24,307,430 In order
to use a self-consistent database, where possible we use lattice
parameters from the Materials Project559 for the Pnma

Table 6 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on only the A sublattice (ordered
valence and conduction bands)

Alloy composition
ES term (kJ
mol�1) S/R UCV

Cs0.14In0.14K0.14Li0.14Na0.14Rb0.14Tl0.14CaBr3 �0.97 0.39 0.063
Ag0.14Cs0.14K0.14Li0.14Na0.14Rb0.14Tl0.14MgF3 �0.97 0.39 0.106
Ag0.14Cs0.14K0.14Li0.14Na0.14Rb0.14Tl0.14MnF3 �0.97 0.39 0.123
Cs0.17In0.17K0.17Li0.17Rb0.17Tl0.17CaBr3 �0.89 0.36 0.049
In0.2K0.2Li0.2Rb0.2Tl0.2CaBr3 �0.80 0.32 0.035
Cs0.25In0.25K0.25Rb0.25SnCl3 �0.69 0.28 0.021
Cs0.25K0.25Rb0.25Tl0.25PbI3 �0.69 0.28 0.039
Cs0.25In0.25K0.25Rb0.25SnBr3 �0.69 0.28 0.053
Ag0.25Cs0.25K0.25Rb0.25PbBr3 �0.69 0.28 0.135

Fig. 8 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for all equimolar
hybrid organic–inorganic HP compositions with experimentally observed constitutive end-members with mixing on all sublattices: (a) all data and (b)
zoomed in, with promising alloys labeled and in bold.
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orthorhombic perovskite structure (space group #62; 20 con-
stituents per unit cell; 4 formula units per unit cell). Many HP
have different structural symmetry (e.g., Pm%3m cubic with 5

constituents per unit cell or 1 formula unit per unit cell), and in
such cases we consider the unit cell volume for which the
number of atoms would be 20 (for Pm%3m the unit cell volume is

Table 7 Hybrid organic–inorganic HP compositions with the greatest ES term at 300 K whose lattice parameters are known and end-members are all
experimentally observed with mixing on all sublattices. Calculated band gaps are included along with the maximum experimental band gap bowing (the
difference between the linearly-interpolated-band gap and the actual band gap) and references

Alloy composition
ES term
(kJ mol�1) S/R UCV

Band gap
(eV) Exp. bowing (eV)

Cs0.33MA0.33Rb0.33Pb0.5Sn0.5BrClI �2.54 1.02 0.120 — —
Cs0.2K0.2(NH4)0.2Rb0.2Tl0.2CdBrClF �2.45 0.98 0.245 — —
MA0.5Rb0.5Pb0.5Sn0.5BrClI �2.34 0.94 0.118 — —
Cs0.25FA0.25MA0.25Rb0.25PbBrClI �2.34 0.94 0.119 — —
Cs0.5MA0.5Pb0.5Sn0.5BrClI �2.34 0.94 0.122 2.24 MA(Pb,Sn)(Br,I)3 r 0.11;243

(Cs,MA)(Pb,Sn)I3 r 0.11;243

(Cs,FA)PbI3 r 0.02;249

MAPb(Br,Cl)3 r 0.17242

Cs0.25K0.25MA0.25Rb0.25SnBrClI �2.34 0.94 0.124 — —
. . .
Cs0.25K0.25(NH4)0.25Rb0.25Cd0.33Fe0.33Mn0.33Cl1.5F1.5 �2.28 0.91 0.260 — —
Cs0.33FA0.33Rb0.33PbBrClI �2.19 0.88 0.112 2.31 (Cs,Rb)PbBr3 = 0;125

(Cs,Rb)PbCl3 = 0125

. . .
Cs0.33FA0.33MA0.33PbBrClI �2.19 0.88 0.122 2.28 (FA,MA)Pb(Br,I)3 r

0.10;230,243,245,261

MAPb(Br,Cl)3 r 0.17242

. . .
Cs0.2FA0.2K0.2MA0.2Rb0.2Pb0.5Sn0.5Br1.5I1.5 �2.19 0.88 0.105 — —
. . .
Cs0.33MA0.33Rb0.33Ge0.33Pb0.33Sn0.33Br1.5I1.5 �2.13 0.86 0.099 — —
. . .
Cs0.5FA0.5PbBrClI �1.99 0.80 0.115 2.27 —
. . .
MAPb0.5Sn0.5BrClI �1.99 0.80 0.120 2.34 MA(Pb,Sn)(Br,I)3 r 0.11;243

MAPb(Br,Cl)3 r 0.17242

. . .
Cs0.5MA0.5PbBrClI �1.99 0.80 0.121 2.31 MAPb(Br,I)3 r 0.07;243,245

MAPb(Br,Cl)3 r 0.17242

Cs0.5MA0.5SnBrClI �1.99 0.80 0.122 2.16 MASn(Br,I)3 r 0.03243

FA0.5MA0.5PbBrClI �1.99 0.80 0.127 2.27 MAPb(Br,I)3 r 0.07;243,245

MAPb(Br,Cl)3 r 0.17;242

(FA,MA)PbI3 r 0.02261

. . .
Cs0.33MA0.33Rb0.33Pb0.5Sn0.5Br1.5Cl1.5 �1.93 0.77 0.054 — —
. . .
K0.25Na0.25(NH4)0.25Tl0.25Co0.14Cu0.14Fe0.14Mg0.14Mn0.14Ni0.14Zn0.14F3 �1.66 0.67 0.082 — —
. . .
Cs0.33MA0.33Rb0.33PbBr1.5Cl1.5 �1.59 0.64 0.045 — —

Fig. 9 (a) ES term at 300 K contours, (b) UCVw contours, and (c) ES + UCVwC contours for MAPb(Br,Cl,I)3. Experimental HP single-phase alloy (pink
circles) and multiple phase (gray Xs) data are in (c),223 confirming that C = 23 kJ mol�1 leads to a phase boundary at GES = 1.22 kJ mol�1 that correctly
groups 52 of the 56 data (93%).
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multiplied by 4). Materials Project559 unit cell volumes are well
correlated with Inorganic Crystal Structure Database (ICSD)
values.305,560 We find lattice parameters for 265 of the inorganic
HP. We also tabulate experimental band gaps where available.
We first consider all possible equimolar alloys with 3 end-
members, then check if a possible HEA consists entirely of
experimentally observed end-members. If it does then we
tabulate it after calculating the ES term at 300 K, UCV (if
available), and mean band gap (if available). We provide
example code with extensive comments as an ESI† file (Math-
ematica notebook). We execute the notebook on a personal
computer using a built-in parallel do statement and consider
alloys with up to 48 end-members. There are 1057 ways to
combine 48 of the 322 end-members (322!/(48! (322-48)!) B
1057), so to avoid checking every combination of the 9 A-site,
32 B-site and 4 X-site inorganic constituents and 10 additional
A-site organic constituents, we examine the simpler alloy
systems first to determine which complex alloys can possibly
be built from the existing results. In other words, the computa-
tion can be simplified by only checking a higher order system’s
potential constituents if their constitutive lower order systems
exist. Eventually, the number of constituents on a sublattice
reaches a maximum, beyond which no more can be added
without including an end-member that has not been experi-
mentally observed, and then the search can stop. Here
we examine only HP, but our approach has value for the
closely related double perovskites301 and the 76 experimentally
observed chalcogenide (sulfur, selenium, and tellurium)
perovskites,24 although chalcogenide perovskites are less devel-
oped than the halides.561

DFT calculations: in order to verify that compositions with
small (large) UCV are stable (unstable), we carry out geometric
relaxations for the selected compositions in Table S6 (ESI†). We
carry out these DFT calculations using the Vienna Ab initio
Software Package (VASP, version 5.4),562,563 in the framework of
the generalized gradient approximation (GGA), with the Per-
dew, Burke and Ernzerhof (PBE) functional.564 We use a plane
wave energy cutoff of 400 eV and the following Brillouin zone
grids, depending on the size of the supercell: 2 � 2 � 2 k-point
grids (8 irreducible k points) for 2� 2� 2 supercells (40 atoms),
1 � 2 � 2 k-point grids for 4 � 2 � 2 supercells (80 atoms), and
1 � 1 � 1 k-point grids for 3 � 3 � 3 supercells (135 atoms).
All the relaxations are started from ideal cubic perovskite
structures and are fully relaxed (unit cell shape and atomic
coordinates) using the conjugate-gradient algorithm until resi-
dual forces become smaller than 0.004 eV Å�1. The electronic
relaxations at each ionic step are stopped when the energy
difference between consecutive self-consistency iterations
reaches 10�7 eV. In order to improve convergence to equili-
brium, we scale the displacement steps by 0.1 and declare 180
bands (20 more than the default). To assess mixing effects of
various ions on the A-, B-, and X-sites, we include 8 distinct
configurations for each composition, and average the final
energy and final cell volume across these configurations. The
DFT mixing enthalpy is the mean DFT energy of the 8 HEA
configurations referenced to the DFT energy of the HEA’s end-

members:

Hmix;DFT ¼
EHEA;conf :1

8
þ EHEA;conf :2

8
þ EHEA;conf :3

8

þ EHEA;conf :4

8
þ EHEA;conf :5

8
þ EHEA;conf:6

8

þ EHEA;conf :7

8
þ EHEA;conf :8

8
�

P
i

P
j

P
k

Eijk3

N

(10)
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265 X. Lü, C. Stoumpos, Q. Hu, X. Ma, D. Zhang, S. Guo,
J. Hoffman, K. Bu, X. Guo, Y. Wang, C. Ji, H. Chen,
H. Xu, Q. Jia, W. Yang, M. G. Kanatzidis and H.-K. Mao,
Regulating off-centering distortion maximizes photolumi-
nescence in halide perovskites, Natl. Sci. Rev., 2020,
8(9), nwaa288, DOI: 10.1093/nsr/nwaa288.

266 S. S. H. Dintakurti, D. Walker, T. A. Bird, Y. Fang, T. White
and J. V. Hanna, A powder XRD, solid state NMR and
calorimetric study of the phase evolution in mechano-
chemically synthesized dual cation (Csx(CH3NH3)1�x)PbX3

lead halide perovskite systems, Phys. Chem. Chem. Phys.,
2022, 24(30), 18004–18021, DOI: 10.1039/D2CP02131E.

267 M. Chen, Q. Dong, C. Xiao, X. Zheng, Z. Dai, Y. Shi,
J. M. Luther and N. P. Padture, Lead-Free Flexible Perovs-
kite Solar Cells with Interfacial Native Oxide Have 410%
Efficiency and Simultaneously Enhanced Stability and
Reliability, ACS Energy Lett., 2022, 7(7), 2256–2264, DOI:
10.1021/acsenergylett.2c01130.

268 F. Hao, C. C. Stoumpos, R. P. H. Chang and
M. G. Kanatzidis, Anomalous Band Gap Behavior in Mixed
Sn and Pb Perovskites Enables Broadening of Absorption

Materials Horizons Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 2
:5

2:
25

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.1002/adfm.202302214
https://doi.org/10.1021/jacs.7b04981
https://doi.org/10.1002/aenm.202204115
https://doi.org/10.1021/acs.nanolett.3c04214
https://doi.org/10.1021/acs.nanolett.3c04214
https://doi.org/10.1155/2024/9990559
https://doi.org/10.1155/2024/9990559
https://doi.org/10.1021/acsmaterialslett.3c01094
https://doi.org/10.1021/acsmaterialslett.3c01094
https://doi.org/10.1016/j.jallcom.2020.158335
https://doi.org/10.1016/j.mtcomm.2023.107623
https://doi.org/10.1016/j.mtcomm.2023.107623
https://doi.org/10.1039/D1CP04977A
https://doi.org/10.1002/smll.202305054
https://doi.org/10.1016/j.solener.&QJ;2021.03.036
https://doi.org/10.1016/j.solener.&QJ;2021.03.036
https://doi.org/10.1016/j.solener.2022.02.034
https://doi.org/10.1016/j.solener.2022.02.034
https://doi.org/10.1002/adfm.202300588
https://doi.org/10.1039/&QJ;C6TA06607K
https://doi.org/10.1039/&QJ;C6TA06607K
https://doi.org/10.1021/jacs.3c14000
https://doi.org/10.1021/acs.chemmater.7b04565
https://doi.org/10.1021/acsami.2c00889
https://doi.org/10.1021/acsami.2c00889
https://doi.org/10.1093/nsr/nwaa288
https://doi.org/10.1039/D2CP02131E
https://doi.org/10.1021/acsenergylett.2c01130
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4mh00464g


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 3662–3694 |  3683

Spectrum in Solar Cells, J. Am. Chem. Soc., 2014, 136(22),
8094–8099, DOI: 10.1021/ja5033259.

269 J. Im, C. C. Stoumpos, H. Jin, A. J. Freeman and
M. G. Kanatzidis, Antagonism between Spin–Orbit Cou-
pling and Steric Effects Causes Anomalous Band Gap
Evolution in the Perovskite Photovoltaic Materials
CH3NH3Sn1–xPbxI3, J. Phys. Chem. Lett., 2015, 6(17),
3503–3509, DOI: 10.1021/acs.jpclett.5b01738.

270 Y. Chu, C. Wang, L. Ma, X. Feng, B. Wang, Y. Wu, Y. Jia,
M. Zhang, Y. Sun, H. Zhang and G. Zhao, Unveiling the
photoluminescence regulation of colloidal perovskite quantum
dots via defect passivation and lattice distortion by potassium
cations doping: Not the more the better, J. Colloid Interface Sci.,
2021, 596, 199–205, DOI: 10.1016/j.jcis.2021.03.128.

271 A. Ali, H. Park, R. Mall, B. Aı̈ssa, S. Sanvito, H. Bensmail,
A. Belaidi and F. El-Mellouhi, Machine Learning Acceler-
ated Recovery of the Cubic Structure in Mixed-Cation
Perovskite Thin Films, Chem. Mater., 2020, 32(7),
2998–3006, DOI: 10.1021/acs.chemmater.9b05342.

272 D. Jia, J. Chen, R. Zhuang, Y. Hua and X. Zhang,
Antisolvent-Assisted In Situ Cation Exchange of Perovskite
Quantum Dots for Efficient Solar Cells, Adv. Mater., 2023,
35(21), 2212160, DOI: 10.1002/adma.202212160.

273 F.-C. Liang, F.-C. Jhuang, Y.-H. Fang, J.-S. Benas,
W.-C. Chen, Z.-L. Yan, W.-C. Lin, C.-J. Su, Y. Sato,
T. Chiba, J. Kido and C.-C. Kuo, Synergistic Effect of Cation
Composition Engineering of Hybrid Cs1�xFAxPbBr3 Nano-
crystals for Self-Healing Electronics Application, Adv. Mater.,
2023, 35(9), 2207617, DOI: 10.1002/adma.202207617.

274 A. Pisanu, Chemical tuning of hybrid perovskites for solar-
driven clean energy technologies, PhD Thesis, Universita’ di
Pavia, 2020.

275 S. Nagane, D. Ghosh, R. L. Z. Hoye, B. Zhao, S. Ahmad,
A. B. Walker, M. S. Islam, S. Ogale and A. Sadhanala, Lead-Free
Perovskite Semiconductors Based on Germanium–Tin Solid Solu-
tions: Structural and Optoelectronic Properties, J. Phys. Chem. C,
2018, 122(11), 5940–5947, DOI: 10.1021/acs.jpcc.8b00480.

276 Y. Liu, Y.-P. Gong, S. Geng, M.-L. Feng, D. Manidaki, Z. Deng,
C. C. Stoumpos, P. Canepa, Z. Xiao, W.-X. Zhang and L. Mao,
Hybrid Germanium Bromide Perovskites with Tunable Second
Harmonic Generation, Angew. Chem., Int. Ed., 2022,
61(43), e202208875, DOI: 10.1002/anie.202208875.

277 J. Liu, H. Fu, Z. Du, D. Ou, S. Li, Q. Chen, W. Yang, J. Zhao
and J. Zheng, Enhanced photothermal stability of in situ
grown FAPbBr3 nanocrystals in polyvinylidene fluoride by
incorporation of Cd2+ ions, J. Mater. Chem. C, 2022, 10(46),
17512–17520, DOI: 10.1039/D2TC04100F.

278 T. Oku, S. Uchiya, R. Okumura, A. Suzuki, I. Ono,
S. Fukunishi, T. Tachikawa and T. Hasegawa, Effects of
Co-Addition of Guanidinium and Cesium to CH3NH3PbI3

Perovskite Solar Cells, Inorganics, 2023, 11(7), 273, DOI:
10.3390/inorganics11070273.

279 J. Deng, J. Xun, Y. Qin, M. Li and R. He, Blue-emitting
NH4

+-doped MAPbBr3 perovskite quantum dots with near
unity quantum yield and super stability, Chem. Commun.,
2020, 56(79), 11863–11866, DOI: 10.1039/D0CC04912C.

280 C.-H. Lu, R. K. Singh, T.-Y. Chen, S. Som, R. Kumar,
S. A. Lu and M. L. Meena, Rapid synthesis and theoretical
analysis of CH3NH3Pb1�xCdxBr3 perovskite quantum dots
for backlight LEDs: A step towards enhanced stability, Org.
Electron., 2022, 102, 106444, DOI: 10.1016/j.orgel.2022.
106444.

281 M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks,
P. R. Brown, S. Bai, J. T. W. Wang, X. Dang, V. Bulović,
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305 J.-H. Pöhls, M. Heyberger and A. Mar, Comparison of
computational and experimental inorganic crystal struc-
tures, J. Solid State Chem., 2020, 290, 121557, DOI: 10.1016/
j.jssc.2020.121557.

306 N. Achiwa, Linear Antiferromagnetic Chains in Hexagonal
ABCl3-Type Compounds (A; Cs, or Rb, B; Cu, Ni, Co, or Fe),
J. Phys. Soc. Jpn., 1969, 27(3), 561–574, DOI: 10.1143/
JPSJ.27.561.

307 M. S. Alam, M. Saiduzzaman, A. Biswas, T. Ahmed,
A. Sultana and K. M. Hossain, Tuning band gap and
enhancing optical functions of AGeF3 (A = K, Rb) under
pressure for improved optoelectronic applications, Sci.
Rep., 2022, 12(1), 8663, DOI: 10.1038/s41598-022-12713-4.

308 P. S. Aleonard, Fluorometallates obtenus par dissolution
d’oxydes metalliques dans bain fondu a base de fluorobo-
rate de potassium, C. R. Seances Acad. Sci., Ser. D, 1965,
260, 1977–1980.

309 K. S. Alexandrov, B. V. Besnosikov and L. A. Posdnjakova,
Successive phase transitions in perovskites. II. Structures
of distorted phases, Ferroelectrics, 1976, 12(1), 197–198,
DOI: 10.1080/00150197608241424.

310 E. Alter and R. Hoppe, Uber Fluoropalladate(II): KPdF3,
RbPdF3, TIPdF3 und K2PdF4, Z. Anorg. Allg. Chem., 1974,
408(2), 115–120, DOI: 10.1002/zaac.19744080205.

311 M. Arakawa, H. Ebisu and H. Takeuchi, EPR study of Cr3+

centres in Tl2MgF4 and Tl2ZnF4 crystals, in EPR in the 21st
Century, ed. A. Kawamori, J. Yamauchi and H. Ohta, Else-
vier Science B.V., Amsterdam, 2002, pp. 219–224.

312 H. Arif, M. B. Tahir, M. Sagir, S. Znaidia, H. Alrobei and
M. Alzaid, First-principles calculations to investigate ‘‘H’’
and ‘‘K’’ doped RbSrF3 for photovoltaic applications, Optik,
2022, 271, 169864, DOI: 10.1016/j.ijleo.2022.169864.

313 E. C. Ashby, R. S. Smith and A. B. Goel, Comparative
studies on the addition reactions of the Normant reagent
(‘‘CH3MgBr’’ + CuBr) and the new tetrahydrofuran-soluble
magnesium methylcuprates MgmCun(CH3)2m+n with pheny-
lacetylene, J. Org. Chem., 1981, 46(25), 5133–5139, DOI:
10.1021/jo00338a013.

314 R. W. Asmussen, T. K. Larsen and H. Soling, The crystal
structure of RbNiCl3 and RbNiBr3. The Weiss constant in
relation to the crystal structure of some double halides of

Materials Horizons Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 2
:5

2:
25

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.48550/arXiv.2209.05931
https://doi.org/10.48550/arXiv.2209.05931
https://doi.org/10.1039/D0EE01153C
https://doi.org/10.1021/acs.jpclett.6b00946
https://doi.org/10.1038/s41570-023-00492-z
https://doi.org/10.1002/aenm.201904054
https://doi.org/10.1002/aenm.201904054
https://doi.org/10.1038/s41524-020-0307-8
https://doi.org/10.1038/s41524-020-0307-8
https://doi.org/10.1039/C5EE03255E
https://doi.org/10.1038/s41566-020-00732-4
https://doi.org/10.1021/acsenergylett.0c01207
https://doi.org/10.1021/acs.chemmater.&QJ;0c00893
https://doi.org/10.1021/acs.chemmater.&QJ;0c00893
https://doi.org/10.1038/s41586-023-06396-8
https://doi.org/10.1038/s41586-023-06396-8
https://doi.org/10.1021/jacs.2c01383
https://doi.org/10.1039/D0TA10492B
https://doi.org/10.1021/jacs.1c12294
https://doi.org/10.1016/j.jssc.2020.121557
https://doi.org/10.1016/j.jssc.2020.121557
https://doi.org/10.1143/JPSJ.27.561
https://doi.org/10.1143/JPSJ.27.561
https://doi.org/10.1038/s41598-022-12713-4
https://doi.org/10.1080/00150197608241424
https://doi.org/10.1002/zaac.19744080205
https://doi.org/10.1016/j.ijleo.2022.169864
https://doi.org/10.1021/jo00338a013
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4mh00464g


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 3662–3694 |  3685

the type ANiX3, Acta Chem. Scand., 1969, 23, 2055–2060,
DOI: 10.3891/acta.chem.scand.23-2055.

315 D. Babel, in Structural chemistry of octahedral fluorocom-
plexes of the transition elements, Structure and Bonding,
Berlin, Heidelberg, ed. C. K. Jørgensen, J. B. Neilands,
R. S. Nyholm, D. Reinen and R. J. P. Williams, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1967, pp. 1–87.

316 B. Bachmann and B. G. Müller, Einkristalluntersuchungen
an Fluoroperowskiten MPdF3 (M = Rb, K) und PdF2, Z.
Anorg. Allg. Chem., 1993, 619(2), 387–391, DOI: 10.1002/
zaac.19936190225.

317 C. Baopeng, W. Shihua and Z. Xinhua, Synthesis and
structure of AEuI3 (A = Rb, Cs) and AEu2I5 (A = K, Rb,
Cs), J. Alloys Compd., 1992, 181(1), 511–514, DOI: 10.1016/
0925-8388(92)90348-D.

318 H. P. Beck, H. Tratzky, V. Kallmayer and K. Stöwe, The
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381 R. Hoppe and R. Über Homann, CsHgF3, RbHgF3 und
KHgF3, Z. Anorg. Allg. Chem., 1969, 369(3–6), 212–216, DOI:
10.1002/zaac.19693690312.

382 A. Horowitz, M. Amit, J. Makovsky, L. B. Dor and
Z. H. Kalman, Structure types and phase transformations
in KMnCl3 and TlMnCl3, J. Solid State Chem., 1982, 43(2),
107–125, DOI: 10.1016/0022-4596(82)90220-1.

383 R. A. Howie, W. Moser, R. G. Starks, F. W. D. Woodhams
and W. Parker, Potassium tin(II) sulphate and related tin
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467 C. Rüegg, N. Cavadini, A. Furrer, H. U. Güdel, K. Krämer,
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tiger Lanthanoide. II. Über die Synthese von MLnF3 aus
MLnF4, Z. Anorg. Allg. Chem., 1984, 514(7), 92–98, DOI:
10.1002/zaac.19845140712.

528 G.-Q. Wu and R. Hoppe, Neue Fluoro-Perowskite zweiwer-
tiger Lanthaniden. Zur Kenntnis von CsEuF3, CsYbF3 und
RbYbF3, Z. Anorg. Allg. Chem., 1983, 504(9), 55–59, DOI:
10.1002/zaac.19835040907.

529 Y. Xie, S. Wang and X. Zhao, Phase diagram and structure
of CsSm(1�x)YbxI3 systems, J. Alloys Compd., 1996, 241(1),
40–43, DOI: 10.1016/0925-8388(96)02196-2.

530 S. Yakovlev, M. Avdeev and M. Mezouar, High-pressure
structural behavior and equation of state of NaZnF3,
J. Solid State Chem., 2009, 182(6), 1545–1549, DOI:
10.1016/j.jssc.2009.03.031.

531 Y. Yamane, K. Yamada and K. Inoue, Mechanochemical
synthesis and order–disorder phase transition in fluoride
ion conductor RbPbF3, Solid State Ionics, 2008, 179(17),
605–610, DOI: 10.1016/j.ssi.2008.04.022.

532 T. Yanagida, Y. Fujimoto, M. Arai, M. Koshimizu, T. Kato,
D. Nakauchi and N. Kawaguchi, Comparative studies of scintillation
properties of Tl-based crystals, Sens. Mater., 2020, 32(4), 1351–1356.

533 H. W. Zandbergen, Neutron powder diffraction and mag-
netic measurements on TlMnI3 and TlFeI3, J. Solid State

Materials Horizons Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 2
:5

2:
25

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.1103/PhysRevLett.9.212
https://doi.org/10.1016/j.jssc.2013.11.025
https://doi.org/10.1016/j.jssc.2013.11.025
https://doi.org/10.1002/zaac.19885590101
https://doi.org/10.1002/zaac.19885590101
https://doi.org/10.1002/zaac.19895710106
https://doi.org/10.1524/zkri.1995.210.1.64
https://doi.org/10.1016/j.solidstatesciences.&QJ;2009.02.028
https://doi.org/10.1016/j.solidstatesciences.&QJ;2009.02.028
https://doi.org/10.1016/j.matpr.2017.10.065
https://doi.org/10.1016/0038-1098(86)90546-6
https://doi.org/10.1103/PhysRevX.6.041061
https://doi.org/10.1002/pssa.2210580218
https://doi.org/10.1007/BF00663370
https://doi.org/10.1063/1.1708546
https://doi.org/10.1016/0022-5088(87)90381-X
https://doi.org/10.1016/0022-5088(87)90381-X
https://doi.org/10.1107/S0567740870004338
https://doi.org/10.1515/znb-1954-0116
https://doi.org/10.1039/JR9470001662
https://doi.org/10.1063/1.1733520
https://doi.org/10.1021/ic50169a030
https://doi.org/10.1016/S0022-3697(74)80027-2
https://doi.org/10.1016/S0022-3697(74)80027-2
https://doi.org/10.1063/1.1678903
https://doi.org/10.1002/zaac.19845140712
https://doi.org/10.1002/zaac.19835040907
https://doi.org/10.1016/0925-8388(96)02196-2
https://doi.org/10.1016/j.jssc.2009.03.031
https://doi.org/10.1016/j.ssi.2008.04.022
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4mh00464g


This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 3662–3694 |  3693

Chem., 1981, 37(2), 189–203, DOI: 10.1016/0022-
4596(81)90085-2.

534 H. W. Zandbergen, Neutron powder diffraction and mag-
netic measurements on RbTil3, RbVI3, and CsVI3, J. Solid
State Chem., 1981, 37(3), 308–317, DOI: 10.1016/0022-
4596(81)90492-8.

535 H. W. Zandbergen, G. C. Verschoor and D. J. W. IJdo, The
structures of thallium cadmium triiodide and dirubidium
iron tetraiodide, Acta Crystallogr., Sect. B: Struct. Crystal-
logr. Cryst. Chem., 1979, 35(6), 1425–1427, DOI: 10.1107/
S0567740879006580.

536 J. Zhang and J. D. Corbett, Synthesis and structure of The
Novel Layered Phase CsTi2Cl7, Z. Anorg. Allg. Chem., 1990,
580(1), 36–44, DOI: 10.1002/zaac.19905800105.

537 J. Zhang and G. Hong, Luminescence properties of Ce3+ in
KMF3 (M = Mg,Ca,Sr,Ba) hosts with perovskite structure,
J. Rare Earths, 1997, 2, 75–78.

538 J. Zhang, R. Y. Qi and J. D. Corbett, Two novel titanium
halide phases: KTi4Cl11 and CsTi4.3I11, Inorg. Chem., 1991,
30(25), 4794–4798, DOI: 10.1021/ic00025a022.

539 A. Zodkevitz, J. Makovsky and Z. H. Kalman, The Prepara-
tion and Crystal Structure of TlMnCl3, TlFeCl3, TlCoCl3

and TlNiCl3, Isr. J. Chem., 1970, 8(5), 755–762, DOI:
10.1002/ijch.197000095.

540 G. Bergerhoff and L. Goost, Ammoniumtrifluorostannat(II),
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.,
1973, 29(3), 632–633, DOI: 10.1107/S0567740873003031.

541 P. Charpin, N. Roux and J. Ehnetsmann, Compt. Rend.,
1968, 267 C, 484–486.

542 T. Das, G. Di Liberto and G. Pacchioni, Density Functional
Theory Estimate of Halide Perovskite Band Gap: When
Spin Orbit Coupling Helps, J. Phys. Chem. C, 2022, 126(4),
2184–2198, DOI: 10.1021/acs.jpcc.1c09594.

543 R. Hoppe, W. Liebe and W. Dähne, Über Fluoromanganate
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J. Bartolomé, NH4CdF3: Structure of the low temperature
phase, Phys. B, 1990, 162(3), 231–236, DOI: 10.1016/0921-
4526(90)90017-O.

548 G. Meyer and N. Böhmer, Korrosion von Messing und
Bronze durch Ammoniumhalogenide, Z. Anorg. Allg.
Chem., 2000, 626(6), 1332–1334, DOI: 10.1002/(SICI)1521-
3749(200006)626:6o1332::AID-ZAAC133243.0.CO;2-X.

549 M. J. Portier, A. Tressaud, J. L. Dupin and R. de Pape,
Structures et proprietes magnetiques de quelques

composes de formule M Fe F3 (M = Na, K, Rb, Cs, NH4,
T1), Mater. Res. Bull., 1969, 4(1), 45–50, DOI: 10.1016/0025-
5408(69)90015-4.

550 M. M. Rolies and C. J. De Ranter, A new investigation of
ammonium cadmium chloride, Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem., 1978, 34(10), 3057–3059,
DOI: 10.1107/S0567740878010018.
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