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On the design of optimal computer experiments
to model solvent effects on reaction kinetics†
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Developing an accurate predictive model of solvent effects on reaction kinetics is a challenging task, yet it

can play an important role in process development. While first-principles or machine learning models are

often compute- or data-intensive, simple surrogate models, such as multivariate linear or quadratic

regression models, are useful when computational resources and data are scarce. The judicious choice of

a small set of training data, i.e., a set of solvents in which quantum mechanical (QM) calculations of liquid-

phase rate constants are to be performed, is critical to obtaining a reliable model. This is, however, made

especially challenging by the highly irregular shape of the discrete space of possible experiments (solvent

choices). In this work, we demonstrate that when choosing a set of computer experiments to generate

training data, the D-optimality criterion value of the chosen set correlates well with the likelihood of

achieving good model performance. With the Menshutkin reaction of pyridine and phenacyl bromide as a

case study, this finding is further verified via the evaluation of the surrogate models regressed using

D-optimal solvent sets generated from four distinct selection spaces. We also find that incorporating

quadratic terms in the surrogate model and choosing the D-optimal solvent set from a selection space

similar to the test set can significantly improve the accuracy of reaction rate constant predictions while

using a small training dataset. Our approach holds promise for the use of statistical optimality criteria for

other types of computer experiments, supporting the construction of surrogate models with reduced

resource and data requirements.

1 Introduction
1.1 Modelling solvent effects on reaction kinetics

A judicious choice of solvent for a liquid-phase reaction can
improve reaction outcomes via the promotion of favourable
reaction kinetics,1 a principle which is utilised in reaction
planning and optimisation for the production of many
chemicals, including bio-fuels,2,3 ionic liquids,4

pharmaceuticals,5 polymers,6 and others. However, solvent
screening and selection via experiments is labour- and
resource-intensive. In addition, repetitive measurements of
liquid-phase reaction kinetics can be tedious and prone to
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Design, System, Application

In molecular design, structure–property relationships are often evaluated with high-fidelity computationally-demanding models. Less expensive surrogate
models, built from a set of computer experiments, can accelerate the search for better molecules. The reliability of the surrogate models, however, depends
on how the training set is chosen. Computational tractability dictates a small number of data points should be used but this can lead to high uncertainty.
We explore the impact of the experiment design strategy on model accuracy by investigating models of solvent effects on reaction rate constants. In this
application, the high-fidelity model requires quantum mechanical calculations and the surrogate model is a multilinear relationship involving several
solvent descriptors. It is especially challenging because the experimental inputs are discrete solvent choices. We identify the D-optimality criterion, a
statistical metric commonly used for measuring the information content of a (physical) experimental design, as an indicator of good surrogate-model
performance. These findings show that the application of the statistical experiment design criteria to the design of deterministic computer experiments
(with systematic errors only) is a promising strategy. This approach could potentially be used in any data-deficient context where limited computational
resources need to be leveraged to perform surrogate-based optimisation for molecular design.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 2

/7
/2

02
6 

8:
18

:2
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d4me00074a&domain=pdf&date_stamp=2024-11-20
http://orcid.org/0000-0003-1957-1957
http://orcid.org/0000-0002-3692-3099
http://orcid.org/0000-0002-4902-4156
http://orcid.org/0000-0002-4573-7722
https://doi.org/10.5281/zenodo.8396100
https://doi.org/10.5281/zenodo.8396100
https://doi.org/10.1039/d4me00074a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4me00074a
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME009012


Mol. Syst. Des. Eng., 2024, 9, 1254–1274 | 1255This journal is © The Royal Society of Chemistry and IChemE 2024

human errors due to the complexity of the task, which
typically involves reaction preparation, reaction monitoring,
data analysis, etc. Emerging high-throughput experimentation
(HTE) technologies can greatly speed up the solvent
screening process. As an example, Li et al.7 completed a
screening of 48 catalyst/solvent combinations for an aza-
Michael reaction within a week via their high-throughput
kinetic platform, significantly accelerating the development
of a mechanistic model. Unfortunately, as of now, the barrier
to entry associated with HTE technologies remains high due
to the need for specialised equipment and operators. Even
with access to HTE, the number of solvents that can be
explored at any one time is limited by the dispensing capacity
of the equipment. Furthermore, developing a successful HTE
protocol and testing it can take a considerable amount of
time, often spanning several months. In early stages, it may
thus be beneficial to resort to computational methods to
evaluate solvent effects on reaction kinetics in silico as a
preliminary screening approach to guide experimental work
with the aim to shorten development time and reduce the
use of experimental materials.

In general, there are two categories of methods for
modelling solvent effects on reaction kinetics: first-principles
methods and data-driven methods. First-principles methods
are based on the fundamental theories of quantum
mechanics and statistical mechanics that govern chemical
reactions.8,9 Although their performance varies with the
specific reactions and solvents examined, recent studies9,10

have demonstrated that they can achieve high predictive
accuracy especially for relative rate constants, with mean
absolute deviations as low as 0.9/0.27 in the base-10
logarithm of the predicted absolute/relative rate constant.9

Additionally, they can also provide physical insights into the
reaction of interest. Nevertheless, these methods can be
computationally expensive and require the use of high-
performance computing facilities, especially for large
molecular systems. In addition, a significant amount of
specialised knowledge is required to perform these
calculations in a correct manner. Machine learning (ML)
methods, on the other hand, have emerged as a promising
class of data-driven methods for the prediction of various
reaction properties, including activation barriers and reaction
rates.11 By fitting generalised mathematical models, e.g.,
artificial neural networks (ANNs), random forests (RFs),
Gaussian process regression (GPR) models and many others,
to a large amount of training data (up to 105 or more
depending on the model type and number of parameters12),
fast and accurate interpolation can be achieved by non-
experts at a low computational cost. However, the high
efficiency of these models comes at the cost of a large amount
of training data, which are not always available and may be
challenging to generate automatically due to the relatively
high likelihood of numerical failure in applying first-
principles models to varying reaction conditions. Given this
context, it is desirable to develop data-sparse methods for the
modelling of solvent effects on reaction kinetics, such as

multivariate linear regression (MLR) models. A MLR model is
distinguished by its mathematical simplicity and prerequisite
for a smaller training data set than most machine learning
models, thus providing unique advantages for quickly
developing liquid-phase kinetics models. Additionally, they
are often more computationally efficient and less prone to
overfitting compared to more sophisticated ML models.13

One example of an MLR model commonly used in
physical organic chemistry and chemometrics is the
solvatochromic equation, a linear free energy relationship
(LFER) that correlates a free energy-related quantity with a
set of solvent properties that have been chosen empirically.
The success of solvatochromic equations has been
demonstrated for the prediction of various physicochemical
properties, such as free energies of transfer of ions,14 gas/
liquid partition coefficients,15 organic solvent/water partition
coefficients,16,17 equilibrium constants18,19 and rate
constants.20–22 The wide use of solvatochromic equations is
partially due to the availability of a large collection of
experimental solvatochromic parameters in the
literature,17,23,24 with more being measured.25 In addition,
computational methods have also been developed to estimate
unknown solvatochromic parameters of pure solvents21,26 or
selected solvent mixtures.27 In particular, group contribution
methods21,26 for the estimation of solvatochromic parameters
are useful for the assessment or design of solvent molecules
for which no measured values are available.21,22

The usefulness of MLR models in enabling judicious
solvent choices has previously been demonstrated in the
literature. Struebing et al.22 used a solvatochromic equation
as a surrogate model to substitute computationally-expensive
quantum mechanical (QM) calculations. They performed
surrogate-based optimisation to find solvents that can
accelerate the Menshutkin reaction of pyridine and phenacyl
bromide by maximising the rate constant as a function of
solvent choice. To develop the surrogate model, training data
were generated by performing computer experiments, i.e.,
QM calculations, in an initial set of six solvents chosen by
chemical intuition. The surrogate model was then improved
with the inclusion of new data generated during the course
of the optimisation. The final optimal solvent was proven
experimentally to increase the reaction rate constant by 40%
compared to the best initial solvent. Despite this success in
finding a solvent with enhanced performance, the accuracy
of the solvatochromic equation was not verified over a larger
solvent space and this may call the validity of the equation
into question. Indeed, Williams and Cremaschi28 have
pointed out that the sampling method, i.e., the method for
determining which computer experiments to perform, can
influence the quality of the solutions obtained from
surrogate-based optimisation, especially when the number of
training data points is small. Choosing initial computer
experiments by chemical intuition, albeit common practice,
may induce large inconsistencies in the performance of the
resulting model, at best requiring more computer
experiments to improve the model and at worst resulting in a
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poorer solution from surrogate-based optimisation.
Therefore, the judicious design of computer experiments to
generate a set of training data that is as informative as
possible is important for reducing the use of resources and
time and for improving model performance in a context of
data scarcity. The question arises as to how one can
systematically design computer experiments to generate a
training data set of a given size such that the likelihood of
obtaining an accurate surrogate model is improved or even
maximised.

1.2 Design of physical and computer experiments

In physical experiments, a large source of uncertainty
comes from the random errors in measurements. These
errors propagate to the model parameters in the process
of regression/fitting and cause errors in prediction.
Assuming the chosen model adequately describes the
target property to be predicted, the primary goal of design
of experiments (DoE) is to generate a training set that
minimises the uncertainties in the parameter estimation
and/or the predicted properties.29 DoE techniques,
including standard designs and optimal designs, are
commonly used to mitigate the impact of random
errors.30 Standard designs, such as factorial designs, are
pre-defined designs with fixed patterns, irrespective of the
statistical model used. By contrast, optimal designs are
derived from model-based design of experiments (MBDoE)
methods and are generated by maximising/minimising a
specific statistical criterion with respect to a pre-specified
statistical model.31 Optimal designs are especially useful
when the shape of the selection space, i.e., the set of
possible experiments, is irregular.30 Many optimal design
methods reply on the assumption of normally distributed
random errors with constant nonzero variance. For
example, the D-optimality criterion, one of the most
commonly used MBDoE statistical criteria, maximises the
determinant of the Fisher information matrix30 with the
aim to generate a model with minimal uncertainties in
the estimated parameters. There also exist other widely
applied statistical criteria, such as the A-optimality
criterion,32 the I-optimality criterion33 and the condition
number criterion.34,35 Of particular interest here, there
have been several precedents34–36 in which an optimal
design approach was used to generate a set of solvents in
which reaction rate constants were measured
experimentally and used to train a solvatochromic
equation to quantify solvent effects on the rate constants
of chemical reactions, including the solvolysis of tert-butyl
chloride,34,36 the amination of ethyl trichloroacetate with
ammonia35 and the Menshutkin reaction of tripropylamine
and methyl iodide.36

Beyond physical experiments, one can also generate
training data from computer experiments. A computer
experiment can be formally defined as a trial where a set of
inputs (or configurations) is given to a computer model that

generates a corresponding set of outputs. The purpose of
performing computer experiments is often to derive a
surrogate model in place of an original model that is too
expensive to be used for certain activities such as
optimisation.37,38 When the capability for performing
computer experiments is limited, the choice of configurations
is as important as for physical experiments. Common
methods for the design of computer experiments include
Monte Carlo sampling, Latin hypercube design and
maximum entropy sampling.39 Here we focus on some
published works on the design of computer experiments for
the construction of surrogate models of reaction kinetics or
kinetics-related quantities.

There have been several endeavours focused on the use
of a space-filling objective for the design of computer
experiments,40 or on the use of a Box–Behnken response
surface design.41 Space-filling methods aim to achieve
comprehensive coverage of the “experimental” or selection
space and to minimise the unexplored gaps as much as
possible such that the identified computer experiments
can represent the whole input selection space. In this
context, Xing et al.41 developed response surface models
(RSMs) to replace the computationally expensive
mechanistic models of two CO2 capture reactors. They
used a Box–Behnken design to generate 46 sets of input
variables from which three objective functions, including
the CO2 capture rate, were calculated using the
mechanistic models. The generated data were used to
train the RSMs, resulting in a prediction R2 of 0.9411 and
a RMSE of 0.1463 kg h−1 for the CO2 capture rate in a
trickle bed reactor and a prediction R2 of 0.9999 and a
RMSE of 0.0038 kg h−1 for a packed bubble column
reactor. The RSMs were later incorporated into extended
adaptive hybrid functions (E-AHF) to be used for chemical
reactor optimisation. The effectiveness of using the Box–
Behnken design was not discussed in detail. Lee et al.42

argued that Box–Behnken designs and other classical RSM
designs cannot adequately cover the whole sampling
space, thus making it difficult to capture highly nonlinear
relationship. Instead, they suggested that space-filling
methods, such as Latin hypercube sampling (LHS), can
span a broader space to capture the mechanistic
complexity of the process. They used LHS in the context
of the continuous manufacture of active pharmaceutical
ingredients (APIs), in which reaction kinetics play a
critical role, to generate 2500 sample points at which
simulations of the manufacturing process were run. The
generated data were used to train a thin-plate spline
model43 to serve as a surrogate model. Adjusted R2 values
greater than 0.995 were obtained for all their models.
Miriyala et al.44 showed that Sobol' sampling can achieve
a level of space-filling comparable to the LHS method. A
Sobol' sequence was used to sample the input space of a
group of ordinary differential equations that describe the
kinetics of the polyvinyl acetate reaction network. An
artificial neural network (ANN) was trained using the
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generated data and found to require fewer training data
(80 data points) compared to a GPR model (148 data
points) of comparable accuracy and to provide higher
computational efficiency. Williams and Cremaschi28

studied the choice of space-filling methods and the effect
of the number of training data points on the performance
of surface approximation and surrogate-based optimisation
for 8 types of surrogate models. They evaluated LHS,
Sobol' sequence sampling and Halton sequence sampling
but did not report a significant impact of the choice of
sampling method on the quality of the surface
approximation. Nonetheless, based on the evaluation of
127 test functions with varying numbers of inputs, they
found that for surrogate-based optimisation using random
forests (RFs) and radial basis function networks, a Sobol'
sequence generally leads to better estimates of the global
minima of the test functions, especially when the number
of training data is small (50 data points).

These examples demonstrate how computer experiments
can be designed to fulfill the objective of space-filling, i.e.,
exploration of the input selection space. Exploitation, i.e.,
sampling regions that have been previously identified as
promising in order to refine predictions, is another
objective that often needs to be balanced against
exploration when designing (computer) experiments.
Exploitation is usually achieved by an adaptive design
approach as the importance of potential sample points
needs to be evaluated before the next sampling step is
taken.

For example, Bracconi and Maestri45 proposed an
adaptive design approach to construct a surrogate model
based on Extra-Trees, a revised version of RF, for
computationally expensive first-principles kinetic models in
the context of the computational fluid dynamics
simulation of chemical reactors. After training with an
initial set of evenly distributed data points, the model was
iteratively updated with a new sample point per iteration,
chosen based on the quantified importance of each
direction in the input space and the rate of variation of
the output function value in that space. Using this
approach, similar accuracies can be achieved with 60% to
80% fewer data points compared to an evenly distributed
grid. In a similar context of training machine learning
models with computer experiments, Eason and
Cremaschi46 compared three computer experiment design
methods for developing a model of CO2 capture cost. The
methods considered include a pure space-filling sampling
method that maintains a Latin hypercube design every
time the number of sampling points is increased
(incremental Latin hypercube sampling or i-LHS), a pure
adaptive sampling algorithm in which points with least
variance estimates are sampled, and a mixed adaptive
sampling algorithm that accounts for both space-filling
and uncertainty at the sample point in a weighted-sum
fashion. They used a Latin hypercube design with 60 data
points as the initial training data and found that when

using diethanolamine as the carbon capture solvent, the
mixed adaptive sampling algorithm only needs 270 total
simulation runs (vs. 891 using i-LHS) and leads to a CO2

capture cost of $46.46 per ton, which is similar to the
result obtained through the i-LHS approach ($46.21 per
ton). As demonstrated in these examples, the required
number of training data points can be lowered via the
exploitation of more interesting areas of the selection/
input space. When a good balance between exploration
and exploitation is achieved, e.g., using the mixed adaptive
sampling algorithm, even better performance may be
observed. However, even an adaptive design approach
cannot bypass the selection of an initial set of computer
experiments, a decision which can have a large influence
on subsequent adaptive sampling steps. In addition, one
advantage of the one-time design approach over the
adaptive design approach is that the former allows the
full use of parallel computing while the latter requires
sequential computing to determine and perform each new
(set of) computer experiment(s), which may result in larger
wall times despite the use of fewer data points.

When the input space consists of reaction solvents, the
discrete nature of the solvent choice makes the
application of some of the aforementioned methods more
challenging. In previous work on solvent design using
computer experiments,21,22 the common practice of
choosing the initial set of solvents based on the chemical
intuition of an expert chemist was adopted, but this does
not provide any assurance on the quality of the resulting
surrogate model. Instead, it is possible to project the
discrete space of solvents into a latent continuous space
of solvent descriptors or properties. For example, Zhou
et al.47 projected the solvent space into the descriptor
space of four principal components derived from the
integrated areas of twelve solvent σ-potential segments
calculated by COSMO-RS.48 They then applied partitional
clustering49 to the principal components to classify
solvents into eight classes. Diversity in the training dataset
was achieved by selecting representative solvent(s) from
different classes. Since solvent properties depend on
molecular structure through highly complex interactions
that are described at a fundamental level by quantum
mechanics and statistical mechanics, the latent space of
solvent properties is irregular, a situation which is
challenging for space-filling methods and where MBDoE
methods may be better suited.34 However, it is unclear
whether MBDoE methods that are suitable for the optimal
design of physical experiments can also be used to design
computer experiments. While some computer experiments
entail inherent uncertainties (e.g., molecular dynamics50),
thus requiring multiple samples to obtain statistically valid
results as in physical experiments, many other types of
computer experiments are deterministic, which violates the
assumption of normally distributed random errors that
underpins many optimality criteria. Consequently, the
application of MBDoE methods to computer experiments
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lacks a firm theoretical basis.51 Nevertheless, we recently
showed that the D-optimal design of computer
experiments can lead to an initial set of solvents that is
superior to that derived from chemical intuition when
attempting to build a surrogate model of the effect of
solvent structure (properties) on liquid-phase rate
constants.52 This MBDoE approach to the design of
computer experiments generally leads to more accurate
models and fewer iterations to complete surrogate-based
optimisation, showing promise for the application of the
D-optimality criterion to the design of computer
experiments in an irregular input space.

In the current paper, we extend our previous study52 by
systematically investigating the relationship between the
D-optimality criterion values of a set of computer
experiments and the performance of the resulting
surrogate model. Four distinct selection spaces (also
referred to as input spaces or sample spaces) for the
computer experiments, i.e., four sets of possible solvents,
are considered for the identification of D-optimal training
datasets. These selection spaces differ from one another
in the total number of solvents, in how the solvents are
constructed (e.g., from a database of solvents from atom
groups or by using a continuous relaxation of the space
of solvents) and in how the solvents are projected onto
the continuous latent space (e.g., using experimental
property values or using group contribution methods). We
investigate these differences via statistical analysis before
considering the quality of the models that can be
generated from each space. Specifically for each selection
space, one D-optimal solvent set is identified. Rate
constants for the Menshutkin reaction between pyridine
and phenacyl bromide in these D-optimal solvents are
then calculated using a QM method. The data thus
generated are used to train a LFER, i.e., a multilinear
surrogate model. The performance of each model is
analysed quantitatively and qualitatively through
comparisons with QM rate constants and with solvent
rankings. We also explore the possibility of further
improving the surrogate model by assessing three factors

that may affect model performance: a) the number of
training solvents in the D-optimal set, b) the incorporation
of quadratic terms in the surrogate model and c) the
similarity of the solvent selection space to the testing data
set.

2 Methods

The method developed in this work aims to select an
optimal set of computer experiments (evaluations of a
high-fidelity, computationally demanding model) that can
be used to develop an accurate surrogate (inexpensive)
model of solvent effects on the rate constant of a given
reaction. The overall methodology is illustrated in Fig. 1.
In step 1, the surrogate model is chosen to be a linear or
quadratic free energy relationship, as described in section
2.1. Based on this choice and the desired number, p, of
computer experiments (solvents for which the rate
constant can be evaluated), a Fisher information matrix is
constructed, where row i corresponds to a solvent, where i
= 1, …, p. The aim of the proposed method is thus to
determine which specific solvents should be used to fill
the rows of the matrix. In step 2, discussed in section
2.2, the space of possible computer experiments (i.e., a
large set of l solvents, l > p), or selection space, is
defined. In step 3, the identification of p solvents from
the selection space is based on maximising the
D-optimality criterion (the determinant of the Fisher
information matrix), thereby generating the D-optimal
design. Depending on the nature of the selection space,
Fedorov's algorithm or a nonlinear programming approach
is employed, as discussed in section 2.3. The p computer
experiments are carried out in step 4, as a set of
quantum mechanical calculations that yield rate constants,
as described in section 2.4. The data thus generated are
used in step 5 to train a surrogate model, using a
standard linear regression solver. Finally, in step 6, several
model performance indicators, described in section 2.5,
are used to evaluate the ability of the surrogate models to

Fig. 1 The model development procedure adopted in this work.
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capture the predictions of the quantum mechanical
model.

2.1 Regression models

We use a new LFER based on the solvent descriptors
tabulated in the Minnesota solvent descriptor database53

(https://comp.chem.umn.edu/solvation/mnsddb.pdf):

ln kL,LFER = β0 + β1A + β2B + β3n
2 + β4γ + β5ε + β6ϕ + β7ψ, (1)

where A is Abraham's hydrogen bond acidity, B is Abraham's
hydrogen bond basicity,24 n2 is the square of the index of
refraction at optical frequencies at 293 K, γ is the
macroscopic surface tension at the solvent–air interface in
cal mol−1 Å−2 at 298 K divided by 100 for the purpose of
scaling, similarly, ε is the dielectric constant at 298 K, also
divided by 100, ϕ is the aromaticity (the fraction of non-
hydrogen solvent atoms that are aromatic carbon atoms), ψ is
the electronegative halogenicity (the fraction of non-hydrogen
solvent atoms that are F, Cl, or Br), and βj, j = 0, …, 7, are
their associated coefficients, to be regressed. The use of this
modified LFER enables one to define (hypothetical) solvents
by specifying any combination of descriptor values, without
specifying a chemical structure. Due to the nature of the
SMD model,54 a reaction rate constant in any such
hypothetical solvent can be evaluated regardless of whether
this corresponds to a feasible molecular structure, since the
Minnesota solvent descriptors53 are the only parameters
required to describe the solvent. A modified quadratic free
energy relationship (QFER) is also considered with the
incorporation of quadratic terms in A, B, γ and ε:

ln kL,QFER = β0 + β1A + β2B + β3n
2 + β4γ + β5ε + β6ϕ + β7ψ + β8A

2

+ β9B
2 + β10γ

2 + β11ε
2, (2)

where βj, j = 8, …, 11, are the coefficients for the newly added
quadratic terms. For the purpose of statistical analysis, it is
common to represent regression models in matrix form as:

Y ¼ F*β þ e ¼

xT1
xT2
xT3

⋮
xTp

2
66666664

3
77777775

β0

β1

β2

⋮
βq−1

2
66666664

3
77777775
þ

e1
e2
e3

⋮
ep

2
6666664

3
7777775
; (3)

where β is a q-dimensional vector of model coefficients, q is
the number of terms in the solvatochromic equation, Y is a
p-dimensional vector of the natural logarithms of the rate
constants derived from each computer experiment, p (p ≥ q
+ 1) is the number of computer experiments/solvents in the
set, e is a p-dimensional vector of unknown errors in each
computer experiment, F* is a p × q matrix of selected
computer experiments, in which each row vector, xTi , has the
first element as 1 and the rest of the elements as the solvent

descriptors used in computer experiment i. For the LFER
(eqn (1)), q = 8 and the row vector xTi is

xTi = [1 Ai Bi n2i γi εi ϕi ψi]. (4)

For the QFER (eqn (2)), q = 12 and the row vector xTi is

xTi = [1 Ai Bi n2i γi εi ϕi ψi A2i B2i γ2i ε2i ]. (5)

On this basis, statistical analysis can be used to assess the
performance of different experiment designs (i.e., choice of
rows in F*). A D-optimal design, F*,D, that maximises the
determinant of the Fisher information matrix  = F*TF*,30

can then be found by solving:

F*;D ¼ argmax det
F*

F*;T F*
� �

: (6)

Because we use reproducible computer experiments, there is
no experimental error associated with the QM calculations.
There is however a systematic error associated with the
mismatch between the QM model and the surrogate model.
Given the different nature of the errors, an issue we
investigate in this work is whether the D-optimality metric
nevertheless remains useful. The solution methods used in
the current work to identify the D-optimal design are
introduced in section 2.3.

2.2 MBDoE solvent selection spaces and test set

In this section, we define the selection spaces from which the
D-optimal solvent sets are generated. Let F be a l × q matrix
representing the MBDoE solvent selection space where l is
the number of solvents in the space. The structure of F is
similar to that of F*: column 1 of F is the identity vector and
each of the other elements Fm,j, m = 1, …, l and j = 2, …, q,
represents the ( j − 1)th descriptor of candidate solvent m. The
MBDoE problem can be stated as the selection of p rows of F
to construct an optimal p × q matrix, F*,D, that maximises the
D-optimality criterion.

Four selection spaces are considered in our work,
resulting in four MBDoE problems. Selection space 1 (SS1) is
composed of all solvents in the Minnesota solvent descriptor
database53 for which the experimental descriptor values are
tabulated and ready to be used (excluding water).

We use the solvents in the CAMD design space in Grant
et al.55 and Gui et al.56 as selection space 2 (SS2). The
solvents in the CAMD design space include all the chemically
feasible molecules that can be constructed from a pre-
defined list of atom groups with specified physical and
design constraints. These constraints can be found in the
GAMS file provided in the Zenodo online repository. This
CAMD design space also includes four common solvents that
are described by “single-molecule” groups, i.e., chloroform,
acetonitrile, N-methylformamide and dimethyl sulfoxide.
Group contribution methods are used to calculate the
descriptors of all these molecules. A more detailed discussion
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on the construction of this CAMD design space can be found
in Grant et al.55 and Gui et al.56 The atom groups used to
generate solvents and all the solvents in SS2 can be found in
the GAMS code and Excel sheet provided in the Zenodo
online repository.

Selection space 3 (SS3) is also constructed using
chemically feasible molecules assembled from atom groups,
but all the physical and design constraints are removed
except a set of bounds on the descriptors to ensure their
values are within reasonable ranges. The constraints removed
include the bounds on melting point, boiling point, flash
point, octanol/water partition coefficient and oral rat median
lethal dose. Additional atom groups previously deactivated in
SS2 due to potential reactivity in the Menshutkin reaction are
activated in SS3. The bounds for the descriptors are
established based on their maximum and minimum values
in SS1 and SS2, as given in the GAMS code provided in the
Zenodo online repository. The four single-molecule groups in
SS2 are not included in SS3. Despite the risk of generating
molecules that cannot physically exist as a liquid solvent (for
example, ethane, 2 × CH3, is in SS3 but it is a gas at the room
temperature and cannot be used as a liquid solvent under
common processing conditions), this approach can greatly
expand the selection space without being constrained by the
availability of experimental solvent property values, bringing
the potential of further increasing the D-optimality criterion
values.

Even more radically, selection space 4 (SS4) is constructed
with solvents solely defined by the set of bounds (same as
those used for constructing SS3) on the continuous
descriptors, without any explicit link to chemical structure,
which produces an infinite number of “molecules” in SS4.
The computer experiments can be performed for these
hypothetical solvents but this approach can result in
“solvents” that have unphysical combinations of descriptors
(e.g., zero acidity and basicity and a high dielectric).
Nevertheless, it also allows a full exploration of the high-
fidelity model.

2.3 MBDoE solution methods

The strategy used to identify a D-optimal set of solvents
depends on the selection space used and two approaches are
described in this section.

2.3.1 Solution method for spaces SS1, SS2 and SS3. For
the discrete selection spaces, SS1, SS2 and SS3, the MBDoE
problem can be formulated as an MINLP in which p
solvents must be selected from the selection space of l

solvents, giving rise to
l

p

� �
combinations. This MINLP

formulation is given in section 2.1.2 of Gui et al.56 However,
due to the large size of l (hundreds to thousands of
solvents), the resulting MINLP cannot be solved in a
tractable computational time. Instead, we use Fedorov's
algorithm,57 one of the most common solution methods for
the selection of experiments to maximise D-optimality. It is

an iterative approach based on the exchange of selected
experiments with candidate experiments in a pre-defined
candidate list. Although Fedorov's algorithm cannot
guarantee local or global optimality, we find that in most
cases, it can identify better solutions with larger
D-optimality criterion values than those generated from an
optimisation-based approach using a local solver, such as
DICOPT58 and SBB.59 Every time Fedorov's algorithm is used
to generate a specified number of MBDoE solvents, three
randomly-generated initial guesses are used, and the best
solution generated among the three is considered as
D-optimal. We observe that very often multiple initial
guesses lead to the same solution.

In this section, a brief introduction to Fedorov's
algorithm is given. A detailed discussion of its
implementation can be found in the tutorial article by de
Aguiar et al.57 Fedorov's algorithm starts with an initial
guess of the F* matrix, and we denote the corresponding
initial information matrix as (F*TF*)0. In the first iteration
of Fedorov's algorithm, one of the initially-selected
solvents is exchanged with another candidate solvent in
the selection space F, i.e., row i of the initial F* matrix
(xi) with row m of the selection space matrix F (xm). Then
the updated information matrix is:

(F*TF*)1 = (F*TF*)0 − (xix
T
i ) + (xmx

T
m). (7)

Then the determinant of the updated information matrix can
be calculated as

|F*TF*|1 = |F*TF*|0(1 + Δ(xi, xm)), (8)

where,

Δ(xi, xm) = d(xm) − d(xi) − [d(xi)d(xm) − d2(xi, xm)], (9)

d(xi) = xTi (F*
TF*)−10 xi, (10)

d(xm) = xTm(F*
TF*)−10 xm, (11)

d(xi, xm) = xTi (F*
TF*)−10 xm. (12)

This completes the first iteration of Fedorov's algorithm.
At each subsequent iteration, each possible pair (xi, xm) is
evaluated so that the one that maximises Δ(xi, xm) is
selected. This procedure is repeated until Δ(xi, xm) is
below a certain threshold, i.e., the D-optimality criterion
value does not improve any more. A Jupyter notebook
with the implementation of the Fedorov's algorithm used
in the current work can be found in the Zenodo online
repository.

2.3.2 Solution method for space SS4. As SS4 is comprised
of an infinite number of hypothetical solvents, Fedorov's
algorithm is not applicable. In addition, the MINLP reduces
to a nonlinear programming (NLP) problem, whose solution
is comparably less demanding. The formulation starts with
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the construction of the information matrix :

j; j* ¼
Xp
i¼1

F*i; j F*i; j*; j ¼ 1;…; q; j* ¼ 1;…; q: (13)

The D-optimality criterion requires the calculation of the
determinant of the information matrix , which is difficult
to formulate directly in an optimisation framework. Instead,
the LDL decomposition of the information matrix  = LDLT

is used.60 L is a lower unit triangular matrix and D is a
diagonal matrix. L and D can be calculated as below:61

Dj ¼ j; j −
Xj*<j

j*¼1

L2j; j*Dj*; j ¼ 1;…; q;

Lj; j*Dj* ¼ j; j* −
Xj**<j*

j**¼1

Lj; j**Lj*; j**Dj**; for j > j* ;

j ¼ 2;…; q; j* ¼ 1;…; q − 1:

(14)

Then, the determinant of the information matrix , i.e., the
objective function of the NLP problem OF, can be expressed
as,

OF ¼ det ¼
Yq
j¼1

Dj: (15)

The NLP problem is formulated in General Algebraic
Modeling System (GAMS) Release 37.1 (https://www.gams.
com/) and solved using the DICOPT solver.58 The GAMS code
is provided in the Zenodo online repository.

2.4 QM calculations of the liquid-phase reaction rate
constants

The QM liquid-phase rate constant kL,QMi in solvent i is
calculated using transition-state theory62,63 as:

kL;QMi ¼ κ
kBT
h

c°;L
� �1−P

r∈D

υr
exp − Δ

≠G°;Li
RT

 !
; (16)

where Δ≠G°;Li is the liquid-phase activation Gibbs free energy
of the reaction in solvent i, κ is the Wigner tunnelling
correction factor,64 kB is the Boltzmann constant, T = 298.15
K is the temperature, h is the Planck constant, R is the ideal
gas constant, c°,L is the molar concentration at the standard
state, D is the set of reactant(s) and υr is the stoichiometric
coefficient of reactant r ∈ D.

We employ a thermodynamic cycle (TC) approach8 to

calculate the liquid-phase activation Gibbs free energy Δ≠G°;Li
for the conversion from the reactant(s) to the transition state
in solvent i,

Δ≠G°;Li ¼ Δ≠G°;IG þ ΔG°;solvTS;i þ
X
r∈D

υrΔG°
;solv
r;i

þ 1 þ
X
r∈D

υr

 !
RT ln

RT
P0

; (17)

where Δ≠G°,IG is the ideal gas-phase activation Gibbs free

energy, ΔG°;solvTS;i is the solvation free energy of the transition

state in solvent i, ΔG°;solvr;i is the solvation free energy of

reactant r in solvent i and P0 is the reference pressure. The
last term is the standard-state correction, which is required
to account for moving from the gas-phase standard state
defined by T = 298.15 K and P0 = 1 atm to the solution-phase
standard state of 1 mol L−1. The solvation free energies are
calculated using the SMD solvation model54 at M06-2X/6-
31+G(d)65 with the geometries in the gas and liquid phases
optimised at the same level of theory in their respective
phase. The ideal gas-phase activation Gibbs free energy is
calculated using the composite method G3MP266 with the
gas-phase M06-2X/6-31+G(d)65 geometry. All the calculations
are performed in the Gaussian 16 software.67 Further details
of how each term is calculated can be found in section 2.2.1
of Gui et al.56

2.5 Model performance indicators

In this work, the surrogate model is used in order to replace
computationally expensive QM calculations of liquid-phase
reaction rate constants. It is therefore important to test the
reliability and accuracy of the surrogate models constructed.
For this purpose, a test set is generated by calculating values
of kL,QMi for all solvents in SS2. All values obtained can be
found in the Excel sheet provided in the Zenodo online
repository. One of the factors we consider for the regression
of the surrogate models is the similarity of the MBDoE
selection space to the test set. SS2, being identical to the test
set, is the selection space with the greatest similarity to the
test set. Furthermore, three metrics are used to assess the
performance of the surrogate models constructed throughout
this work against quantum mechanical calculations: the
mean absolute deviation (MAD), Spearman's rank correlation
(RC) and the root mean squared deviation of the top 20
solvent rankings (RMSDR-20).

The first metric, MAD, measures the model accuracy in
predicting the natural logarithms of the rate constant values
for all solvents in the test set (SS2) and can be calculated as

MAD ¼
PlSS2
m¼1

lnkL;QMm − lnkL;surrogatem

�� ��
lSS2

; (18)

where lnkL,surrogatem is the natural logarithm of the rate
constant predicted by the linear surrogate model (eqn (1)) or
the quadratic surrogate model (eqn (2)) (surrogate = LFER or
QFER), and lSS2 is the number of solvents in SS2.

The second metric, RC, measures the model accuracy in
predicting correct solvent rankings in terms of the rate
constants for all solvents in the test set (where rank 1
corresponds to the largest rate constant) and it can be
calculated as

RC ¼ 1 −
6
PlSS2
m¼1

RQM
m − Rsurrogate

m
� �2
lSS2 l2SS2 − 1
� � ; (19)
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where RQM
m and Rsurrogate

m are the solvent rankings predicted
by the QM model and the surrogate model, respectively,
among all the solvents in the test set.

Finally, we examine the performance of the models in
predicting the behaviour of the solvents with the largest
reaction rate constants, as those are often the most relevant
solvents. Because of this is a much smaller subset of solvents,
a different ranking metric is defined. The final metric, the
root mean squared deviation of the top 20 solvent rankings
(RMSDR-20), is used to indicate the model performance for
the 20 solvents that lead to the largest ln kL,QM, as these are
the solvents that are typically most relevant in viewing the
model,22 and it is calculated as

RMSDR‐20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k∈QM‐20

RQM
m − Rsurrogate

m
� �2

20

vuut ; (20)

where QM-20 denotes the set of 20 solvents that lead to the
largest ln kL,QM. RMSDR-20 is used instead of Spearman's
rank correlation for this solvent subset because, when the
ranges of Rsurrogatel and RQMl are different, RC (eqn (19)) is no
longer on a scale from 0 to 1. Thus, the statistical meaning of
RC is not straightforward to interpret.

3 Results and discussion
3.1 Relationship between model performance and
D-optimality criterion values

First, the relationship between the performance of the LFER
surrogate model and the D-optimality criterion values is
investigated systematically. In physical experiments where
measurements are subject to normally distributed random
errors, the D-optimality criterion can be interpreted
geometrically as the volume of the joint confidence region of
the model parameters. A larger D-optimality criterion value is
thus associated to provide greater chance of obtaining a more
reliable model. However, since the assumption on the nature
of the errors does not hold in the case of computer
experiments, we analyse whether D-optimality is a good
indicator of model performance.

In order to investigate the relationship between the LFER
model performance and D-optimality criterion values, a small
(tractable) selection space of 16 solvents is created, from
which all 11 440 possible combinations of 9 solvents are
generated. The D-optimality criterion value for each solvent
combination is calculated based on the F* matrix formed by
the Minnesota solvent descriptor values of the 16 solvents.
The 16 solvents are chosen such that the D-optimality
criterion values of the resulting 11 440 solvent combination
vary over a wide range. The identities of the 16 solvents can
be found in the Excel sheet provided in the Zenodo online
repository. ln kL,QM values are calculated for all 16 solvents. A
LFER is regressed for each solvent combination, thus
generating 11 440 LFERs in total. We then set out to examine
whether a larger D-optimality criterion value is associated
with an increased probability of obtaining an accurate LFER.
This probability, P, is approximated by the frequency, f, of
obtaining “accurate” models within a certain interval of the
natural logarithms of the D-optimality criterion values, i.e.,

P≈ f ¼ Naccurate

Ntotal
; (21)

where Naccurate is the number of “accurate” models within a
specified interval of the natural logarithms of the
D-optimality criterion values and Ntotal is the total number of
models within this interval. In the current work, we define an
“accurate” model to be one that results in an MAD smaller
than 3 log units (on the basis of the natural logarithm so that
3 log units is approximately equivalent to 1.3 orders of
magnitude). We consider the chosen upper bound accuracy
to be appropriate since it can be difficult even for some
popular quantum mechanical models to predict rate
constants with an error within 3 orders of magnitude of
experimental values.10 Alternatively, an “accurate” model is
defined as one that results in a RC greater than 0.7. The
chosen threshold values of MAD and RC also ensure that a
significantly large number of “accurate” models are found in
each interval such that the calculated frequencies are
statistically valid and can be approximated as probabilities.

Fig. 2 Probability distributions of obtaining LFERs with a) MAD < 3 log units for the Menshutkin reaction and b) RC > 0.7 for the Menshutkin
reaction.
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The resulting probability distributions over the
D-optimality criterion values for the Menshutkin reaction are
shown in Fig. 2. Greater D-optimality criterion values
generally lead to a larger probability of obtaining LFERs with
MADs smaller than 3 log units. When the natural logarithm
of the D-optimality criterion value is greater than −2, the
probability of achieving an MAD smaller than 3 log units is
nearly 100%. As for RC, a large probability of achieving RC >

0.7 can only be achieved when the natural logarithm of the
D-optimality criterion value is very large (>−2). This is not
surprising since the LFER is regressed from ln kL,QM instead
of solvent rankings. These results indicate that for a given
number of training data points, the D-optimality criterion
values generally correlate well with the probability of
obtaining a LFER with good MAD performance. Building on
this finding, the D-optimality criterion seems to be a useful
metric to design computer experiments, at least in the case
of reaction rate constants. This finding is also verified for
another reaction, cyclisation of the adduct of
ethyl(hydroxyimino)cyanoacetate (Oxyma) and
diisopropylcarbodiimide (DIC)68 using a smaller test set of
eight solvents commonly found in chemical laboratories.
Consistent results with the Menshutkin reaction have been
obtained (see section S3 in the ESI†).

3.2 Analysis of selection spaces

Next, we conduct a thorough analysis to characterise and
compare the four selection spaces defined in section 2.2. For
each selection space, the number of solvents, the standard
deviation and mean of each solvent property, and the average
standard deviation over all these solvent properties are
summarised in Table 1. It should be noted that ϕ and ψ are
not considered in the analysis as they are primarily indicative
of the structural characteristics of solvents rather than their
broader physicochemical properties. The number of solvents
in each selection space increases in going from strictly real
solvents with experimental properties (SS1) to physically
constrained molecules with model-predicted properties (SS2),
onto chemically constrained molecules with model-predicted
properties (SS3) and finally to structure-free “molecules”

defined by continuous property values (SS4). The standard
deviation and mean are used to characterise the similarities
between the selection spaces. For SS4, the standard
deviations are set to be the standard deviation of a uniform
distribution based on the given bounds for each property. As
can be expected, SS4 exhibits the largest standard deviations
for all the properties due to the extensive property ranges.
Notably, although SS1 contains the fewest solvents, it exhibits
larger standard deviations for n2 and ε than SS2 and SS3,
which indicates there is less homogeneity in SS1 in terms of
these two properties. By contrast, although they contain more
solvents, the diversity of SS2 and SS3 is constrained by the
available atom groups that can be combined to define the
solvent molecules. As a result, many of the solvents in SS2
and SS3 belong to the same chemical families and do not
contribute to solvent diversity of these selection spaces. This
is also exemplified by the larger standard deviation of n2 and
ε for SS2 than those for SS3, as a result of the incorporation
of the four single-molecule groups in SS2 that are not present
in SS3. The other 322 solvents in SS2 are assembled from
multiple atom groups and also belong to SS3. Thus, they do
not account for the superior diversity of SS2 in terms of n2

and ε, and the four single-molecule groups greatly contribute
to the solvent diversity in SS2. The overall diversity of the
four selection spaces can be ranked based on the average
standard deviations as: SS2 < SS3 < SS1 < SS4. It should also
be noted that the mean values of each property in SS3 and
SS4 are generally larger than those in SS1 and SS2, probably
due to the presence of a large number of unphysical solvents.

We further analyse the property distributions in the four
selection spaces using box plots in Fig. 3. The box plot for
each solvent property in SS4 is approximated using a set of
evenly distributed values between the associated upper and
lower bounds. With all the outliers taken into consideration,
the ranges of properties covered by SS1 are generally larger
(n2 and ε) than or comparable (A, B and γ) to those covered
by SS2 and SS3. SS2 shows the smallest coverage for all the
properties except ε as single-molecule group
N-methylformamide possesses an extreme dielectric constant
of 1.816 after scaling. Similarly to the mean values, the
median values of most solvent properties are larger in SS3
and SS4 compared to those in SS1 and SS2 due to the
presence of many unphysical solvents. Notably, SS1 and SS2,
which consist only of physically constrained solvents, show
strong negative skewness for properties A and ε, a feature
that is not seen in SS3 and SS4.

To better visualise the (dis)similarities between different
selection spaces, the t-distributed stochastic neighbor
embedding (t-SNE) algorithm69 is adopted as a dimension–
reduction approach that preserves similarity information
from high-dimensional data points in the reduced-
dimensional space. The results are shown in Fig. 4, with all
data points colour-coded based on ln kL,QM values except
those in SS3 as QM calculations are not available for all the
solvents in this selection space due to the overwhelmingly
large number of calculations required. SS4 is not shown as

Table 1 The number of solvents, the mean value and the standard
deviation (STD) of each solvent property, and the average standard
deviation of all the solvent properties in each selection space. Surface
tension (γ) is expressed in units of cal mol−1 Å−2, scaled down by a factor
of 1/100. Similarly, dielectric constant (ε) is also scaled by this factor

Number
of
solvents

SS1 SS2 SS3 SS4

178 326 4398 Infinite

Mean STD Mean STD Mean STD Mean STD

A 0.090 0.174 0.113 0.153 0.332 0.280 0.500 0.289
B 0.308 0.236 0.408 0.174 0.507 0.286 0.750 0.433
n2 2.096 0.202 2.307 0.094 2.351 0.079 2.500 0.866
γ 0.410 0.108 0.394 0.110 0.525 0.161 0.500 0.289
ε 0.112 0.178 0.121 0.109 0.096 0.070 1.005 0.574
Average 0.180 0.128 0.175 0.490
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it is inherently homogeneous. In the t-SNE visualisation,
data points are found to form clusters according to
interpoint similarities. We find that clusters generally form
in accordance with chemical families, i.e., solvents that
share one (or more) common functional group(s) or
structural feature(s) belong to the same cluster. SS3 forms
the most clusters of various sizes and thus displays the
most coverage of the low-dimensional space. SS2 forms the
fewest clusters, and there is a large SS2 cluster overlapping
with one of the SS3 clusters due to the fact SS2 and SS3
share 322 common solvents. Compared to SS2, solvents in
SS1 form smaller but more numerous clusters that scatter
sparsely in the low-dimensional space. Additionally, the

solvents in SS1 also lead to a larger range of ln kL,QM values
than those in SS2.

All the results in this section consistently indicate that the
diversity ranking of the selection spaces is as follows: SS4 >

SS1 ≈ SS3 > SS2, a finding that is consistent with the
standard deviation analysis.

3.3 Design of optimal computer experiments

The D-optimality criterion is applied to identify an optimal
set of computer experiments, i.e., a set of training solvents,
from each selection space. D-optimal designs are generated
using Fedorov's algorithm for SS1, SS2 and SS3 and using the

Fig. 3 Box plots of the distributions of solvent property values in the four selection spaces a) A, b) B, c) n2, d) γ and e) ε.
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NLP optimisation approach for SS4. A D-optimal set of 9
solvents is generated for each selection space. It should be
noted that 9 is the minimum number of solvents required to
perform MLR for eqn (1). The D-optimality criterion values of
the D-optimal solvent sets identified from SS1, SS2, SS3 and
SS4 are 9.63 × 10−1, 8.86 × 10−3, 1.91 × 10−3 and 1.64 × 105,
respectively. The identities of the D-optimal solvents
generated from each selection space are shown in Table 2
except SS4 as no corresponding chemical structures are
associated with these hypothetical solvents. The MBDoE sets
from SS1, SS2 and SS3 meet minimum expectations of
chemical diversity in that, in each set, no two molecules
belong to the same chemical class, i.e., have exactly the same
set of functional groups.

Radar charts are employed to illustrate the relationship
between the MBDoE solvents and the other candidate
solvents in each selection space (Fig. 5). In these radar charts,
each solvent descriptor/property is represented by a radial
axis normalised with the maximum value for that descriptor

among all candidate solvents within the same selection
space. Each solvent is represented by a polygon that
intersects each property axis at the point corresponding to
the solvent's normalised property value. The candidate
solvents in each selection space are represented by red
polygons, and the MBDoE solvents are represented by blue
polygons. The red areas on the radar plots reflect the number
of solvents available in each selection space, as well as the
distributions of the property values. The radar chart for SS4
is distinguished by a red background since this selection
space is formed by hypothetical solvents defined by all
combinations of the continuous property values. Generally,
the property values of the MBDoE solvents, illustrated by blue
lines, encompass the entire range of property values. These
MBDoE solvents typically exhibit either minima or maxima
across all descriptors to achieve maximum chemical diversity
within the respective selection space. It can however be seen
in SS1, SS2 and SS3 that some of the properties take on
intermediate values. This is due to the finiteness of the set of

Fig. 4 The two-dimensional t-SNE visualisation of solvent properties in SS1 (triangles), SS2 (squares) and SS3 (circles). The color scale indicated
the ln kL,QM values for the corresponding solvents, where available.

Table 2 The identities of the MBDoE solvents identified from selection spaces SS1, SS2 and SS3. GC in brackets means that the solvent properties are
evaluated using group contribution methods though the experimental property values are available

Solvent SS1 SS2 SS3

1 N-Methylformamide Nitromethanol Nitromethanol
2 m-Cresol DMSO 1,2,3,4-Tetraamino-5-fluoro-6-methoxybenzenea

3 Tetrahydrothiophene-S,S-dioxide Acetonitrile Acetic acid(GC)
4 Carbon tetrachloride Benzene(GC) Diiodomethane(GC)
5 n-Pentane 2,3,4-Trimethyl-but-2-ene-1-ol 1,2,3-Triamino-4,5-dichloro-6-nitromethylbenzenea

6 Tributylphosphate 1-Ethoxy-2-methyl-prop-1-enea Tetramethylethylene
7 Formic acid Chloroform Benzene(GC)
8 Diiodomethane 2-Methylhexane 1,5-Diamino-3,4,4-trimethyl-pent-2-enea

9 Benzene N-Methylformamide Dichloromethanol

a Indicates other constitutional isomers exist.
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allowed combinations of the property values, which is limited
to the number of solvents in the selection space. The MBDoE
formulation makes it possible to generate a maximally
informative set of training solvents by projecting the discrete
space onto the constrained space of continuous solvent
properties.

When comparing the radar plots, it is important to
consider that the ranges of the unscaled property values are
different across the selection spaces, a factor that may affect
the performance of the resulting solvatochromic equations.
The spans of the unscaled property values are visualised
using a parallel coordinates plot in Fig. 6. SS4 leads to
extreme MBDoE solvents in terms of property values as well
as the widest range of ln kL,QM values, although it does not
cover solvents in the mid-range of ln kL,QM values as the other
three selection spaces do. All the other MBDoE sets also give
reasonably wide ranges of ln kL,QM, in spite of the narrower
ranges of n2 and ε values. However, MBDoE solvents with
extremely low ln kL,QM values are only identified from SS4. It
can also be seen that in general larger dielectric constants
lead to larger ln kL,QM, except in the region where ln kL,QM

becomes exceedingly large. In terms of the ranges of the
property values for SS1, SS2 and SS3, the D-optimal set for

SS1 affords the largest variation in n2 and ε while the
D-optimal set for SS3 prevails in the other solvent properties
with SS1 only slightly narrower.

In summary, all MBDoE solvent sets show chemical
diversity in the functional groups/structural features they
contain and in their property values, where they encompass
the entire range of values in the corresponding selection
spaces even when selecting as few as 9 solvents. Comparison
across the training sets shows that the D-optimal set for SS4
exhibits the largest range of property values, followed by SS1,
SS3 and then SS2. The property values of the candidate
solvents and the D-optimal solvents of SS1, SS2 and SS3 and
the property values of the D-optimal solvents of SS4 are given
in the Zenodo online repository as ESI.†

3.4 Performance of the regressed surrogate models

In section 3.1, it was shown that when the D-optimality
criterion value is maximised, there is a very high chance
(near 100%) of obtaining a LFER with good performance, i.e.,
a MAD < 3 log units and a RC > 0.7. We thus proceed to
regress the LFERs using the D-optimal solvent sets identified
in section 3.3 and verify their performance. To generate the

Fig. 5 Radar charts of the descriptors of the MBDoE solvents (blue) generated from a) selection space 1, b) selection space 2, c) selection space 3
and d) selection space 4. Candidate solvents are denoted by red lines.
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training data for the regression of the LFER coefficients, eqn
(1), the rate constants of the Menshutkin reaction (Fig. 7) are
calculated by following the QM method described in section
2.4 for the solvents in the D-optimal set identified in each
selection space. All the regressed model coefficients can be
found in section S1 in the ESI† as well as in the Excel sheet
provided in the Zenodo online repository. The resulting
models are evaluated against the test set (SS2) by calculating
the corresponding MAD and RC.

The results are visualised using the parity plots in Fig. 8
where the rate constants predicted by the regressed LFERs,
ln kL,LFER, are compared to the QM rate constants, ln kL,QM.
As can be seen, most of the LFERs show good performance
in both MAD and RC. The selection space that results in the
smallest testing MAD (1.304 log units) is SS3, followed by SS2
(1.540 log units) and then SS1 (2.136 log units). They are all
smaller than 3 log units. However, SS4, which contains
hypothetical solvents, leads to the largest testing MAD of
9.339 log units due to the significant systematic deviations
observed for nearly all the solvents in the test set. Systematic
deviations of a similar nature can also be observed for the
clusters located around the mid-range of QM rate constants
in the parity plots of the other selection spaces. This may be

understood by realising that when applying the D-optimality
criterion to a linear model, such as eqn (1), those solvents
exhibiting extremely high or extremely low property values
tend to be selected, as indicated in Fig. 5. Consequently, the
coverage of the mid-range solvents is not sufficiently dense,
leading to these solvents falling outside the validity domain
of the regressed equation70 and a corresponding
deterioration in the predictive performance of the surrogate
models for solvents with moderate property values. This issue
of validity domain is severe especially when the assumption
of a linear relationship is not reflective of reality and when
the shape of the test set is irregular.

To further understand the nature of the systematic
deviations, additional D-optimal solvent sets with 13 and 49
solvent are obtained for SS2 and used to derive two further
LFERs. The relationship between the training and testing
solvents within SS2 is visualised using the t-SNE method,
with colour-coding denoting the absolute deviation between
the QM model and the LFER model (Fig. 9). The MBDoE
solvents used for training are highlighted with red circles.
SS2 is chosen because using the same selection space and
test set facilitates tracking the relationship between the
training data points and the data points that exhibit
systematic deviations. It is clearly seen in Fig. 9a that the
solvents that exhibit large deviations fall mostly into one
cluster (shown by a red rectangle) which is not sampled,
given only 9 training solvents are used. In other words, the
cluster is outside the validity domain of the regressed
surrogate model. When we increase p (i.e., the number of
MBDoE solvents) to 13 (Fig. 9b), one data point is included
in the previously low accuracy cluster and a significant

Fig. 6 Parallel coordinates plot of solvent properties (A, γ, B, n2, ε) and ln kL,QM across the four sets of MBDoE solvents: SS1 (solid blue), SS2
(dashed red, dashed lines are used here to distinguish overlapped lines), SS3 (solid purple) and SS4 (solid yellow).

Fig. 7 The Menshutkin reaction between pyridine and phenacyl
bromide.
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improvement is seen for all the solvents in this cluster. When
p is further increased to 49 (Fig. 9c), and more data points
are sampled in the cluster, the absolute deviations for all the
data points in the cluster become very small, indicating that
the mid-range solvents are adequately sampled and the
validity domain now includes the corresponding region.
These results are indicative of the overall nonlinear nature of
the QM model. Increasing the size of the training dataset to
improve the sampling coverage offers a strategy to mitigate

the systematic deviations, without increasing model
complexity.

Next, we evaluate the predictive performance of the
LFER for the solvent rankings in order of the reaction
rate constants, as seen in the parity plots of RQM vs.
RLFER shown in Fig. 8e–h. It can be seen that all the
LFERs yield RCs greater than 0.8 with the RCs
corresponding to SS1, SS3 and SS4 greater than 0.9.
Notably, the LFER corresponding to SS4 provides the best

Fig. 8 Parity plots of ln kL,LFER vs. ln kL,QM of the Menshutkin reaction for the solvatochromic equations generated from a) SS1, c) SS2, e) SS3 and
g) SS4 and parity plots of the ln kL,LFER solvent rankings vs. the ln kL,QM solvent rankings for the Menshutkin reaction for the solvatochromic
equations generated from b) SS1, d) SS2, f) SS3 and h) SS4. The insets show a close-up of the parity plots for the top 20 solvent rankings.
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Fig. 9 The t-SNE visualisation of the solvents in SS2 for varying number of MBDoE solvents a) p = 9; b) p = 13; and c) p = 49. The absolute
deviations between the QM and the LFER models are shown on the colour scale and the MBDoE solvents are denoted by red circles. The red
rectangle highlights the solvents that exhibit the largest deviation for the 9-solvent training set.
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RC value (0.984), though the testing MAD is the worst
among all the models evaluated. This reinforces the
assumption that a linear model, albeit inadequate to
capture the sophisticated mathematical formalism of the
QM model, can capture general trends based on the use
of data at the extremes of the selection space. The LFER
corresponding to SS2 provides the worst RC (0.803) among
the four LFERs, when 9 solvents are used in the training
set. This relatively poorer performance may seem to
conflict with the fact that SS2 is also the test set.
However, this LFER offers reasonable performance in that
it provides both smaller MAD and larger RC than the
threshold values used in section 3.1. The insets in
Fig. 8e–h show the parity plots of the top 20 solvents in
terms of ln kL,QM values, and consistent performance can
be seen with the RC values calculated for all the solvents
in the test set. The regression coefficients in these LFER
models (see section S1 in the ESI†) indicate that solvents

with high hydrogen bond acidity, hydrogen bond basicity,
and surface tension consistently lead to increased rate
constants, and thus, higher solvent rankings. Such a
favourable solvent effect is to be expected for solvents that
can form hydrogen bonds (as donor or acceptor), as such
solvents can significantly stabilise the transition state of
the Menshutkin reaction, where charge separation occurs,
relative to the neutral reactants.71

To summarise the key findings in this section, in
general, the prediction of reaction rate constants can be
achieved within a 20-fold difference from the QM
prediction using only a minimum number of training
solvents, with the exception of SS4. However, with a small
number of solvents, systematic deviations are consistently
observed for mid-range ln kL,QM solvents due to the
violation of the validity domain of the resulting model.
Satisfactory prediction of solvent rankings in order of
reaction rate constants can be achieved by almost all the

Fig. 10 Natural logarithm of D-optimality criterion value and performance metric as a function of p for the LFER using SS1 (SS1-L, red squares),
the QFER using SS1 (SS1-Q, blue triangles), the LFER using SS2 (SS2-L, yellow crosses) and the QFER using SS2 (SS2-Q, purple diamonds): a) natural
logarithms of D-optimality criterion values (*here D-optimality criterion values are computed, in a different way, based on mean-centered and
unit-variance properties since this enables the identification of solvents with mid-range property values when using the quadratic model) b) MAD,
c) RC and d) RMSDR-20. The first data point in each graph corresponds to a training set of 9 solvents for the linear models and 13 solvents for the
quadratic models.
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solvatochromic equations regressed from the D-optimal
solvent sets except SS2.

3.5 Factors that affect the performance of the surrogate
model

Notwithstanding the promising results that have been
obtained in the previous sections, the use of a minimal
number of training solvents and the linear structure of the
surrogate model may limit model performance. In this
section, we explore the impact of increasing p in the
D-optimal set, of incorporating quadratic terms into the
LFER (eqn (2)) and of maintaining the similarity of the
selection space to the test set. The interplay of these factors
is also taken into consideration. Since the sizes of SS3 and
SS4 are very large such that the computational time required
to identify larger D-optimal sets becomes unmanageable,
only SS1 and SS2 are chosen for the investigation. With newly
added quadratic terms in the QFER (eqn (2)), the minimum
number of training data points required becomes p = 13. The
relationship between the model performance and p for two
selection spaces (SS1 and SS2) and two surrogate models
(linear and quadratic) is shown in Fig. 10 using the natural
logarithms of D-optimality criterion values, MAD, RC and
RMSDR-20 as performance indicators.

As shown in Fig. 10, the linear model associated with SS1
(SS1-L) shows the worst performance with the smallest
D-optimality criterion values across all values of the number
of solvents in the training set that are considered. The MAD
for SS1-L initially increases until it reaches a peak at p = 39
solvents, after which it subsequently decreases. This
behaviour can be explained by our conjecture that the initial
training sets lack a sufficient number of mid-range solvents
with moderate property values, leading to the overall poor
performance of the model. As the number of solvents
increases, the validity domain of the model is expanded to
cover these solvents. Performance is also addressed by
introducing quadratic terms, as a quadratic model may better
describe the underlying QM model. With these quadratic
terms, a significant enhancement of model performance is
seen over the entire range of values of p for D-optimality
criterion values, MAD and RC. For RMSDR-20, performance
is less consistent with SS1-Q exhibiting worse performance
when many solvents (p > 100) are used for training.

Next, we consider the scenario where the selection space
is identical to the test set, i.e., SS2 is employed to generate
the D-optimal solvent sets, for the purpose of further
investigating the importance of the similarity between the
selection space and the test set as this may have an impact
on the validity domain of the resulting model. As seen in
Fig. 10a, the linear model of selection SS2 (SS2-L) shows
slightly larger D-optimality criterion values compared to SS1-
L over the entire range of p but much smaller compared to
the quadratic models. Below p = 59 solvents, SS2-L generates
smaller MADs than both SS1-L and SS1-Q. When p further
increases, the MAD varies only slightly and becomes slightly

larger than that for SS1-Q. Overall, both the incorporation of
quadratic terms and the utilisation of similar training data to
the testing data benefit the performance of the surrogate
model and the impact of similarity appears to be most
important when p is small.

Despite the general improvement in the MAD at small p
values, systematic deviations for the mid-range solvents are
still observed for all the surrogate models that have been
discussed so far. The cooperative impact of quadratic terms
and the similarity between the selection space and the test
set are then investigated (Fig. 10b). SS2-Q yields smaller
MADs than those in the other three scenarios over the entire
range of p values. Even with the minimal number p of 13
solvents, a testing MAD of 0.481 log unit is achieved and the
systematic deviations for the mid-range solvents can be
largely eliminated, as shown in Fig. 11. These results indicate
that the MBDoE approach holds promise for generating a
minimal number of solvents with a comparable amount of
information content to a much larger solvent set, when the
regression model adequately describes the QM function and
the solvent selection space is similar to the test set.

Next, the relationship between RC and the number of
training solvents is investigated (Fig. 10c). Despite
inconsistent trends when p is small, all models level off
between RC = 0.90 and RC = 0.95. The RC of model SS1-Q
starts to plateau quickly, at only p = 23 solvents. Overall, SS1-
Q gives the best ranking prediction performance across the
range of p values, followed by the SS2-Q, SS1-L and then SS2-
L. Quadratic models are therefore found to be better than
linear models at capturing the overall trend of the rankings.
The better overall RC performance from SS1 may be due to
the positive impact brought by the greater diversity in the
selection space/training set.

Fig. 11 The parity plot of ln kL,QFER vs. ln kL,QM of the Menshutkin
reaction for the quadratic free energy relationship generated from SS2
(red: training data, blue: testing data). The outlier corresponds to
2-ethyl-6-methylaniline (or its other positional isomers) with a ln kL,QM

of −20.89. Its extremely low rate constant results from an abnormally
small dielectric constant (0.8), predicted by the group contribution
method.26 Dielectric constants are typically defined as being greater
than 1 for non-vacuum medium, demonstrating a rare failure of the
group contribution method used in this instance.
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We further investigate the ability of the models to
correctly identify and rank the solvents with large rate
constants using RMSDR-20 as the metric (Fig. 10d). Since
RMSDR-20 quantifies the differences between the rankings
predicted by the QM model and the surrogate models for
the top 20 solvents, an RMSDR-20 below 10 would most
likely ensure the surrogate models also predict these
solvents to have high rankings. Both linear models show
more consistent performance as a function of p compared
to the quadratic models, with SS2-L performing slightly
better overall. SS1-Q exhibits a low RMSDR-20 for p values
between 23 and 113 solvents, but this increases for p >

113. SS2-Q begins with a low RMSDR-20 and peaks at nearly
50 for p = 23 solvents, after which it decreases until it
reaches around 10.

To summarise, depending on the performance metric
under evaluation, different design schemes are needed to
design optimal computer experiments with optimal model
performance. SS2-Q is the best for achieving a small MAD
regardless of the number of training solvents. All models
require a relatively large p to achieve a high RC, with SS1-L
providing good performance at p > 23. However, SS1-L, SS2-L
and SS2-Q all have acceptable RC values at low p values. SS1-
Q and SS2-L are very effective at producing a correct ranking
of high rate constant solvents with a small p.

4 Conclusions

In this work, we have demonstrated the effectiveness of using
the D-optimality criterion to the selection of a small set of
training data (solvents). This approach has been found to
lead to an increased likelihood of obtaining simple surrogate
models with good predictive performance in terms of
reaction rate constant values and the associated solvent
rankings. In our current work, LFERs have been regressed to
the outputs of deterministic computer experiments, i.e., QM
calculations of liquid-phase reaction rate constants. We have
generated four D-optimal solvent sets of 9 solvents from four
selection spaces with varying characteristics. The LFERs
regressed from these MBDoE solvent set generally yield
satisfactory MADs, with the set of hypothetical solvents being
the exception due to an inadequate validity domain.
Remarkably, the LFERs obtained from such small data sets
achieve exceptional performance in predicting solvent
rankings, providing a valuable tool for comparing reaction
kinetics in different solvents.

We have also highlighted several considerations for
researchers who would like to design computer experiments
using a similar approach. First, the inclusion of quadratic
terms in the surrogate model results in a marked
improvement in the quantitative accuracy of predictions for a
given number of training solvents. Second, if accurate
quantitative prediction is targeted, the selection space for the
training data should be similar to the test set, i.e., one should
design computer experiments in alignment with the intended
application domain. Finally, the diversity of the selection

space appears to play an important role in the reliability of
qualitative (ranking) predictions.

Our findings have shown the potential usefulness of
traditional MBDoE techniques for the identification of
effective computer experiments that make it possible to
capture complex relationships between molecular structure
and physicochemical properties with remarkably few data
points. The applicability of this approach should be tested on
other free energy-dependent properties. The findings, along
with our previous work,56 have also shown that it is beneficial
to integrate MBDoE into the framework of computer-aided
molecular design, since the MBDoE technique can reduce the
number of solvents required to train a satisfactory surrogate
model for property prediction, thereby can reducing the
resources and time needed to design new molecules. The
DoE-QM-CAMD method we have developed56 is one of many
potential applications that can benefit from this approach. It
has been found to facilitate the design of solvents that
optimise reaction kinetics in chemical and pharmaceutical
synthesis.

Note

The chemical feasibility of the solvents in SS2 and SS3 refers
to the fulfilment of expected atom valencies when assembling
pre-defined atom groups into molecules. Further evaluation
is required to ensure the chemical stability of selected
solvents.
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