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As the concept of high-entropy alloying (HEA) extends beyond metals,
new materials screening methods are needed. Halide perovskites (HP)
are a prime case study because greater stability is needed for photo-
voltaics applications, and there are 322 experimentally observed HP
end-members, which leads to more than 10°’ potential alloys. We
screen HEAHP by first calculating the configurational entropy of 10°
equimolar alloys with experimentally observed end-members. To
estimate enthalpy at low computational cost, we turn to the delta-
lattice parameter approach, a well-known method for predicting 111-V
alloy miscibility. To generalize the approach for non-cubic crystals, we
introduce the parameter of unit cell volume coefficient of variation
(UCV), which does a good job of predicting the experimental HP
miscibility data. We use plots of entropy stabilization versus UCV to
screen promising alloys and identify 102 HEAHP of interest.

1. Introduction

Halide perovskites (HP) are a broad class of materials spanning
322 inorganic and hybrid organic-inorganic crystals. The pro-
totypical ABX; HP has oxidation states of A", B>" and X . The
HP’s divalent metal (B**) constituent is octahedrally coordi-
nated to 6 halide ions (X7). These octahedra share corners to
form a three-dimensional inorganic framework that surrounds
the weakly-bonded A" constituents in cuboctahedral sites."?
Entropy stabilization (ES) is an emerging method®™ where
components are added to a given material until its configura-
tional entropy meaningfully alters its Gibbs free energy.

ES of HP is of interest for their many applications: for electro-
chemical energy storage materials, ES can enhance ion transport.®’
For thermoelectrics, ES reduces thermal conductivity.® For photo-
voltaics (PV), the enhanced stability of ES is desirable: the
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New concepts

We demonstrate the new concept of using unit cell volume coefficient of
variation to approximate the enthalpic penalty of a given high-entropy
alloy candidate, and use it along with ideal sublattice configurational
entropy to map promising high-entropy alloy halide perovskites. While
lattice parameter differences have been used for 50 years to predict III-V
alloy miscibility, we extend this approach to non-cubic crystals for the
first time, and introduce it as a metric for high-entropy alloy materials
screening. This new approach is particularly valuable for guiding the
search for nonmetallic high-entropy alloys, which is in its infancy for
covalent-bonded and semiconducting materials.

photoactive polytypes of the prototypical inorganic HP PV absorber
CsPbl; are metastable below ~375 K.° However, the negative
impact of ES on charge carrier transport or recombination may
limit its use to non-absorbing PV functions such as buffer layers,
transport layers or mechanical anchors."™ For other HP applications
such as light-emitting diodes (LEDs), lasers, neuromorphics, scin-
tillators, etc., the role of entropy is less clear, but such an extensively
inhabited class of crystals make HEAHP of general interest for
engineering, such that the boundaries of what is possible, feasible,
and useful warrant exploration.

Density functional theory (DFT) is currently being used to screen
HEA boride, carbide, and carbonitride ceramics.'* We stress that
computationally efficient prescreening methods are needed even for
choosing alloys for DFT because HEA have large unit cells, and the
322 experimentally observed HP can combine to form 10°” alloys
(considering equimolar compositions with up to 48 end-members).
In our first screening, we report the 10° HEAHP consisting entirely
of experimentally observed end-members. We then further screen
by quantifying their ideal mixing ES and estimate enthalpic penalty
using end-member unit cell volume coefficient of variation (UCV),
identifying 10> alloys with promising UCV-ES tradeoffs.

2. Results

Metal alloys are the prototypical ES case because they com-
monly have single site lattice structures. This makes metals

This journal is © The Royal Society of Chemistry 2024
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behave like ideal solid solutions, so their entropies increase
dramatically as components are added: the configurational
entropy of a 6-component equimolar mixture of (metal) elements
on a single sublattice is —4.5 k] mol * at 300 K.'? ES of oxides has
been demonstrated in Mg, ,C00,Nig,Cly,ZNng,0" and many
other oxides."* Although MgO, NiO, CuO, and ZnO have different
structures and a mean Gibbs energy of formation of —307 kJ
mol'," the thermodynamics of Mg, ,C0,,Nig ,Cug2Zn,,0 were
predominated by entropy,'® despite possessing ES of only —2.0 kJ
mol " at 300 K. By comparison, HP ES should be relatively large
and easy to measure. We find 282 inorganic HP that have been
experimentally observed'®* and theory suggests that many more
may exist,”* >’ so a staggeringly wide combinatorial chemical
space can be drawn on to realize this potential. Moreover, weak
bonding allows entropy to dominate HP Gibbs energies.*®

A given alloy composition change can be net stabilizing if
that change’s configurational ES outweighs any enthalpic
destabilization. In order to screen for promising alloy composi-
tions, we assume each sublattice (A cation, B cation, and X
anion) behaves like an ideal solid solution'? to calculate the
entropy of mixing (configurational entropy; S/R), as well as the
ES term in the Gibbs energy equation at 300 K:

(e ()
i j

S/R =
1)
+ %Zyi( ln(y,)f))
%

1 1
ESterm = —-T7S = RT<§Zy? ln(y?) +§Zy}3 1n<y}3>

+ %Zy;f ln(y?))
k
(2)

R is the gas constant, T is temperature (K), and y; is the mole
fraction of the ith constituent on the A sublattice in ABXj.
Actual atomic distributions in (metal) HEA have been
considered,>*”° and simple scaling rules have been developed
to predict HEA stability for metals.’’” Unlike metals, ABX; HP
have covalent to ionic bonding and 3 distinct lattice sites (A, B,
and X), which limits how much they can be stabilized with
configurational entropy.*®

In contrast to ES, estimating enthalpy for screening HEAHP
is challenging, leading to a tradeoff between accuracy and
computational (or experimental) cost. Experimentally screening
HEA is most accurate and most expensive. The next most
accurate and expensive method combines DFT with the special
quasirandom structures approach.**™** Alternative approaches
have been developed to screen alloys*™*® and HEA,*">* but
these are either too computationally expensive,’®>! need too
much experimental data,” or use experiment-free phase dia-
grams to predict HEA with machine learning, which has limited
interpretability.>®>> An approach with even lower computa-
tional cost is to estimate mixing enthalpy, which is
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proportional to the difference between the lattice parameters
of a II-V alloy’s constitutive end-members.>* Based on the
Hume-Rothery rules for metal alloying (minimize atomic radii
differences, match crystal structures, keep valency constant,
and keep electronegativity constant),>® Foster showed that
lattice parameter differences could be used to predict misci-
bility in II-Vs and II-VIs.>® Foster and Stringfellow used this
“delta-lattice parameter” approach to correctly group the mis-
cibility of 9 ternary II-VI*® and 9 quaternary III-V*” alloy
systems, respectively, and the method was recently extended
to correctly group the miscibility of 18 ternary III-V alloy
systems,>® confirming broad accuracy in spite of its low com-
putational cost. To extend the delta-lattice parameter method
to non-cubic structures, we draw on Zen’s law: there is an
empirical linear relation between molar volume and composi-
tion of a solid solution.>® (Zen’s law simplifies to Vegard’s law®®
for cubic structures with similar molar volumes.) Therefore, an
HP alloy’s unit cell volume is its weighted mean (¥,,):

V=333 vMP i Vi, 3)
i J k

Here Vy; is the unit cell volume of the end-member with the ith,

Jjth and kth constituent on the A, B and X sublattices, respec-
tively. To reduce complexity, we consider only equimolar com-
positions, which have the greatest ES term. (A semiconductor
alloy’s density of states can shift its entropic minimum away
from the equimolar composition,®® so other compositions
should be considered after the initial screening.) The equimolar
unit cell volume’s mean, standard deviation, and coefficient of
variation are:

2 Zj: > Vi

pet (1)

ZZ}:; (Vie, = V)

o= N (5)

o

Here V is equimolar unit cell volume, ¢ is equimolar alloy
unit cell volume standard deviation, UCV is equimolar alloy
unit cell volume coefficient of variation, and N is the number
of end-members. Atomic radius differences,®*** lattice para-
meter differences,®>*® and atomic position differences®” have
been previously parameterized to screen metal HEA. We instead
parameterize unit cell volume to extend the approach to non-
cubic crystals. Although perovskite lattice parameter was pre-
viously shown to correlate with ionic radii,’®*® we use eqn (6) for
enthalpic penalty in HEA for the first time. We confirm agree-
ment with 42 out of 45 room temperature miscibility gap data
from III-V (Fig. 1 and Table S1, ESI{)*”*® and II-VI (Table S1,
ESI1)*® material systems. UCV correlates well with experimental
III-V and II-VI mixing enthalpy (Table S1 and Fig. S1, ESIY),
although future work using the elastic modulus or melting
temperature are expected to improve the fit.”® Using the phase
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1lI-V experimental phase boundary data
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Fig. 1 Experimental IlI-V single-phase alloy (pink circles) and multiple

phase (gray Xs) data,>”>® confirming that plotting the ES term at 300 K (or

S/R) as a function of UCV leads to a phase boundary near UCV of 0.03
(black dashed line) which is useful for screening HEA that have not yet
been experimentally synthesized.

boundary for HP in Fig. 2,”" 22 out of 26 experimental HEAHP
data are grouped correctly. Mapping the boundary between
single-phase and multiple phase alloys with UCV-ES plots also
works for boride, carbide, and carbonitride ceramics: Fig. S2
and Tables S2, S3 (ESIT) show correct grouping of 56 out of the
64 miscibility data (88% accuracy). Good agreement with such
broad experimental data and no fitting parameters suggests the
UCV approach has sufficient accuracy despite its low computa-
tional cost. UCV allows us to directly compare cubic and
hettotype perovskites—the latter have distortions that reduce
symmetry, but are more common (e.g., CsPbly’s metastable
polymorphs).»* There are more reports of single-phase inorganic
HEAHP (Table S4, ESIT)*>'® and hybrid organic-inorganic

HP experimental phase boundary data
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Fig. 2 Experimental HP single-phase alloy (pink circles) and multiple
phase (gray Xs) data,”* confirming that plotting the ES term at 300 K (or
S/R) as a function of UCV leads to a phase boundary near UCV of 0.04
(black dashed line) which correctly groups 22 of the 26 data. Binary copper
alloys are excluded because the synthesis method did not produce phase
pure KCuFs.*
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HEAHP (Table S5, ESIT),”*°*® but more investigation into
single-phase boundaries is needed to confirm the broadscale
applicability of UCV for screening HEAHP.

Using DFT we calculate mixing enthalpy of 6 HEAHP com-
positions. To make the computations tractable we approximate
a HEA’s mixing enthalpy by calculating the energy of 8 distinct
configurations of 40-atom unit cells and reference their mean
to that alloy’s constitutive end-members. The results in Fig. 3
and Table S6 (ESIt) confirm that UCV correlates with DFT
mixing enthalpy for HEAHP.

It was argued that for thermoelectric devices ES can enhance
crystal symmetry to preserve charge carrier transport despite
the disordered nuclei that impede phonons and reduce thermal
conductance.®*®¢ In CH;NH;Pbl; phonon lifetimes are shor-
tened by the organic cation’s entropy, which may improve
charge carrier recombination properties.”®” HP’s peculiar semi-
conductor physics have been attributed to dynamic disorder,>*®
lattice softness and anharmonicity.>’

Beyond PV absorbers, ES HP may be useful as oxygen
evolution electrocatalysis,”" electrochemical energy storage,®
thermoelectrics,® light emitting diodes, photodetectors, PV
buffers, contacts, solid state radiation detectors, scintillators,
fuel cells, lasers, high temperature electronic components,
barocaloric materials for use in refrigeration, ferroelectrics,
and neuromorphic computers.

The disordered nuclei in ES HP may alter phonons, possibly
reducing thermal conductance. Restricted phonons can result in
slow cooling of hot charge carriers, similar to what is already
observed in HP as a result of lightinduced lattice
distortions.”**?*" On the other hand, local bonding distortions
in ES crystals should disrupt electron band energies, creating a
distribution of local energy states similar to what was described
for ion conductivity through ES materials.” Thus, bulk 3D carrier
transport may suffer, but there may good charge carrier trans-
port along specific crystal directions.

HEAHP DFT data
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Fig. 3 DFT enthalpy of mixing as a function of UCV from DFT for the HEAHP
in Table S6 (ESIT), showing that UCV correlates with DFT mixing enthalpy.

This journal is © The Royal Society of Chemistry 2024
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2.1 Mixing on all sublattices

Assuming equimolar compositions on each sublattice (A", B**, and
X~ in ABX;), we calculate the 1340 752 possible combinations of the
282 experimentally observed inorganic HP with 5 or more compo-
nents (Table S7, ESIt). The compositions with the greatest ES are in
Table 1. HP are mostly composed of halides, so most of the
compounds in Table 1 have 4 halide components. The greatest
ES, —3.22 k] mol ", is for CsB(Br,Cl,F,I); with 10 B-site components.
The next greatest ES, —3.17 kJ mol ', is for (Cs,K,Rb)(Ca,Cd,Sn)-
(Br,CLF,I);, as well as CsB(Br,CLF,I); with 9 B-site components.
(Cs,Rb)(Ca,Cd,Pb,Sn)(Br,CLF,I); has ES of —3.11 k] mol .
CsB(Br,CLI); with 15 B-site components has ES of —3.00 k] mol .

Next, we calculate most of the combinations of the 282 inor-
ganic HP with known lattice parameters in Fig. 4, where the ES
term at 300 K is plotted as a function of UCV. As Fig. 4(b) and
Table 2 show, HP are mostly composed of halides, so the greatest
ES comes from X-site mixing. However, X-site mixing drives
UCV higher: when all 4 halides are used, the ES term reaches
—3.17 kJ mol " but has UCV of 0.283 for Cs(Ca,Eu,Mg,Mn,Ni,Pb,-
Sn,Sr,Yb)(Br,CLF,I);. When only 3 halides are used, an ES term
of —2.96 k] mol ' is achieved at the much lower UCV of 0.156
for Cs(Au,Ca,Eu,Ge,Mg,Mn,Ni,Pb,Sn,Sr,Ti,Tm,V,Yb)(Br,CLI);. When
only 2 halides are used, an ES term of only —2.28 k] mol " is
possible, but at UCV of only 0.106 for (Cs,K,Rb,TI)(Ca,Cd,Mn)
(Br,Cl);, while an ES term of —2.19 k] mol " is reached at a UCV
of only 0.073 for (Cs,Rb)(Ca,Ge,Pb,Sn,Sr)(Br,Cl);. We examine
1-halide compounds in the next section. Other compounds with
attractive UCV-ES term tradeoffs are in Fig. 4(b) and Table 3. These
specific compositions demonstrate that in general, mixing Br, Cl,
and I on the X-site, Cs and Rb on the A-site and Ge, Pb, and Sn on
the B-site are all promising. Less obvious constituents include F on
the X-site, K and Tl on the A-site and Ca, Cd, Eu, and Sr on the B-
site. Former work found the prospect of using hetero-valent sub-
stitutes on the B site to be promising.**>

2.2 Mixing on only A and B sublattices (ordered valence band)

HP valence band maximum is dominated by (X) halide
with minor B cation contributions, while the conduction band
minimum is mostly determined by the B cation with small X
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contributions.**?

Therefore, to preserve order in the valence band
and keep valence band energy constant to facilitate hole transport,
A- and B-site cations can both be alloyed while the halide is kept
pure (1 component on the X sublattice). In this case, the greatest
ES term is only —1.68 k] mol™' for CsBCl; with 29 B-site
components (Fig. 5). Other noteworthy compositions are shown
in Fig. 5(b) and Table 4. As discussed in the previous section, less
halide mixing translates to less ES but also lower UCV. Halide
segregation is a known issue in HP*** that could prevent the use
of mixing on the X-site for ES. If that is a limitation, then the
compounds in this section can still be used to achieve moderate
ES at low enthalpic penalties (low UCV), all while maintaining an
ordered valence band valuable for hole transport.

2.3 Mixing on only A and X sublattices (ordered conduction band)

To preserve order in the conduction band and conduction band
energy alignment to facilitate electron transport, mixing on the
A- and X-sites can be used. In this case, the greatest ES term is
—2.77 k] mol " for (Cs,K,Rb,TI)Cd(Br,CL,F,I);. Other noteworthy
compositions are shown in Fig. 6(b) and Table 5. We note that 3
of the compounds are entirely composed of end-members whose
experimental band gaps are known. The compounds’ band gaps
are estimated by averaging end-member values: 1.95 eV for
CsSnBrClI, 2.31 eV for CsPbBrClII, and 2.48 eV for CsGeBrCII.

2.4 Mixing on only A sublattice (ordered valence and
conduction bands)

To preserve order in the valence and conduction bands and
prevent changes in the valence and conduction band energy as
well as band gap, alloying on only the A-site should be used. In
this case, the greatest ES term is only —0.97 k] mol " with UCV
of 0.063 for (Cs,In,K,Li,Na,Rb,Tl)CaBr;. Other compositions of
interest are shown in Fig. 7(b) and Table 6.

A-site and X-site segregation are both known issues in HP
that could prevent the use of mixing on the A- and X-sites for
ES. If those are limitations, then the compounds in this section

295

can still be used to achieve weak ES at low enthalpic penalties
(low UCV), all while maintaining ordered valence and conduc-
tion bands valuable for both hole and electron transport.

Table 1 Inorganic HP compositions with the most negative ES term at 300 K whose end-members are all experimentally observed. We omit
compositions with an ellipsis (...) that are analogous to the row above them and have the same A- and X-site occupation

Alloy composition ES term (kJ mol ") S/R
CsCag 1Cdy.1Eug.1Mgo.1Mng 1 Nig 1Pbg 1510.1ST0.1Ybo.1Br0.75Clo.75F0.7510.75 —3.22 1.29
C50.33K0.33Rb0.33Cao.33Cdo.33Sno.ssB.ro.75010.75F0.7510.75 -3.17 1.27
CsCag.11Cdo.11EU0.11Mgo.11MNg 11Nig.11Pbg.11SN0.11ST0.11BT0.75Clo.75F0.7510.75 —-3.17 1.27
CSO.SRbO.ScaO.ZSCdO.ZSPbO.ZSSnO.ZSBt:OJSC10.75F0.7510.75 -3.11 1.25
CsCay.13Cdg.15EU0.13Mg0.13M1.13Nip 13PDg.135N0.13Br0.75Clo.75F0.7510.75 -3.11 1.25
CsCag.14Cdo.14EU0 14Mg0.14MNg 14Nig.14PDg.14BT0.75Clo.75F0.7510.75 —3.05 1.22
CsAuy,.07Ca0.07Cdo.07EU0.07G€0.07M&0.07MNo.07Nig.07Pbo.0781N0.075T0.07Ti0.07TMo.07Vo.07Ybo.07 BICII —3.00 1.20
C80.33K0.33Rb0.33Ca0.5Cd0 5B10.75Clo 75F0.7510.75 —2.97 1.19
C80.5K0.5Ca0.33Cd0.33510.33B10.75Clo 75F0.7510.75 —2.97 1.19
Cs.5Rbg.5Ca9.33Cd0.33Pbo.33BT0.75Clo.75F0.7510.75 —2.97 1.19
This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 3662-3694 | 3665
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Fig. 4 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for all equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on all sublattices: (a) all data and (b) zoomed in, with

promising alloys labeled and in bold.

Table 2

Inorganic HP compositions with the greatest ES term at 300 K whose lattice parameters are known and end-members are all experimentally observed

with mixing on all sublattices. We omit compositions with an ellipsis (. . .) that are analogous to the row above them and have the same A- and X-site occupation

Alloy composition ES term (kJ mol ™) SIR ucv
CSca(n1Euo.11M4°;.'().11M.no.11Ni0.11Pbo.11sno.11sro.11Ybo.11Bro.75C10.75F0.7510.75 —3.17 1.27 0.283
CsCag.13EU¢.13MnN0.13Ni0.13PDg.13510.135T0.13Yb0.13BT0.75Clo.75F0.7510.75 —-3.11 1.25 0.276
CsCag.14EUg.14Mng.14PDg.14S10.14570.14YD0 14BT0.75Clo.75F0.7510.75 —3.05 1.22 0.271
Csg.5Rbg 5Ca0.33Pbo 33510.33BT0.75Clo. 75F0.7510.75 —2.97 1.19 0.258
CsCag.17EU¢.17Pbg 178N0.175T0.17YDo.17B10.75Clo.75F0.7510.75 —2.97 1.19 0.264
Cs0.33K0.33Rb0.33C20.55N0.5BT0.75Clo.75F0.7510.75 —2.97 1.19 0.273
CsCag.17EU¢.17MNy.175N0.175T0.17YDo.17Br0.75Clo.75F0.7510.75 —2.97 1.19 0.276
CsAug 67C20.07EU0.07G€0.07Mg0.07MNg.07Ni0.07Pbo.07510.075T0.07Ti0.07TMo.07V0.07YDo.07BICII —2.96 1.19 0.156
Csg.5Rbg 5Cag.14Cdg 14Mng 14Nig 14Pbg.14SN( 14510 14BrCIF —2.96 1.19 0.254
CsAuy,05Ca0.08EU0.08G€0.08ME0.0sMNg 08PDg.08SN0.085T0.08Ti0.08TMo.05V0.08YDo.0sBICII —2.92 1.17 0.152
CsCag.05Cdo.0sEU0.05F€0.08HE0.08ME0.0sMN0.08Ni0.08PDo.0sPd0.085N0.085T0.08YDo.0sBICIF —2.92 1.17 0.268
CsAuy,05Ca0.0sEU0.08G€0.08ME0.0sMNg 05PDo.08SN0.085T0.08 TMo.08V0.08YDo.0sBICII —2.88 1.16 0.149
Csg.5Rbg 5Cag.17Geo.17Pbg 175N0.17Tig.17Vo.17BrCII —2.88 1.16 0.152
CsAUy,05EU0.05G€0.08ME0.0sMNg 05Pbo.055N0.085T0.08Ti0.08TMo.08V0.08YDo.0s BICIL —2.88 1.16 0.152
Csg.5Rbg 5Cag.17Cdy.17Nig.17Pbg.178n0 175T¢.17BrCIF —2.88 1.16 0.246
CsCay,0sCdo.0sEU0.08F€0.08HE0.0sMNg 08Nig.08PD0.0sPdo.08SN0.085T0.08YD0.0sBICIF —2.88 1.16 0.263
C80.33K0.33Rb0.33Ca0.25Cdo.25MNg 255N 25BICIF —2.88 1.16 0.265
CsCag03Cdo.0sEU0.08HE0.0sM80.0sMNg.0Nig.08Pbo.0sPdo.085N0.085T0.08YDo.0sBTCIF —2.88 1.16 0.266
CsCag 2Eug 2Pbg.»5N05810.2Br0.75Clo.75F0.7510.75 —2.88 1.16 0.254

2.5 Organic A-site components (hybrid organic-inorganic HP)
The previous sections have only considered inorganic compounds,
but there are at least 22 organic cations that can substitute on the
A-site: methylammonium (MA; CH;3;NH;), formamidinium (FA;
HC(NH,),), guanidinium (GA; C(NH,);), dimethylammonium
(DMA; (CH;),NH,), ethylammonium (EA; CH;CH,NH3), acetamidi-
nium (ACA; CH;C(NH,),), ammonium (NH,), hydrazinium (HA;
N,H;), azetidinium (AZ; C3HeNH,), imidazolium (IM; C;N,Hs),
trimethylammonium (TM4A; (CH;);NH), tetramethylammonium
(TEMA; (CH,)4N), arsonium, methylarsonium, methylphospho-

3666 | Mater. Horiz., 2024, 11, 3662-3694

nium, aziridine, hydroxylammonium, phosphonium, antimonium,
PF,, NH,CHPH,, and NH,CHAsH,.**® Therefore, hybrid organic-
inorganic halide perovskites have an even larger chemical space
that can be tapped for ES than the pure inorganics.

Previous work found ES in (Cs,FA)Pbl;,**” (FA,GA)PbBr;,>*®
(Cs,FA,MA)PbI;,>*° (Cs,FA,MA)Pb(Br,I);,*"*% and (Cs,FA,MA,Rb})-
Pbl;,***** and ES was also recently demonstrated in double
HP****" and “hollow” HP.>*** Long anneals of CH;NH,Pbl; were
argued to maximize configurational entropy of the organic cation,
which was found to stabilize the cubic polytype and improve

This journal is © The Royal Society of Chemistry 2024
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Table 3 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on all sublattices

ES term

Alloy composition (k] mol™") S/R UCV

C50.5Rbo sCa0.33PDo 33510 53BT0 75Clo 75F0 7slo 75 —2.97  1.19 0.258
CsCay ,Eug ,Pbg »Sn »,S1 »Brg 75Clo 75F0.7510.75 —2.88 1.15 0.254
C8.5Rbg.5Pbg.58N0.5BT0.75Clo.75F0.7510.75 —2.77 1.11 0.239
Csg.5Rbg 5Cag 25G€g.25Pbg 259N 25BrCII —2.68 1.08 0.126
Cs.5Rbg.5G€g.33Pbg 335N0.33BrClII —2.54 1.02 0.119
Csg.5Rbg.5Pbg 335N 3351 33BrCIF —2.54 1.02 0.219
Csg.5Rbg 5Geg 5Pbg sBrCII —2.34 0.94 0.112
C80.25K0.25Rbg 25Tlo 25Ca0.33Cd0.33MN0 33B11 5Cly 5 —2.28 0.91 0.106
Csg.5Rbg 5Ca 2Geg ,Pby SN, 58T »Bry 5Cly 5 —2.19 0.88 0.073
Csg.5Rbg.5Ge.25Pbg 255N0.255T¢ 25Br1.5Cl; 5 —2.07 0.83 0.065

electrical properties.’*® Entropy stabilization of HP nanocrystals

was recently demonstrated: Pb was substituted for Mg, Zn, and Cd
in CH3;NH;PbBr; to enhance stability, while narrow band emission
was retained.>®* Unlike former reports,>*”**® here we consider the
maximum feasible configurational ES, which restricts our focus to
alloys with a minimum of 5 components.

Mixing the 40 organic and 282 inorganic HP end-members,
we find 14 270 hybrid organic-inorganic HEAHPs consisting of
5 or more experimentally observed end-members (Fig. 8 and
Table S8, ESIT). Attractive UCV-ES term tradeoffs are in Table 7.
In general, smaller ES are possible at a given UCV, relative to the
inorganic HEAHPs in the previous sections. Table 7 mostly

(a) Mixing on only A and B sublattices (ordered VB)
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0.0 0.1 0.2 0.3

Unit cell volume coefficient of variation (UCV)
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consists of well-studied alloys based on Cs, MA, and FA, but the
less-studied Rb and K are also present. For PV-related Br, Cl, and I
systems, the B-site constituents are Ge, Sn and Pb. The F systems
are of interest for electrochemical applications and have smaller
unit cells, so NH, and Na are allowed, Cd, Fe, and Mn are prevalent
while Tl, Co, Cu Fe, Mg, Ni and Zn are possible. (Cs,K,NH,,-
Rb,TI)(Cd,Fe,Mn)(CLF); and (K,NH,Rb,Tl)(Cd,Co,Cr,Cu,Fe,Mg,
Mn,Ni,Sn,Zn)F; have ES terms at 300 K of —2.39 and —1.84 k] mol
respectively. While inorganic HEAHP have more negative ES
terms as temperature increases, the organic components’ vola-
tility may limit this effect for organic HEAHP.

2.6 Non-equimolar compositions

For non-equimolar compositions, weighted standard deviation
(0w) and weighted coefficient of variation (UCV,,) are:

2 Z Z VPR (Vigs —
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™ zzm‘yﬁyz
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:\/ZZZJ’, )/,J/A Ijkz*VW)z
ucy, = 2 8)

Vi
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: : : :
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Fig. 5 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only A and B sublattices (ordered valence band): (a)

all data and (b) zoomed in, with promising alloys labeled and in bold.

Table 4

Inorganic HP compositions with attractive UCV-ES term at 300 K tradeoffs whose lattice parameters are known and end-members are all

experimentally observed with mixing on only A and B sublattices (ordered valence band)

Alloy composition ES term (kJ mol ) S/R ucv
Ag.2Ko.2Nag 2Rbg 2Tl ,C0g ,Cug ,Mgp 2Mng 5 Zng o F3 —1.61 0.64 0.095
Ago.2Ko.2Nag 2Ry 2Ty ,C0p ,Cig 2Mg0 2 Nig 2200 o F3 —1.61 0.64 0.141
CsAU,,04B20.04C20.04Cd0.04CT0.04CU0.04DY0.04EU0.04F€0.04G€0.04HE0.041N0.04ME0.04M N 04

Nig.04Pbo.04Pd0.045C0.045M0.045T0.04Ti0.04TM0.04V0.04YDo.04BT3 —1.59 0.64 0.116
Cs0.25K0.25RD0.25Tlp.25Cd 0 2CUg 2MEo.2MnN 5V 5 Cly —1.49 0.60 0.059
C80.33K0.33Rbo.33AU¢.17C20.17DY0.17Pb0.178N0.17Ybo.1713 —1.44 0.58 0.052
Ko.33RDg.33Tlp.33Cdo 2Cup .Mgo 2Mng 5V ,Cly —-1.35 0.54 0.038
K0.33Rb0.33T10.33CUO.ZSMgO.ZSMnO.ZSVO.ZSCIS —1.24 0.50 0.030
This journal is © The Royal Society of Chemistry 2024 Mater. Horiz., 2024, 11, 3662-3694 | 3667
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Fig. 6 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only A and X sublattices (ordered conduction band):

(a) all data and (b) zoomed in, with promising alloys labeled and in bold.

Table 5 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on only A and X sublattices (ordered
conduction band)

Alloy composition ES term (k] mol ') S/R UCV

C80.33K0.33Rb.335NBr¢.75Clo 75F0.7510.75  —2.62 1.05 0.248
Cs0.33K0.33Rbg 33CaBrg 75Clg 75F0.7510.75 —2.62 1.05 0.293
Csy.5Rbg sPbBry 75Cly.75F 751075 —2.42 0.97 0.234
Ko.5Rbg 5SnBrg 75Cly 75F 7510.75 —2.42 0.97 0.242
Cs0.33K0.33Rbg 33SnBrCII —2.19 0.88 0.125
CsEuBr 75Cly 75F¢ 7510.75 —2.07 0.83 0.209
RbPbBr, 75Cly 75F0.7510.75 —2.07 0.83 0.230
RbSnBr 55Cly.75F0.7510.75 —2.07 0.83 0.232
CsPbBry 75Cly.75F0.7510.75 —2.07 0.83 0.236
Csg.2Ko.5Lig ,Rbg ,Tly ,CaBr; 5Cl4 5 —1.84 0.74 0.085
CSg.25IN¢ 25K0 25RDbg 55SNBry 5Cly 5 —-1.73 0.69 0.053
CsEuBrcCII —1.64 0.66 0.058
RbGeBrCII —1.64 0.66 0.079
RbPbBrCII —1.64 0.66 0.092
KSnBrClI —1.64 0.66 0.098
CsPbBrClI (2.31 eV) —1.64 0.66 0.105
CsGeBrClI (2.48 eV) —1.64 0.66 0.127
CsSnBrClI (1.95 eV) —1.64 0.66 0.138
Ky 5Rbg 5SnBr; 5Cl4 5 —1.38 0.55 0.023
(a) Mixing on only A sublattice (ordered VB and CB)
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compositions has been mapped experimentally for
MAPb(Br,CLI);.>** We calculate ES term at 300 K and UCV,, for
MAPb(Br,CLI); in Fig. 8(a) and (b). While UCV,, predicts the
general shape of the data, multiplying UCV,, by a constant (C)
and adding it to ES term accurately predicts 52 out of the 56 data
(93%; Fig. 9(c)). ES’ combined effect on Gibbs energy (Ggs) is:

1
gZ%A ln(yzA)

Ggs = ESterm + UCV,,C = RT

—0—%2){? ln(y]'.;) + %Zyi( In(»y)
J k

\/ZZZ}’Ay,ByZ( ey —
ZZ;%‘J’/J&- ijks
i j k

V)

+ C

This new equation is Calphad with crystal structure inputs.
Empirically fitting C to the MAPb(Br,Cl,I); data yields C of 23 k]
mol~*. On the other hand, a C value of 40 k] mol™* matches the
experimental data for CsPb(Br,CL1I); (Fig. S3, ESIt), suggesting
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Fig. 7 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for equimolar
inorganic HP compositions with experimentally observed constitutive end-members with mixing on only the A sublattice (ordered valence and
conduction bands): (a) all data and (b) zoomed in, with promising alloys labeled and in bold.
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Table 6 Inorganic HP compositions with attractive UCV-ES term at 300 K
tradeoffs whose lattice parameters are known and end-members are all
experimentally observed with mixing on only the A sublattice (ordered
valence and conduction bands)

ES term (K]
Alloy composition mol ") S/R UCV
Csg.14IN¢ 14K 14Lig 14Nag 14RDbg 14Tl 14CaBr; —0.97 0.39 0.063
Ag0.14C80.14Ko.14Lig.14N2g 14RDg 14 Tlo 14MgF; —0.97 0.39 0.106
Ag.14CS0.14Ko.14L10.14Nag 14RDg 14T]y 1,MnF; —0.97 0.39 0.123
Csg.17INg 17K 17Lig 17RDbg 17Tl 17CaBr; —0.89 0.36 0.049
Ing 2Ko.2Lig2Rby 2 Tlp 2CaBr; —0.80 0.32 0.035
C80.25IN0,25K0.25RDg.25SNCl3 —0.69 0.28 0.021
C80.25K0.25RDg 25Tl 25PbI3 —0.69 0.28 0.039
Cs0.25IN0.25K0.25RDg. 25SNBr3 —0.69 0.28 0.053
Ag0.25CS0.25K0.25Rbg 25 PbBI3 —0.69 0.28 0.135

enthalpic penalty plays more of a role in the latter. Altogether
we accurately predict 75 out of the 83 ternary data (91%),
showing that UCV-ES maps can rank alloys with different
constituents and different compositions.

2.7 Known experimental band gaps

Of the 282 experimentally observed inorganic HP compounds,
we find experimental band gaps for 19. Of the 1340752 alloy
compositions we consider, 73 are entirely composed of end-
members whose experimental band gaps are known. Fig. S4
and Table S9 (ESIt) show that they all contain Cs, most have Ge,
Pb or Sn, and most band gaps are wider than 2 eV. Bowing can
shift these band gap values, and experimental bowing data is in
Table 7 and Fig. S9 (ESIY).

2.8 Overall accuracy

Finally, we note the high accuracy of UCV separating experi-
mental miscibility data across crystal systems with a spectrum
of bonding character: from weak ionic HP (89% of 109 data) to
weak covalent 11-VIs (83% of 18 data), covalent I1I-Vs (100% of
27 data), and finally to strong covalent boride, carbide, and
carbonitride ceramics (88% of 64 data). Overall accuracy for the
218 data is 89.4%. For comparison, the accuracy of Materials
Project DFT unit cell volumes relative to experiment is

(a) Hybrid organic-inorganic: Mixing on all sublattices
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92.6%.>” There are exceptions to UCV predicting miscibility:
KCoy Fey2Mgo 2Nig 2Zn, ,F; in Fig. 2, Hf, ;M0 2Nbg ;Tag ;W »-
Co.5Ng 5 in Fig. S2 (ESIt), and CsPb, 5Zn, 5Cl;, CsPbg sZn, 5Brs,
and CsPb, sZn, 513 in Table S4 (ESIT). These exceptions show
that crystal structure and Gibbs energy are more nuanced than
a single parameter can describe, but UCV captures 89% of HEA
mixing behavior.

3. Conclusions

We take a low computational cost approach to screening HEA
and employ it to identify promising inorganic and hybrid
organic-inorganic HEAHP. Drawing from the pool of 322
experimentally observed HP, we compute configurational
entropy stabilization (ES) of equimolar HEA. Starting with the
delta-lattice parameter approach for predicting III-V miscibil-
ity, we introduce the more generally applicable unit cell volume
coefficient of variation (UCV) to estimate enthalpic penalty of
HEA. UCV predicts the existing experimental III-V, II-VI, bor-
ide, carbide, carbonitride, and HP data well. We screen the 10°”
possible HEAHP to report the 10° alloys consisting entirely of
experimentally observed end-members, then identify 10°
HEAHP with promising UCV-ES tradeoffs. These results can
serve as a first screen for guiding more costly calculations and
experiments.

4. Methods

Throughout the literature, the boundary between what is con-
sidered perovskite and not considered perovskite is
ambiguous.’” We limit our search to the 282 inorganic and 40
organic ABX; compounds that have been experimentally
observed and previously labeled as “perovskites” (Tables
Sl018—20,27,111,112,115,123,179,306—539 and S11 (ESI,;.)’315,466,524,526,540—558
respectively). We exclude the 90 inorganic HP that have been
proposed but not synthesized (Table $12, ESIT).>***%%7*3% In order
to use a self-consistent database, where possible we use lattice
parameters from the Materials Project’> for the Pnma

(b) (K,NH_,TI)(Co,Cu,Fe,Mg,Ni,Zn)F,

1.5+ roe
R
— (Cs,MA,Rb)(Pb,Sn)(Br,Cl);
o
£ o7
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x
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Fig. 8 Entropy stabilization (ES term at 300 K) as a function of enthalpic penalties, or unit cell volume coefficient of variation (UCV), for all equimolar
hybrid organic—inorganic HP compositions with experimentally observed constitutive end-members with mixing on all sublattices: (a) all data and (b)

zoomed in, with promising alloys labeled and in bold.
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Table 7 Hybrid organic—inorganic HP compositions with the greatest ES term at 300 K whose lattice parameters are known and end-members are all
experimentally observed with mixing on all sublattices. Calculated band gaps are included along with the maximum experimental band gap bowing (the
difference between the linearly-interpolated-band gap and the actual band gap) and references

ES term Band gap

Alloy composition (kJ mol ™) S/R UCV (eV) Exp. bowing (eV)

Csg.33MAq 33RDg 33Pbg 55N sBrCII —2.54 1.02 0.120 — —

CSO_2K0.2(NH4)0.2Rb0,2T10.2CdBrC1F —2.45 0.98 0.245 — —

MA, sRb, sPb, 5Sn, sBrClI —2.34 0.94 0.118 — —

C8.25FA¢.25MA 25Rbg 25sPbBICII —2.34 0.94 0.119 — —

Cs.sMAg_sPbg sSn, sBrClII —2.34 0.94 0.122 2.24 MA(Pb,Sn)(Br,I); < 0.11;**
(Cs,MA)(Pb,Sn)I; < 0.11;°%
(Cs,FA)PbI; < 0.02;>*°
MAPbD(Br,Cl); < 0.17>*

C80.25K0.25MAg.25RDg 25SNBrCII —2.34 0.94 0.124 — —

C50.25K0.25(NH4)0.25Rbg.25Cdo 33F€0 33MNg 35Cly 5Fy 5 —2.28 0.91 0.260 — —

Csg.33FAg 33Rbg 33 PbBrCII —2.19 0.88 0.112 2.31 (Cs,Rb)PbBr; = 0;'**
(Cs,Rb)PbCl; = 0'*°

Csg.33FA( 33MA 33PbBrCII —2.19 0.88 0.122 2.28 (FA,MA)Pb(Br,I)3 <
0.10;230,243,245,261
MAPbD(Br,Cl); < 0.17°*

Cs0.2FA) 2Ky 2MA( ,Rbg ,Pbg 5800 5Bry 514 5 —2.19 0.88 0.105 — —

Cs0.33MAg 33Rbg 33G€0.33Pbg 33500 33Br1 511 5 —2.13 0.86 0.099 — —

Cso.5FA, sPbBrCII ~1.99 0.80 0.115 2.27 —

MAPb,, 5Sn, sBrCII —1.99 0.80 0.120 2.34 MA(Pb,Sn)(Br,I); < 0.11;**
MAPbD(Br,Cl); < 0.17>%

Cs0.sMAg sPbBICII —1.99 0.80 0.121 2.31 MAPb(Br,I); < 0.07;>*22%
MAPbD(Br,Cl); < 0.17>%

Cso.sMA, sSnBrCII —1.99 0.80 0.122 2.16 MASN(Br,I); < 0.03**

FAo 5sMA, sPbBrCII —1.99 0.80 0.127 2.27 MAPb(Br,I); < 0.07;>**%
MAPb(Br,Cl); < 0.17;**>
(FA,MA)PbL; < 0.02>%"

Cs0.33MAg 33RDg 33Pbg 58100 5Br15Cly 5 —1.93 0.77 0.054 — —

Ko.25Na9.25(NHy)o.25Tlp.25C00.14CUg 14F €0 14ME0.14MNg 14Nig 14Z10¢ 14F3 —1.66 0.67 0.082 — —

Cs0.33MAq 33Rbg 33PbBry 5Cly 5 —1.59 0.64 0.045 — —

() MAPbl, ES term at 300 K (kJ/mol) (b) MAPbI, ucv,, © MAPbI, ES + UCV,,C (kJ/mol)
00 oo 00

025

045

065

MAPbCI;0.0

Fig. 9 (a) ES term at 300 K contours, (b) UCV,, contours, and (c) ES + UCV,,C contours for MAPb(Br,CLI)s. Experimental HP single-phase alloy (pink
confirming that C = 23 kJ mol™! leads to a phase boundary at Ggs = 1.22 kJ mol™? that correctly

circles) and multiple phase (gray Xs) data are in (c
groups 52 of the 56 data (93%).

orthorhombic perovskite structure (space group #62; 20 con-
stituents per unit cell; 4 formula units per unit cell). Many HP
have different structural symmetry (e.g., Pm3m cubic with 5
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constituents per unit cell or 1 formula unit per unit cell), and in
such cases we consider the unit cell volume for which the
number of atoms would be 20 (for Pm3m the unit cell volume is
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539 unit cell volumes are well

multiplied by 4). Materials Project
correlated with Inorganic Crystal Structure Database (ICSD)
values.?*>°%° We find lattice parameters for 265 of the inorganic
HP. We also tabulate experimental band gaps where available.
We first consider all possible equimolar alloys with 3 end-
members, then check if a possible HEA consists entirely of
experimentally observed end-members. If it does then we
tabulate it after calculating the ES term at 300 K, UCV (if
available), and mean band gap (if available). We provide
example code with extensive comments as an ESIf file (Math-
ematica notebook). We execute the notebook on a personal
computer using a built-in parallel do statement and consider
alloys with up to 48 end-members. There are 10°7 ways to
combine 48 of the 322 end-members (322!/(48! (322-48)!) ~
10%7), so to avoid checking every combination of the 9 A-site,
32 B-site and 4 X-site inorganic constituents and 10 additional
A-site organic constituents, we examine the simpler alloy
systems first to determine which complex alloys can possibly
be built from the existing results. In other words, the computa-
tion can be simplified by only checking a higher order system’s
potential constituents if their constitutive lower order systems
exist. Eventually, the number of constituents on a sublattice
reaches a maximum, beyond which no more can be added
without including an end-member that has not been experi-
mentally observed, and then the search can stop. Here
we examine only HP, but our approach has value for the
closely related double perovskites®*" and the 76 experimentally
observed chalcogenide (sulfur, selenium, and tellurium)
perovskites,> although chalcogenide perovskites are less devel-
oped than the halides.>®*

DFT calculations: in order to verify that compositions with
small (large) UCV are stable (unstable), we carry out geometric
relaxations for the selected compositions in Table S6 (ESIt). We
carry out these DFT calculations using the Vienna Ab initio
Software Package (VASP, version 5.4),>**°% in the framework of
the generalized gradient approximation (GGA), with the Per-
dew, Burke and Ernzerhof (PBE) functional.’®* We use a plane
wave energy cutoff of 400 eV and the following Brillouin zone
grids, depending on the size of the supercell: 2 x 2 x 2 k-point
grids (8 irreducible k points) for 2 x 2 x 2 supercells (40 atoms),
1 x 2 x 2 k-point grids for 4 x 2 x 2 supercells (80 atoms), and
1 X 1 X 1 k-point grids for 3 x 3 x 3 supercells (135 atoms).
All the relaxations are started from ideal cubic perovskite
structures and are fully relaxed (unit cell shape and atomic
coordinates) using the conjugate-gradient algorithm until resi-
dual forces become smaller than 0.004 eV A™". The electronic
relaxations at each ionic step are stopped when the energy
difference between consecutive self-consistency iterations
reaches 1077 eV. In order to improve convergence to equili-
brium, we scale the displacement steps by 0.1 and declare 180
bands (20 more than the default). To assess mixing effects of
various ions on the A-, B-, and X-sites, we include 8 distinct
configurations for each composition, and average the final
energy and final cell volume across these configurations. The
DFT mixing enthalpy is the mean DFT energy of the 8 HEA
configurations referenced to the DFT energy of the HEA’s end-
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members:
H _ EHEA,conf.l EHEA,conf.Z EHEA,conf,3
mix,DFT = 3 3 3
EuEAcont4  EHEAconf.5 = EHEAconf.6
+ + (10)
8 8 8
222> Eig
n EHEA cont.7 +EHEA,conf.8 ik
8 8 N
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