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Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal

chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape,

guided by descriptors that approximate to these properties, can greatly increase the chances of successful

drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of

these properties and thus there is much interest in approaches to find oral drug candidates outside of this

space. These considerations have been a focus for a while and hence we analysed the physicochemical

properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced

the output of the drug-discovery community. Our findings show that it is possible to find drug molecules

that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight

>500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding

and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more

accurate and robust means of understanding substructural classes, shape and conformation are likely to be

required to improve the chances of success in this space.

Introduction

Control of physicochemical properties, perhaps most notably
size, lipophilicity and hydrogen bonding is well established to
be critical to achieving acceptable ADMET properties, in
particular those relating to desirable oral pharmacokinetics.
To guide compound design, these complex parameters can be
quantified to a reasonable degree by simple numerical
descriptors such as molecular weight (MWt) for size,
calculated lipophilicity (clog P) for lipophilicity and counts of
hydrogen bond donors (HBD) and acceptors (HBA) for
hydrogen bonding.1–6 Desirable ranges for these and related
parameters in which the probability of achieving desirable
ADMET have been defined in various ways, with “Lipinski's
Rule of 5” being the best known and adopted. This rule states

that oral absorption is less likely for compounds that have
two or more of MWt >500, clog P >5, HBD >5 and HBA >10.

Whilst the objective of achieving orally bioavailable drugs
means the majority of drug discovery projects aim to operate
within Lipinski space, achieving potent compounds with
such properties generally requires compounds to bind within
a defined pocket in the protein target, which is hydrophobic
in nature but also has the potential to form productive polar
interactions with a ligand.7 Proteins that do not possess such
features are challenging (in extreme cases considered
intractable)8 and the desire to drug such proteins has
prompted a great deal of interest in identifying compounds
that have desirable ADMET properties but do not meet
Lipinski criteria – generally referred to as “Beyond rule of 5”.
The importance of this area has been further heightened by
the recent interest in chimeric molecules such as
heterobifunctional degraders, which necessitate high MWt
compounds.9–11 At the same time, the importance of MWt as
an indicator of drug like properties has been questioned
based on an analysis of approved drugs up until 2017.12

As a consequence, there has been significant recent interest
in defining the types of molecules and their related properties
that can achieve oral bioavailability outside of Lipinski
space.13–16 This has included interest in specific structural
features, in particular macrocycles that are postulated to permit
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higher MWt, and in the definition of new descriptor-based
rules.

Sufficient time has elapsed since the renewed interest in
Beyond rule of 5 design that, if justified, there would be an
observable effect on the properties of drugs emerging
recently. To investigate this, we carried out an analysis of the
properties of FDA drugs approved during the period 2000 to
2022.

Results and discussion

Oral drug approvals from 2000 to 2022 inclusive were obtained
from the FDA website.17 Calculated properties for each
compound were generated using RDKit.

There were 382 compounds approved during the selected
period. Cancer was the most frequent major disease
indication (n = 95) followed by nervous system (n = 87) then
infection (n = 71).

There were 40, 34 and 21 approvals in GI/metabolism,
cardiovascular and respiratory/inflammation, respectively.

Calculated property distributions of the 382 compounds
were analysed. There were 10 compounds that appeared as
outliers and are known to act in the gastrointestinal tract, being
well understood not to be absorbed or that represented
combinations of older drugs, which were excluded from the
subsequent analysis. A further compound (ixazomib) did not
generate calculated data, presumably due to the presence of the
boronic acid functionality. The remaining 371 compounds had
a mean MWt of 432, clogP of 3.4, 2 HDB and 6 HBA (Table 1).
Lipinski's original limits were based on the 90th percentile of
each of these descriptors; if they had been derived from this
dataset, the rules would be MWt < 589 Da, clogP < 5.8, HBD <

4 and HBA < 10.
The four Lipinski descriptors were not tightly correlated

for this dataset (closest correlation was between HBAs and
MWt (r2 = 0.69) then MWt and clog P (r2 = 0.65), Table S1†).

It might have been expected that higher clogP values arise
from charged species, for which the corresponding logD7.4 values
would be lower but there is no difference between the clogP
distributions of the charged and uncharged compounds (Table
S2†). The subset of monoacidic compounds (defined as those

predicted to carry an overall net charge of −1 based on the sum
of acidic and basic groups) had a significantly (Tukey–Kramer
HSD test) lower mean MWt (355 Da) compared to the neutral set
(overall charged groups sum to 0, 445 Da), presumably because
acidic compounds are required to be smaller to achieve sufficient
permeability (Fig. 1).18 Distributions of the HBD/HBAs were not
significantly different between the ionisation types.

Within the dataset, there are perhaps a surprisingly large
number of compounds that lie outside of Lipinski limits for any
one of these descriptors, 27% of the compounds have MWt
>500 Da and 20% have a clogP >5. HBD and HBA violations
are less frequent (1.1% and 5.7% respectively).

Of course, Lipinski's rules actually state that poor oral
bioavailability is likely if two or more of the rules are violated. In
this dataset, 64 compounds (17%) violate two or more of the
criteria. The proportion of Lipinski fails increased gradually
over the period from 14 (12%) in 2000–2009 to 41 (20%) in
2010–2019 and with 15 (18%) in 2020–2022 (Fig. S1†), although
this is against a background of an overall increase in the
number of approvals over that period such that the proportion
remains similar. There was a general increase in the individual
parameters MWt, clogP and HBA over the period, whereas
HBDs remained constant (Table S3†).

Table 1 Physicochemical property distributions of FDA approved oral drugs from 2000–2022 (n = 371)

MWt clog P HBDs HBAs

Mean (std dev) 432 (159) 3.4 (2.1) 1.9 (1.3) 5.8 (2.7)
50/75/90 %ile 426/513/589 3.4/4.7/5.8 2/3/4 6/7/10
% Lipinski fails 27% 20% 1% 6%

Fig. 1 MWt distribution by ionisation type.
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Table 2 Physicochemical property distributions showing histograms of the subset of Lipinski fails 2000–2022 (n = 64) and one-way plots comparing
them to the passes

MWt clog P

Mean 656 5.7
Median 583 5.7

HBDs HBAs

Mean 2 9
Median 2 9

RSC Medicinal Chemistry Research Article
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The 64 fails had a mean MWt of 656, mean clog P 5.7,
mean HBD 2 and HBA 9 (Table 2). Comparing the Lipinski
fails to the others in the set showed statistically significant
differences in all descriptors, but HBD counts were far closer
between the two (median and means both 2). All 64
compounds had MWt >500, 45 (70%) had clog P >5, 21
(33%) had HBA >10 but only 2 had HBD >5. The overall
trends with HBD (fewer violations and similar distributions
between the pass and fail set) is consistent with observations
that limiting them is a key consideration in operating outside
of Lipinski space.

Of the Lipinski fails, there are only two compounds that
have >5 HBDs, rifamycin 1 (approved previously, but
contained in new approval) and omadacycline 2 (Fig. 2). In
both cases, there are apparent structural reasons why these
compounds may behave differently, rifamycin is a macrocycle
(see later) and omadacycline is a very rigid structure; in both
cases, it is easy to conceive that the hydrogen bond donors
can be satisfied by intramolecular hydrogen bonds and
extensive intramolecular bonding is observed in small
molecule crystal structures in both cases.19,20

The changes in property distributions are consistent with
the idea that Lipinski descriptors are not wholly precise
determinants of drug-likeness. Perhaps medicinal chemists
are learning how to operate outside of Lipinski space as
required to find drugs for more challenging targets and,
hence, to work in property space in which achieving oral

absorption is more challenging. The increase in numbers of
approvals outside of Lipinski space over time is supportive of
this idea. However, there is little general understanding of
how to define areas of chemistry outside of Lipinski space
that have increased chances of gaining drug-like properties.11

It would be expected that the chances of doing so will always
be significantly lower than they are for compounds that are
within it.

The increased MWt of the compounds in this dataset is
perhaps the most striking deviation. The reason for high
MWt compounds being disfavoured is primarily because
larger molecules tend to be less permeable, in part because
they are likely to contain more polar functionality and
hydrogen bonding groups, but also because they have greater
degrees of freedom in solution. Thus, larger molecules are
likely to have higher enthalpic and entropic barriers to
transition from aqueous solution to a phospholipid
membrane. In this regard, MWt is a crude approximation of
the size and shape of a molecule.

We considered whether the shape, flexibility and
conformational profile of larger molecules are more relevant
than MWt as determinants of drug-likeness. Such
considerations are complex, and transcend the use of crude
descriptors. Nevertheless, simple metrics that are
approximations of shape and flexibility, such as rotatable
bond count,5 aromatic ring count21 and fraction of sp3 atoms
(Fsp3),22 have been adopted as measures of drug-likeness.
Perhaps, if these were better determinants of drug-likeness,
their distributions would look similar between the pass and
fail subsets.

The rotatable bond count distribution for the set shows a
profile akin to what might have been expected (mean 6, 90th
%ile 11, Table 3), despite the observed increased MWt
distribution. A comparison of MWt and rotatable bond count
shows that the high MWt compounds often still have lower
rotatable bond counts (Fig. 3a). However, comparing Lipinski
fails to passes reveals that the mean rotatable bond count
distributions are significantly different between the pass and
fail set (mean 5.3 and 9.4, 90th %ile 9 and 14 respectively,
Fig. S2a†).

Fig. 2 Structures of the two drugs failing Lipinski criteria with HBD >5.

Table 3 Rotatable bond (RB) count, aromatic ring count and fraction of sp3 atom (Fsp3) distributions of FDA approved oral drugs from 2000–2022 (n =
371). Outlier points on box plots show Lipinski pass (green) and fail (red)

RBs Aromatic rings Fsp3

Mean (std dev) 6 (4) 2 (1) 0.26 (0.09)
50/75/90 %ile 5/8/11 3/3/4 0.26/0.32/0.38
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The drug set has a mean aromatic ring count of 2, median
3 with a reasonably marked drop off above 3 (90th %ile 4).
This suggests that restricting the number of aromatic rings
during optimisation is likely to be worthwhile. Lipinski fails
had a slightly higher aromatic ring count distribution (mean
= 2 for passes, 3 for fails) but this difference appears less
marked than the differences in MWt (Fig. 3b and S2b†).

The compounds span a wide range of Fsp3 (mean = 0.26);
the distributions of the passes and fails are very similar (Fig.
S2c†). Fsp3 is at best only weakly related to 3-dimensionality,
but a further analysis using principal moments of inertia
(PMI) shows that the drugs generally possess predominantly
rod-like or disc-like character with very few that are spheroid
(Fig. 3c). The passes and fails distribute similarly. This
implies that there is no particular advantage to increased
3-dimensionality in drug discovery despite the belief that this
could be advantageous and that this is not an important
consideration for beyond rule of 5 design. There is no major
temporal change in aromatic ring count or Fsp3, while there
is a small change towards decreased 3-dimensionality in the
latter decade (statistically significant but not meaningful),
despite publications encouraging the converse (Fig. S3†).19,20

Any firm conclusions from such an analysis are of course
dependent on the approach to conformer generation and
sampling and so should be treated with caution.

Macrocyclic compounds have attracted specific interest as
beyond rule of 5 compounds primarily because of their
restricted degrees of freedom, which can impact greater
permeability and potentially metabolic stability relative to non-
macrocycles of equivalent size. There were 10 macrocycles
(containing a ≥12-membered ring) in the dataset, of which 9
failed Lipinski criteria.

The macrocycles had statistically significant higher MWt,
HBD, HBA and aromatic ring count than the rest of the dataset
(Table 4). The difference in the distributions was smaller for
HBD. Distributions of clogP, RBs and aromatic ring count were
not significantly different. This suggests that macrocycles are a
class of structures that allow greater chance of achieving oral
drugs with high MWt by reducing degrees of freedom, but that
lipophilicity and hydrogen bonding still need to be controlled.
The sample size is of course smaller than ideal.

Conclusions

The trends in the data that are described here are mostly
consistent with those described previously12,13 on partially
overlapping datasets and the same observations towards
increased molecular weight, for example, persist. However,
we emphasise that working with smaller compounds is still
beneficial and control of molecular size should not be
abandoned altogether. It is likely always preferable to control
physicochemical properties in optimisation to achieve
attractive ADMET properties in candidate compounds. This is
supported by the observation that the majority of marketed
drugs continue to lie within the expected ranges for MWt,
clog P, HBD and HBA and are Lipinski compliant.
Nevertheless, a significant number of approved oral drugs lie
outside of this space, demonstrating that such considerations
should not be applied as rigid constraints on compound
design. In cases where the biological target/mechanism
necessitates non-compliant molecules, it is reassuring to see
that oral drugs continue to be discovered that lie outside of
this space, although to do so is always likely to be more
challenging. It should be emphasised that analyses of this
type, although widely influential, suffer from the
impossibility of defining a suitable comparative set of
compounds (non-drugs) by with which to compare.

It could be logically argued that highly potent compounds
may tolerate compromised ADME properties that may result
from sub-optimal physicochemical properties and hence that
improving potency during optimisation could be done at the
expense of drug-like properties. However, for many targets
that are not amenable to high affinity ligands, it might be
expected that further compromise would be required to
achieve exquisitely high potency. We have not considered this
in this analysis because of the difficulties with comparing
in vitro potency across different targets, which may use
different assays and translate differently to in vivo.

The findings reported here suggest that control of hydrogen
bonding and, to a lesser extent, lipophilicity is more important
than molecular size in achieving oral drugs, hence targets
requiring larger molecules may be tractable provided that
hydrogen bonding and lipophilicity can be controlled. This is in

Fig. 3 Correlations of a) rotatable bond count vs. MWt; b) aromatic ring count vs. MWt; c) average PMI1/PMI3 vs. PMI2/PMI3 (PMI plot), which
indicates linear (coordinates: 0,1), disc-like (0.5,0.5) and spheroid (1,1) compounds. Individual points and 95% density ellipses are shown for Lipinski
passes (green) and fails (red).

RSC Medicinal Chemistry Research Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 5
:2

5:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4md00160e


3130 | RSC Med. Chem., 2024, 15, 3125–3132 This journal is © The Royal Society of Chemistry 2024

T
ab

le
4

P
h
ys
ic
o
ch

em
ic
al

p
ro
p
er
ty

d
is
tr
ib
u
ti
o
n
s
o
f
m
ac

ro
cy
cl
es

(c
o
n
ta
in
in
g
≥1

2-
m
em

b
er
ed

ri
n
g
,n

=
10

)
an

d
co

m
p
ar
is
o
n
s
to

th
e
re
st

o
f
th
e
d
at
as
et

M
W
t

cl
og

P
H
B
D
s

M
ea
n
(s
td

de
v)

79
5
(2
10

)
4.
5
(1
.1
)

3
(2
)

50
/7
5/
90

%
il
e

78
9/
89

1/
11

88
4.
8/
5.
4/
6.
2

3/
4/
6

H
B
A
s

R
B
s

A
ro
m
at
ic

ri
n
g
co
un

t

M
ea
n
(s
td

de
v)

11
(2
)

7
(5
)

2
(1
)

50
/7
5/
90

%
il
e

11
/1
3/
14

8/
10

/1
6

2/
2/
3

RSC Medicinal ChemistryResearch Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 5
:2

5:
07

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4md00160e


RSC Med. Chem., 2024, 15, 3125–3132 | 3131This journal is © The Royal Society of Chemistry 2024

line with findings reported previously.12 The observations
suggest that restricting conformational freedom, as crudely
assessed by rotatable bond counts, can be useful in achieving
oral drug-likeness for larger compounds. There is no clear
indication that increased 3-dimensionality is beneficial. Further
understanding of the properties of compounds that impart oral
drug-likeness outside of classical ranges of physicochemical
descriptors is required to further increase the probability of
success in this region, which will be required as part of the
endeavour to expand the range of tractable therapeutic targets.
We would postulate that further understanding of substructural
classes and their associated molecular shapes and
conformational ensembles will be required to achieve this goal
and such considerations are more complex than simple
molecular descriptors can inform. Our findings are consistent
with the concept that macrocycles are beneficial in this
regard.23,24 Identification of further molecular sub-classes that
impart similar benefits would be highly desirable.

Computational methods

To investigate the properties of the FDA-approved drugs, a
selection of descriptors available in the RDKit package were
computed, and trends were investigated in SAS JMP ver. 15.2.0.
The available descriptors fall into five broad categories – bond
counts, atom counts, surface area, 3D shape, and ‘other’. For
simplicity, only descriptors discussed in the main text are
mentioned here, but a full list of computed properties, along
with code and SMILES for the 2000–2022 FDA approved drugs
are provided in the accompanying GitHub repository.25

To compute the 3D descriptors, it is important to sample a
representative set of molecule geometries. A conformer
ensemble was therefore generated using RDKit's experimental
torsion with the “basic” knowledge distance geometry (ETKDG)
algorithm, with a RMS pruning threshold of 0.1 Å, 1000
maximum attempts at embedding, random initial coordinates,
consideration of small ring torsions and a random seed for
reproducibility.26,27 The number of conformers to generate was
selected using a set of rules proposed by Ebejer et al. derived
from the number of rotatable bonds: 50 conformers for ≤7
rotatable bonds, 200 conformers for 8 ≤ rotatable bonds ≤ 12,
and 300 conformers for >12 rotatable bonds.28 Each conformer
was optimised, and the energy calculated, using the MMFF94
force field.29 For a property (A), the Boltzmann-average over all
the generated conformers (i) was computed as:

Aavg ¼ ΣiAie
− Ei
kBT

Σie
− Ei
kBT

where Ei is the force field energy of conformer i, kB is the

Boltzmann constant, and T (=300 K) is the temperature.

Bond count properties

The bond count descriptors included in this study are mostly
available natively in RDKit from the rdMolDescriptors module.

The number of rotatable bonds (CalcNumRotatableBonds) is
obtained by counting the number of matches to a smarts pattern
(either loose or strict) defining a rotatable bond. The aromatic
ring count (CalcNumAromaticRings) is obtained by looping over
the bonds within a ring and checking for aromaticity. The
stereocentre count (CalcNumAtomStereoCenters) is obtained by
counting the number of atoms where chirality is possible. The
small ring count (CalcNumRings) is derived from the RingInfo
functionality in RDKit, again derived by counting bonds. Whether
the molecule is macrocyclic is not directly implemented within
RDKit but can be determined by a substructure search for the
SMARTS pattern “r-12” (ring of 12 or more atoms).30

Atom counts

With some manipulation, the atom class can be used to
obtain the number of non-carbon atoms (atom symbol not
equal to C), the number of aromatic atoms (count the
number of atoms that pass GetIsAromatic()), and the number
of sp3 atoms (count of the number of atoms where
GetHybridization() == HybridizationType.SP3).

3D shape

The first three principal moments of inertia (PMI) are a
measure of the rotational dynamics of a molecule, and can
be calculated computationally, or derived experimentally
from IR or microwave spectra. The PMIs indicate the degree
of rod-, disc- or sphere-shape a molecule has.31 For a
specified axis, the moment of inertia, I, is defined as:

I = Σimir
2
i

where mi is the mass of atom i, and ri is the perpendicular
distance from the principles axes (with I1 ≤ I2 ≤ I3). Several
descriptors of shape can be derived from PMI.32 The normalised
principal moment ratios were proposed by Sauer and Schwarz33

as a crude measure of shape, independent of molecular size,
obtained by dividing the two smaller moments by the largest.

Data availability

The raw dataset is provided as a .csv file. All analysis
methods are provided in the manuscript and ESI.†
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