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Introduction to order, disorder and ultrafast
phenomena in functional solids

Hiroko Tokoro, *ac Eric Collet *bc and Ernest Pastor *bc

Disorder in solids manifests in the vari-
able extended loss of the translational
symmetry.1,2 This change in the crystal-
lographic properties can dramatically
impact the solid’s functionality by

altering its electric conduction, magnetic
response or optical properties.3–7 Conse-
quently, manipulating disorder via the
targeted control of defect populations is
central to developing new functional
materials, such as those used for cataly-
sis and magnetic memories,8–13 or in
energy and thermal storage, as discussed
in this collection by Kubota et al. (https://
doi.org/10.1039/D3MA01162C).

Disorder is particularly important
for materials that undergo photo-
induced phase transformations as,
often, light excitation triggers a change
in the way the system is ordered.14 For
example, photoexcitation of Sr3Ir2O7 or

RbMnFe(CN)6 can change magnetic spin
order and induce a transition from
antiferromagnetic to paramagnetic, or
ferromagnetic to antiferromagnetic.15–18

Similarly, in the ferroelectric solid TTF-
CA, thermal or photoexcitation can
induce a change in polar order and affect
the ferroelectric properties.19–23

These light-active phase-change mate-
rials hold incredible technological
potential as they offer the possibility to
achieve transformation speeds not
attainable using thermodynamical tools
(i.e., heating or increasing pressure) thus
opening the door to ultra-fast switches or
memories. Currently, great research
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efforts are devoted to understanding
photo-induced transformations with
growing evidence highlighting the critical
role that disorder plays in enabling control
of the phase change.24–28 The development
of tools capable of elucidating the impact of
defects in the ground state and upon excita-
tion, from microscopic to macroscopic
scales, is crucial to enable further techno-
logical developments.

Defects can take many different
shapes and forms. For example, in Prus-
sian blue analogues (PBA), with structure
AxM1y[M2(CN)6]n�xH2O (A = alkaline),
disorder might be chemically controlled
through M2(CN)6 vacancies and variable
quantities of water molecules, as well as
due to the presence of different interstitial
cations, amongst other sources (Fig. 1).29,30

These defects can partake in the collective
intermetallic charge transfer, which can be
driven by external stimuli such as tempera-
ture or pressure.6,31–34

Defects can also be generated upon
illumination.35–38 As shown by Hervé et al.

(https://doi.org/10.1039/D3MA01072D), in
the case of PBA, the excitation of the solid
can induce a charge transfer at the micro-
scopic scale, causing a local structural dis-
tortion around the metal ion known as a
polaron (Fig. 2).37,39–42 These photoinduced
polarons are important because they are
the heart of cooperative photo-active
phenomena that might enable the magni-
fication of external stimuli towards a
macroscopic charge-transfer phase
transition.28,43–45

Similarly, in bistable molecular
solids, such as spin crossover materials,
the constituting molecules may be ther-
mally or optically converted from one
electronic state to another in a collective
way. However, fluctuations in the bal-
ance between elastic interactions and
entropy can lead to the long-range order-
ing or disordering of molecules in differ-
ent spin states, causing stepwise thermal
conversion to emerge, and therefore
multi-stable phases.46–49 For many spin-
transition materials, stepwise transitions

are associated with long-range ordering
of molecules in different spin states
and are therefore symmetry-breaking,
which also allows for a magneto-electric
effect.50 The case of order–disorder of
molecules in different spin states, with-
out symmetry-breaking, is discussed in
this collection by Ruzzi et al. (https://doi.
org/10.1039/D3MA01057K).

Optical methods, relying on recent
advances in laser and detection tools,
offer a great platform to characterise
the role of disorder and expose the
complex interplay of phenomena that
leads to phase metastability. The probes
can provide information on changes in
local and/or long-range order. For exam-
ple, spectroscopic methods can be used
to track the fingerprints of ground-state
defects and impulsive spectroscopy can
resolve, with unprecedented time resolu-
tion, how the electronic and structural
systems of the solid couple and become
disordered upon excitation.26,51–53 As
shown by Sugisawa et al. (https://doi.
org/10.1039/D3MA00317E), methods like
time-resolved reflectance and second-
harmonic generation can be used to
reveal how photo-excitation modulates
the polarisation structure of hydrogen-
bonded ferroelectric materials relevant
for technological applications.

Importantly, it is now possible to per-
form such optical experiments under in-
situ-like conditions thus characterising
the response of the solid under techno-
logically relevant temperature, pressure
and excitation regimes.54 For example, in
this collection, Dronova et al. use
variable-temperature infrared spectro-
scopy to learn about the interactions
between cations and the cyanide-bridge
networks in PBA (https://doi.org/10.1039/
D4MA00064A).

Similarly, structural and coherent
imaging methods, powered by unprece-
dented developments in large-scale facil-
ities, offer the possibility to visualise the
formation of defects in real time.55,56 In
this regard, the measurement of
weak diffuse signals that track random
displacements in the solid’s structure is
exposing, not only that defects are impor-
tant, but that time-dependent, spatial
interaction between defects can dictate
the phase of the system upon

Fig. 1 Two type of defects that can emerge in Prussian blue analogues (PBA) of formula
AxM1y[M2(CN)6]n�xH2O (A = alkaline), and which affect the function of the material.
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irradiation.57 The use of coherent imaging
to capture polaronic states is discussed in
this collection by Sarkar et al. (https://doi.
org/10.1039/D4MA00154K). Further devel-
opment of experimental and theoretical
methods to understand and analyse such
signals promises to reveal unexpected phy-
sicochemical phenomena that could be
useful to manipulate solids on demand.
However, due to the multiscale nature of
photoinduced processes, theoretical devel-
opments are very challenging.

In this themed collection we highlight
works focusing on the implementation of
advanced experimental tools to charac-
terize defects and the development of
robust theoretical frameworks to under-
stand the role of disorder. Further advances
in these areas are needed to push the
boundaries of optical control of materials.
However, the recent developments in laser
techniques, large-scale facilities and com-
putational capabilities offer an exciting out-
look for the characterisation and control of
disorder in functional solids.

As guest editors, we would like to
thank all the authors that have contrib-
uted as well as the RSC editorial team for
their help in coordinating the effort. We
hope the research highlighted in this
collection will be useful for the multiple
communities seeking to understand and
control disorder in solids in order to
instil new functionality that powers the
technologies of the future.
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