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Using a combination of two fuels, an auto-combustion method was used to synthesize pure TiO, and
doped TiO, with different concentrations of iron(in) (Fe) and manganese(i) (Mn) (1, 3, 5, and 7 mol%). The
as-prepared materials were characterized using different techniques, including thermogravimetric analysis
(TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning
electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM). The XRD
results showed that both pure TiO, and all doped TiO, samples had the anatase phase, indicating the
crystalline nature of all the as-prepared nanomaterials. Crystal violet decolorization under UV irradiation

Received 27th April 2024, was used to assess the photocatalytic activity of the prepared samples. The findings showed that,

Accepted 24th May 2024 compared to other dopant concentrations, TiO, with a dopant concentration of 5% Fe and 7% Mn showed
the highest degradation rates (95.93% and 96.3%, respectively) at 100 and 70 min, with pseudo-first order

rate constants of k = 2.91 x 1072 and 4.8 x 1072 min™?, respectively. It was found that superoxide radicals
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1. Introduction

The mysteries and advantages of bulk materials have been
unveiled via nanotechnology." In an effort to satisfy market
demands, scientists have been working feverishly to develop
ideal nanomaterials ever since the nanoscale phase first
emerged. The rapid growth of businesses that currently utilize
a lot of water on Earth leads to water scarcity brought about by
wastewater generation, and this practice puts human health,
the environment, and animals in peril. The water quality
required for acceptable domestic and commercial applications
is negatively impacted by dyes, which are considered major
pollutants. Many industries release them into the air, such as
those that make textiles, paints, paper, cosmetics, medications,
etc. Dyes tend to accumulate due to their complex chemical
composition, making them more resistant to biodegradation.
This might have very harmful effects, such as an increase in the
demand for chemical and biological oxygen.”™ Due to their
exceedingly bright color, variable pH, and high chemical oxygen
demand, these effluents have a significant negative impact on
both aquatic life systems and human health. The most prevalent
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and hydroxyl radicals were the main reactive species responsible for dye degradation.

effluents that the textile and printing industries release into
water bodies are dyes.” Due to their complex aromatic structure
and resistance to heat, light, and chemicals, these dyes degrade
over very long periods. Therefore, it is crucial to remove these
dangerous dyes from water.® As a result, several researchers
have focused a significant portion of their work on treating
wastewater from the textile industry before disposal.” Dyes are
currently produced in large quantities and widely utilized across
a variety of industries, one of which is the crystal violet dye,
which is depicted in Fig. 1 as a model for application. Crystal
violet (CV), also known as C.I. Basic Violet 3, is a synthetic dye
commonly used in various industries, including textile, printing,
and healthcare.® However, the release of CV into the environ-
ment can have detrimental effects due to its toxicity and carci-
nogenic properties.” Therefore, finding effective methods to
degrade and remove CV from wastewater is highly important.
Different chemical, biological, and physical techniques,
such as chemical oxidation,'® reverse osmosis,'" filtration,'?
membrane processes,'? solvent extraction,'* adsorption,'® elec-
trochemical and ultrasonication techniques, biological treat-
ment, precipitation, and coagulation,'® have been proposed for
the removal of pollutants from wastewater. However, all these
techniques have shortcomings, including post-remediation
because of sludge production and the removal of adsorbents.
In addition, experimental evidence has shown that dyes can be
removed using biological and physical purging techniques.'”
Therefore, developing a practical way to manage water

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Chemical structure of crystal violet as a model for photocatalytic
degradation.

contamination caused by dyes has become an important and
pressing problem.

Advanced oxidation processes (AOPs) have received great
interest in recent years as complementary methods to conven-
tional water treatment strategies.'® In addition the advanced
oxidation processes have an advantage over other techniques since
the various radicals produced, such as superoxide radicals (O, *)
and hydroxyl radicals (OH®), which are frequently utilized for
photoreduction, break down the dyes into harmless chemicals."®
Among these AOPs, heterogeneous photocatalysis has been
considered the most effective and economical methodology
for wastewater purification and environmental protection over
the past few decades.”® By transforming extremely dangerous
pollutants into degradable molecules using light irradiation and
appropriate semiconductors, photocatalysis can remove environ-
mental toxins from the environment.”® Numerous metal and
metallic oxide-based semiconductors, including TiO,,>> MnO,,”?
Sn0,,** Al,0;,%° Zr0,,>*® ZnW0,,%” and Bi,M0,0;,,%® have been
developed with regulated band gaps to enhance charge separa-
tion and harvest visible light irradiation. Because of its non-
toxicity, low cost, chemical inertness, and photochemical
stability, the binary metal oxide semiconductor TiO, has proven
to be the most suitable and appealing material.*® Although TiO,
has a crystalline structure that increases the number of effective
and efficient active surface areas, it has several drawbacks, such
as the inability to absorb light in the visible region (380 nm), a
wide bandgap energy (3.2 eV), and a tendency for electron-hole
recombination, which prevent its practical use.’® Recently,
several techniques have been investigated to address some of
these drawbacks and hence increase the photocatalytic activity of
TiO, for the treatment of textile effluents, including metal doping™*
(e.g., iron (Fe),> manganese (Mn),** copper (Cu)** aluminum
(AD),** chromium (Cr),*® silver (Ag),”” palladium (Pd),*® etc.), non-
metal doping (e.g., nitrogen (N),* fluorine (F),*® boron (B),*" etc.)
and co-doping with metals/metals (Fe-Co,* Fe-Pr,** and V-Mo*).
There have been several documented techniques for making doped
TiO,, including hydrothermal,** microwave heating, sol-gel,*
precipitation,” and solution combustion methods.***® In some
studies, the photocatalytic performance of some dyes, including
amaranth,” crystal violet,”*> methyl orange,”*>* and methylene
blue,> was examined.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Our previous study”® on the photocatalytic efficiency of lantha-
num cation-doped TiO, demonstrated that doping TiO, with La
cations significantly enhances its photocatalytic efficiency, leading
to effective degradation of the pollutant under UV light.

In contrast, the current work investigates the photocatalytic
degradation of crystal violet dye using TiO, doped with man-
ganese and iron. These alternative dopants influence the
photocatalytic activity and degradation mechanism of TiO,,
as these dopants exist among the transition elements (d block)
that have electronic configuration and characteristic properties
different from those of La (F block). By comparing the perfor-
mance and efficiency of La-doped TiO, with those of Mn- and
Fe-doped TiO,, we aim to identify key differences and potential
improvements in photocatalytic performance. Notably, the
introduction of manganese and iron may alter the electronic
properties and light absorption characteristics of TiO,, potentially
leading to enhanced degradation rates and broader applicability
in environmental remediation. Pure TiO, and doped TiO, with
different concentrations of Mn®*" and Fe®* are produced via a
combustion technique. The solution combustion process offers
several advantages, including cost-effectiveness, rapid synthesis
and homogeneous product production.’””® The materials have
been characterized using a variety of spectroscopic techniques
and thermal investigations. The ability of the nanoparticles to
remove the CV dye from the aqueous phase was investigated.

2. Materials and methods

2.1. Materials

From Advent Chembio Pvt. Ltd, India, titanium(iv) isopropox-
ide (TTIP) was acquired. The supplier of nitric acid (65%), citric
acid, and manganese(u) acetate tetrahydrate was Lanxess India.
Oxford Lab Fine Chem LLP provided the crystal violet dye, the
Adwic Company supplied urea, and Qualikems Fine Chem Pvt.
Ltd, India supplied iron(m) nitrate nonahydrate.

2.2. Methods

2.2.1. Synthesis of TiO, and (Mn, Fe)-doped TiO, nano-
particles. The auto-combustion approach was used to create TiO,
nanoparticles utilizing titanium(wv) isopropoxide (Ti(OCH(CH,),),)
as the titania precursor and a mixture of urea and citric acid as the
fuel. After 6.1 mL of titanium isopropoxide and 30 mL of distilled
water were rapidly stirred for one hour, titanyl hydroxide
(TiO(OH),) was produced. By combining the turbid white solution
(titanyl hydroxide) with 15 mL of HNOj, titanyl nitrate (TiO(NO;),)
was produced. After that, 2.13 g, 11.1 mmol citric acid, and
33.2 mmol urea aqueous solutions were combined with titanyl
nitrate, and the mixture was agitated for 5 min. The mixture
of titanyl nitrate and fuel for the combustion process is based
on the presumption that the equivalence ratio C should be unity
(ie, C = (F/O) = 1) to increase the released energy from the
combustion process for each reaction, where O is the total oxidiz-
ing valence of the oxidizer (i.e., titanyl nitrate) and F is the total
reducing valence of the reducer (the fuel) (ie., a combination of
urea and citric acid).”® The fuel oxidizer mixture was placed on a

Mater. Adv., 2024, 5, 8684-8700 | 8685
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Fig. 2 Schematic proposed diagram for preparation of pure and doped TiO,.

hot plate at 135 °C with stirring until the resin had formed, at which
point it was heated at 350 °C to produce ash. To obtain pure and
crystalline TiO, nanoparticles, the resultant ash was calcined at
650 °C for 2 h. To prepare TiO, doped with Mn and Fe, separately,
known concentrations (1, 3, 5, and 7 mol%) of manganese(u) acetate
tetrahydrate and iron(m) nitrate nonahydrate were successively
added to the titanyl nitrate solution. Then, the same procedures
for producing pure TiO, were carried out until powder (ash) was
obtained. Mn-TiO, and Fe-TiO, nanoparticles were created from
this ash by manually grinding it and calcining it at 600 °C for 2 h.
Fig. 2 shows the proposed steps for preparing pure and doped TiO,.

2.2.2. Preparation of Mn,0; and Fe,O; nanoparticles. Aqu-
eous solutions of iron(m) nitrate nonahydrate (8.07 g) and
manganese(u) nitrate were mixed with the fuel (homogeneous

Nanophotocatalyst

\

Crystal violet solution

solutions of urea (2 g, 33.2 mmol) and citric acid (2.13 g,
11.1 mmol)). To obtain manganese(n) nitrate, an aqueous
solution of manganese(u) acetate tetrahydrate (4.9 g) was treated
with sodium hydroxide to adjust the pH and then treated with
nitric acid. The oxidizer-reducer mixtures of manganese nitrate
and iron nitrate with the fuel were heated at 135 °C to obtain a
gel, which was subsequently heated to 350 °C to produce ash.
The obtained powder was manually ground and calcined at
600 °C for 2 h to obtain Mn,0; and Fe,O; nanoparticles.

2.3. Characterization

The as-prepared samples were subjected to a range of analytical
tests, including thermogravimetric analysis (TG-DTA) (SDT
Q600 V20.9 Build 20), X-ray diffraction (XRD) (patterns were
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3
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Fig. 3 The schematic shape of the experimental setup for the photocatalytic degradation reaction.
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recorded on a Bruker, D8 Discover, Germany using Cu-Ko
radiation (1 = 1.5406 A), a voltage of 40 kv and a current of
40 mA with a 2 theta scanning range of 10-803), Fourier
transform infrared (FT-IR) spectroscopy (Bomem; model
MB157S) from 4000 to 400 cm ™" at room temperature, UV-vis
spectroscopy (Jasco, model V670) to ascertain the dye concen-
tration in the 400-700 nm range, high-resolution transmission
electron microscopy (HR-TEM, JEM-2100) at an accelerating
voltage of 200 kV by dispersing the samples in water on a
copper grid, and field emission scanning electron microscopy
(FE-SEM, JEOL JSM-6500F).

2.4. Photodegradation evaluation

Using homemade apparatus (Fig. 3) composed of a 250 mL
quartz beaker, three 20-watt G13T8 UV-C mercury lamps with a
maximum wavelength of 254 nm, and a multistirrer (300 rpm),
the degradation of the crystal violet dye was utilized to test the
photocatalytic activity of the as-prepared samples. 50 mL of
crystal violet aqueous solution (20 mg L™ ') was mixed with
different amounts of the as-prepared nanocrystalline photocata-
lysts (25 mg, 35 mg, 50 mg, and 75 mg). To achieve the
adsorption-desorption equilibrium between the dye and the
photocatalyst, the mixture was magnetically agitated for one
hour before illumination. The nanophotocatalyst and dye solu-
tions were separated by centrifuging 5 mL of the suspension at
5000 rpm for 3 min at intervals of 10 min during the photo-
catalytic process. Spectrophotometric detection at Apmax = 584 nm
revealed the concentration of the dye in the supernatant.
Eqn (1) was used to estimate the degradation efficiency.

(Co—C)
0

Decolorization efficiency = 100 x (1)
where C, is the initial concentration and C is the concentration
at time ¢.

A series of scavenging tests were carried out to gain a
thorough understanding of the active species responsible for
the CV degradation process. In comparison to the initial CV
concentration (50 mg of the photocatalyst and 50 mL of CV
solution (20 mg L™ ")), the scavengers were added at a 20 times
molar concentration. Ascorbic acid (AA) as an *O”~ scavenger,’
EDTA-2Na as an h* scavenger,®" and methyl alcohol (MA) as an
*OH scavenger®” were independently introduced in an illustra-
tive degradation process.

3. Results and discussion

3.1. XRD study

The XRD patterns of pure TiO, and doped TiO, with various
concentrations of Fe and Mn (1, 3, 5, and 7 mol%) are shown in
Fig. 4A and B, respectively, which demonstrate that both pure
TiO, and all doped TiO, samples with different concentrations
Fe and Mn are crystalline. According to Fig. 4A, the two most
common polymorphs of TiO,, namely, anatase (JCPDS: 01-071-
1167) and rutile (JCPDS: 01-076-0318), are present in different
proportions, but the anatase phase is dominant, as it constitutes
74% of the total diffraction peaks in Fe-TiO, and approximately

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 XRD patterns of (A) pure oxides (TiO, and Fe,Os) and doped TiO,
with changing concentrations (1, 3, 5, and 7 mol%) of Fe>* cations and (B)
pure oxides (TiO, and Mn,0O3) and doped TiO, with different concentra-
tions (1, 3, 5, and 7 mol%) of Mn?* cations and TiO, pattern®® trace
previously published in reference (sm/ymri/04239411) and reproduced
with permission from Taylor & Francis.

95% in Mn-TiO,, as only one peak of 3% Mn-TiO,(101) appears
for the rutile phase. With the lattice parameters a = b = 3.7892 A,
¢=9.537 Aand o = § = y = 90°, all the diffraction peaks of the
samples can be correlated to the anatase tetragonal TiO, phase.
The distinctive diffraction peaks of the anatase form of pure TiO,
are observed at 260 = 25.39°, 37.6°, 47.9°, 53.7°, 54.9°, and 62.5°,
respectively. According to the XRD pattern of Fe-TiO,, the rutile
phase is less abundant in the undoped sample, as indicated by
the appearance of only two extremely weak peaks at 20 = 27.4°
(110) and 36° (101), which intensify with increasing Fe content.
The reason why the anatase phase appears earlier in Fe-TiO,
than in pure TiO, may be because the low charge cations (ie.,
<+4) can act as anatase-to-rutile transition promoters.®®
According to the calcination temperature, electronegativity,
crystal structure, and atomic size that determine the substitu-
tion position, the dopant can generally act as an interstitial or
substitutional impurity in the TiO, crystal lattice.** Due to the

Mater. Adv, 2024, 5, 8684-8700 | 8687
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Table 1 Crystallite sizes of pure TiO, and doped TiO,

Dopant Dopant/crystallite ~ Dopant/crystallite
S.no.  concentration (%)  size (nm) size (nm)
1 0 None/11.06 None/11.06
2 1 Mn/11.78 Fe/12.41
3 3 Mn/14.4 Fe/18.32
4 5 Mn/18.81 Fe/19.8
5 7 Mn/28.26 Fe/29.43

difference in the ionic radius between the dopant cations (Fe**
and Mn>") and the host cation (Ti*"), the crystallite sizes of the
doped TiO, (Table 1) increased with increasing dopant concen-
tration, which may be attributed to the expansion of the crystal
lattice of TiO, resulting from the substitutional doping of the
dopants. As shown in Fig. 4 and Table 2, the (101) diffraction
peak of the doped TiO, that is displaced to a lower angle
at a lower concentration shifted to a higher angle at higher
concentrations, while the d value gradually increased with
increasing dopant concentration and then decreased, which
is consistent with Bragg’s relation (eqn (1)), where d is the
interplanar distance, 6 is the degree of diffraction, and 4 is
the wavelength of the incident ray. This can be explained by the
initial formation of a substitutional solid solution, which has
been linked to an increase in the anatase cell volume at low
dopant contents followed by a decrease in the cell volume
at higher dopant contents. This expansion of the unit cell is
caused by the inability of extra dopant ions to enter the TiO,
lattice, forcing them into interstitial sites.®® To determine the
lattice parameters of the undoped and doped TiO, nanocrys-
tals, the peaks corresponding to the (004) and (200) crystal
planes of the anatase phase were chosen. The samples’ unit cell
volume and lattice parameters were determined by applying
Bragg’s law and eqn (2), where (%kl) are the Miller indices and
a, b, and c are the lattice parameters (in a tetragonal system,
a=b # c). The estimated data (Table 3) show that the estimated
lattice parameters and unit cell volume of the doped TiO,
nanoparticles differ significantly from those of the undoped
sample due to the introduction of Fe** and Mn>" ions into the
TiO, lattice, which causes local distortion of the crystal
structure.

When the doping concentration increases, the intensity of the
diffraction peaks generally decreases significantly, signifying a
loss of crystallinity because of lattice distortion. Strain is

Table 2 Interplanar distances and diffraction peak angle values of pure
and doped TiO,

Photocatalyst Plane d-spacing (A) Diffraction angle ()
TiO, (101) 3.4963 25.398

1% Fe-TiO, (101) 3.5038 25.389

3% Fe-TiO, (101) 3.5382 25.099

5% Fe-TiO, (101) 3.5059 25.38

7% Fe-TiO, (101) 3.5155 25.298

1% Mn-TiO, (101) 3.5098 25.389

3% Mn-TiO, (101) 3.5382 25.2

5% Mn-TiO, (101) 3.5081 25.57

7% Mn-TiO, (101) 3.5155 25.29

8688 | Mater. Adv, 2024, 5, 8684-8700
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Table 3 Lattice parameters and cell volume of different samples esti-
mated from XRD data

Sample a(A) c(A) Cell volume (A%
TiO, 3.7762 9.2469 131.8638
1% Fe-TiO, 3.7812 9.2656 132.4793
3% Fe-TiO, 3.7900 9.3180 133.8489
5% Fe-TiO, 3.7740 9.2008 131.0490
7% Fe-TiO, 3.7897 9.2433 132.7543
1% Mn-TiO, 3.7769 9.2600 132.0981
3% Mn-TiO, 3.7899 9.3163 133.8157
5% Mn-TiO, 3.7663 9.2581 131.3294
7% Mn-TiO, 3.7688 9.2134 130.8716

introduced into the system when dopant ions are added to the
TiO, periodic crystal lattice. This causes the lattice periodicity to
change and the crystal symmetry to decrease.” As seen from the
XRD patterns, when the concentration increased, the diffraction
peak width increased, indicating a systematic decrease in the
grain size. The decrease in crystallinity that occurs with Fe and
Mn doping can be explained by the difference in ionic charge
between Ti*" and the dopants (Mn** and Fe®").%

Eqn (4) provides the Debye-Scherrer equation, which is used
to determine the average crystallite size of the photocatalysts
under the as-prepared conditions. The terms “crystal size” (D),
“shape factor” (k), “diffraction angle” (6), and “full width at
half-maximum height” (ff) refer to the dimensions of the
crystal. The results are displayed in Table 1.

2dsin0 = 4 2
L — lﬁ + E + ﬁ (3)
dut @ @

(KXY
b= BcosO (4)

The XRD pattern of the iron oxide product is depicted in
Fig. 4A, and this pattern is clearly associated with the pure
Fe,0; phase with rhombohedral structure (space group R3C
(167), lattice constants a = 5.038 and ¢ = 13.776, JCPDS card: 01-
073-3825). The Debye-Scherrer equation was used to calculate
the average crystallite size of the produced Fe,O; nanoparticles,
which was found to be approximately 48.96 nm.

In Fig. 4B, the XRD pattern of the manganese(m) oxide
product shows the cubic structure of the pure Mn,0O; phase
(space group Ia3 (206), lattice constant a = 9.414, and JCPDS
card: 01-071-0636). The average crystallite size of the produced
Mn,0; nanoparticles was calculated using the Debye-Scherrer
equation and was found to be approximately 45.57 nm.

3.2. Thermal analysis

According to the thermogravimetric analysis (TGA) curve on the
left side of the y-axis, the weight loss of the samples is
presented for the thermal assessment of pure TiO,, 5% Mn-
TiO,, and 5% Fe-TiO, in Fig. 5A-C, respectively. The weight
loss process consisted of three steps for all the samples. In
particular, the evaporation of adsorbed water and ethanol is
what predominantly contributes to the loss in the first phase,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 TG-DTA-DSC curves of (A) pure TiO,°® (previously published

in reference: sm/ymri/04239411 and reproduced with permission from
Taylor & Francis), (B) 5% Mn-TiO,, and (C) 5% Fe-TiO,.

which for all samples occurs generally between 0 and 250 °C.%”
It is possible that burning organic materials at 250 °C to 500 °C
will result in the second phase of weight reduction. The third
stage of weight loss, which lasts between 500 °C and 700 °C, is
caused by the gel’s dehydroxylation.®®

The desorption of ethanol and water is represented by a
significant decrease in the peak (endothermic peak) on the
differential thermal analysis (DTA) curve at approximately
100 °C for pure TiO, (Fig. 5A). At approximately 560 °C, heat
release was predominantly caused by the decomposition of
organic matter by burning. The change of TiO, from its

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Band gaps of (A) pure TiO, and doped-TiO, with different per-
centages (1, 3, 5, and 7 mol%) of Mn?* and (B) pure TiO, and doped-TiO-
with different percentages (1, 3, 5, and 7 mol%) of Fe**.

amorphous phase to its crystalline anatase phase, which
occurred between approximately 500 °C and 650 °C, may have
contributed to the apparent decrease that occurred during this
time.*® A phase change from anatase to rutile can be observed
starting at 500 °C in the exothermic peak of the pure TiO, DTA
curve. At approximately 550 °C, the exothermic maximum
appears for Mn-TiO,. This clearly demonstrates that Mn doping
hinders the phase change.”® According to the differential scan-
ning thermogram (DSC curve), there are two main endothermic
reactions, where solvent evaporation causes the first step to
begin at approximately 100 °C for all samples.”" Due to the
anatase to rutile conversion of the samples, all stages begin at
nearly 620 °C.”* Significantly, the findings of thermal analysis
indicate that calcination processes performed at 650 °C and
600 °C are adequate to produce pure and doped TiO,,
respectively.

3.3. Optical activity

An important factor in the photocatalytic degradation of dyes is
the band gap energy (E;) of the nanophotocatalyst, which
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Table 4 Band gap values of pure TiO, and TiO, doped with Fe and Mn

Dopant Dopant/band Dopant/band
S. no. concentration (%) gap (eV) gap (eV)
1 0 None/3.16 None/3.16
2 1 Mn/2.56 Fe/2.76
3 3 Mn/2.98 Fe/2.51
4 5 Mn/1.71 Fe/2.36
5 7 Mn/1.56 Fe/2.06

depends on the optical absorption coefficient and type of
electronic transition of the catalyst.”® As shown in Fig. 6A and
B, the band gap of pure TiO, and TiO, doped with Fe*" and
Mn>" at various concentrations was measured using diffuse
reflection spectroscopy (DRS), and the band gap was estimated
using the Kubelka-Munk technique (eqn (5)). Table 4 contains
the calculated band gap values of doped and pristine TiO,.

1
(F(R)hw)n = A(hw — E) (5)

where F(R) is the Kubelka-Munk function, A is the energy-
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Fig. 7 Absorbance spectra of (A) pure TiO, and doped TiO, with different
amounts of Fe>* and (B) pure TiO, and doped TiO, with different amounts of Mn2*,
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independent constant, Av is the input photon energy, E, is the
energy band gap, and n = 1/2 for a direct band gap and n = 2 for
an indirect band gap. It is clearly observed that the band gap of
doped TiO, was narrower than that of pure TiO,, and the band gap
of Fe-TiO, decreased with increasing Fe content, as shown in the
inset of Fig. 6A, which is consistent with the literature.”*”> It is
possible to attribute the decreasing band gap of doped TiO,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 FE-SEM photos of pure TiO, (A) and (B)°® (previously published in reference: sm/ymri/04239411 and reproduced with permission from Taylor &
Francis), calcined at 650 °C for 2 h, 7% Mn-TiO, (C) and (D), calcined at 600 °C for 2 h, and 5% Fe-TiO, (E) and (F), calcined at 600 °C for 2 h.

compared to that of pure TiO, to an electronic transition from the
dopant’s valence band (Fe**/Fe*") to the conduction band of TiO,.”*

Fig. 7 shows the absorbance spectra of undoped TiO, and
TiO, doped with different concentrations of Fe** and Mn*",
While the absorption edge of the doped TiO, sample is red-
shifted and the light absorption is considerably enhanced in
the range from 360 to 600 nm with increasing dopant concen-
tration, the absorption edge of the undoped TiO, sample
increases steeply at approximately 357 nm. Accordingly, the
material’s apparent loss in crystallinity, as verified by XRD, can

© 2024 The Author(s). Published by the Royal Society of Chemistry

be primarily responsible for the increase in absorbance that is
observed with dopant concentration. The primary impact of
dopant concentration is evidently a redshift of the absorption
edge, which accounts for the decrease in the bandgap. The
change in the electrical structure of TiO, as a result of Fe and
Mn doping may be the cause of this redshift in the E,.”°

3.4. FT-IR study

The large peak below 1000 cm ™, especially at 502.6 cm™ " in this

study, was predominantly caused by Ti-O-Ti vibration,”” as shown

Mater. Adv., 2024, 5, 8684-8700 | 8691
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in Fig. 8(A and B), which shows the FTIR spectra of TiO, and doped
TiO, with varying amounts of Mn and Fe. The Ti-O-Mn and Ti-O-
Fe bands of the Mn-TiO, and Fe-TiO, nanoparticles may have
formed as a result of the band right shift at 416 cm™". Fig. 8C
shows that the Mn-O bond vibration generates three distinct peaks
at approximately 485, 568, and 664 cm ™', supporting the synthesis
of MnO,”® which is consistent with the XRD results. The FT-IR
spectrum of Fe,O; is shown in Fig. 8(D). The peaks at 429 cm ™" and
517 cm™ ! are attributed to the vibration of the Fe-O bond.”®

3.5. Morphology study

3.5.1. Field emission scanning electron microscopy (FE-
SEM) and energy dispersive X-ray (EDX) results. For both pure
TiO, and doped TiO, (5% Fe-TiO, and 7% Mn-TiO,), FE-SEM-
EDX was employed to characterize the form and distribution of
the particles. Fig. 8A-F shows FE-SEM images of both pure and
doped TiO,. The images show the crystalline nature of the two
varieties of TiO, (doped and undoped), the high interparticle
adhesion, and the spherical form of the pure TiO, particles.
The porosity of the synthesized doped products is shown in
high-magnification FE-SEM images (Fig. 9D and F). Addition-
ally, all the prepared samples had uneven shapes and were
composed of aggregates of spherical and nonspherical
nanoparticles.

The 5% Fe-TiO, and 7% Mn-TiO, elemental compositions
were also examined via energy-dispersive X-ray (EDX) analysis;
the results are displayed in Fig. 10. The presence of Fe-TiO,

8692 | Mater. Adv., 2024, 5, 8684-8700

particles was demonstrated by the presence of Ti, Fe, and O,
which were visible in the EDX spectrum of the 5% Fe-TiO,
product. In addition, the spectrum of the 5% Mn-TiO, product
revealed Ti, Mn, and O as supporting components in the
creation of the Mn-TiO, particles.

3.5.2. High-resolution transmission electron microscopy
(HR-TEM). TEM images match the depicted surface morphol-
ogy of doped TiO, (7% Mn-TiO, and 5% Fe-TiO,) and pure
TiO,. Fig. 11A, C, and E depicts the spherical shape of the
particles and their aggregation for pure TiO,, Fe-TiO,, and Mn-
TiO,, respectively. The average particle sizes of pure TiO,, 5%
Fe-TiO,, and 7% Mn-TiO, were approximately 64.15 nm,
23.15 nm, and 22.08 nm, respectively, as determined from
the TEM images using Image]. Dopants can function as nuclea-
tion sites during the creation of nanoparticles, lowering the
energy required for particle formation, and the increased
number of nucleation sites can result in a greater number of
smaller particles. This may explain why the doped TiO, parti-
cles were smaller than the pure TiO, particles. The interplanar
distance (d) was calculated and found to be 0.34 nm, 0.35 nm,
and 0.351 nm for TiO,, 5% Fe-TiO,, and 7% Mn-TiO,, respec-
tively, as shown in Fig. 11B, D, and F, which is consistent with
the XRD data. The patterns of 5% Fe-TiO, and 7% Mn-TiO,, as
shown in Fig. 11G and H, respectively, were created by selected
area electron diffraction and show unusually bright rings that
are the result of regular and well-aligned polycrystals. The XRD
results are consistent with the relative strengths of the visible

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 HR-TEM photos of (A) and (B) pure TiO,°® (previously published in reference: sm/ymri/04239411, and reproduced with permission from Taylor &
Francis), (C) and (D) 5% Fe-TiO,, (E) and (F) 7% Mn-TiO, and (G) and (H) SAED patterns of 5% Fe-TiO, and 7% Mn-TiO,, respectively.

diffraction rings, which may be indexed to the (101), (004),
(211), and (204) planes.

3.6. Photocatalytic assessment

To compare the results, photocatalytic evaluation of TiO,,
Fe,0;, and Mn,0; and doped TiO, with different cations of
Fe** and Mn>" at various concentrations ranging from 1 to 7
mol% was carried out. A total of 20 ppm (20 mg L") crystal
violet aqueous solution was mixed with 50 mg of the as-
prepared catalyst. As illustrated in Fig. 12A and B, the photo-
catalytic performance of the as-prepared samples Fe-TiO, and
Mn-TiO, was investigated at 120 and 100 min, respectively.
Further research on the kinetics of the photocatalytic degrada-
tion of CV was conducted. The plot of In(C,/C,) vs. irradiation
time intervals clearly demonstrates a linear relationship, where
Co is the dye concentration prior to irradiation and after
attaining adsorption/desorption equilibrium and C, is the

© 2024 The Author(s). Published by the Royal Society of Chemistry

actual dye concentration at irradiation time ¢. For the Fe-TiO,
and Mn-TiO, samples, respectively, Fig. 12C and D show linear
correlations between curves that follow the equation In(C,/C,) =
Kt, where K is the first-order rate constant. It is common to
observe strong correlations, which prove that the reaction
kinetics follow a pseudo-first-order rate law. The first-order
constants are shown in Table 5.

3.6.1. Effect of dopant concentration. To examine the
photocatalytic performance of pure TiO, and doped TiO, with
various concentrations of Fe and Mn ranging from 1 to 7 mol%,
the degradation of the CV dye in an aqueous suspension
solution under UV light in the presence of ambient oxygen
was examined. Fig. 13A and B illustrates the rate of decoloriza-
tion of CV in the presence of pure TiO, and Fe and Mn-doped
TiO, (dopant concentration ranging from 1 to 7 mol%). The
figure demonstrates that doped TiO, with different Fe and Mn
dopant concentrations was more effective than pure TiO,, and

Mater. Adv,, 2024, 5, 8684-8700 | 8693
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Fig. 12 Effect of contact time on the degradation rate of an aqueous solution of CV in the presence of (A) pure oxides (TiO, and Fe,Os) and Fe-TiO,,
(B) pure oxides (TiO, and Mn,03) and Mn-TiO,. Corresponding pseudo-first-order kinetic fits for the photocatalytic degradation reaction of CV using (C)
pure oxides (TiO, and Fe,Os) and Fe-TiO, and (D) pure oxides (TiO, and Mn,O3) and Mn-TiO, under UV light and with the change in concentration in
relation to time (min) upon irradiation of an aqueous solution of CV in the presence of (B) TiO,, Fe,Oz and Fe—-TiO, and (D) pure TiO,, Mn,03, and Mn—

TiOz under UV light.

Table 5 Calculated kinetic parameters for the degradation processes

Parameters/Mn-TiO,

Parameters/Fe-TiO,

Dopant

S.no. concentration R’ K (min™") R K (min™")
1 0 0.992 2.89 x 1072  0.992 2.89 x 102
2 1 0.984 3.1 x 102 0.985 2.31 x 1072
3 3 0.972 3.5 x 1072 0.956 2.21 x 1072
4 5 0.981 3.4 x 102 0.971 2.91 x 10?2
5 7 0.976 4.8 x 102 0.996 2.61 x 10?2
6 Simple oxides Mn,0; Fe,O3

0.989 2.6 x 1072 0.981 3.03 x 1072

8694 | Mater. Adv, 2024, 5, 8684-8700

it also demonstrates that 5% Fe-TiO, and 7% Mn-TiO,
achieved the highest degradation of CV in comparison to other
dopant concentrations and that the optimal time for degrada-
tion was 100 and 70 min, achieving 95.93% and 97%, respec-
tively. Table 6 contrasts the primary degradation results with
those of a few similar materials, highlighting their salient
features and working conditions.

3.6.2. Effect of photocatalyst amount. Furthermore, the
effectiveness of the photocatalytic degradation of different
pollutants is similarly influenced by the amount of photocata-
lyst. It directly determines how easily contaminants can

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Photocatalytic assessment of (A) Fe-doped TiO; (at different Fe concentrations), (B) Mn-doped TiO;, (at different Mn concentrations), (C) 5% Fe-
doped TiO, (at different concentrations) and (D) 7% Mn-TiO, (at different concentrations) for the decolorization of CV.

become entrapped at surface-active sites, thus influencing color
removal efficiency.®* The photocatalytic activity of 5% Fe-TiO,
and 7% Mn-TiO, (changing the amount from 25 mg to 75 mg), the
most efficient catalyst concentrations among the other Fe and Mn
concentrations, was tested for the degradation of CV, as shown in
Fig. 13(C and D). 75 mg of the catalyst showed the maximum
degradation compared to the other concentrations of 5% Fe-TiO,
and Mn-TiO, (98.67% and 97.78% at 100 and 70 min, respectively).
As shown in the figure, the degradation efficiency increased
with increasing photocatalyst amount from 25 mg to 75 mg.
This increase in the rate of degradation can be attributed to the
higher amount of the photocatalyst, which produced a larger
surface area and more active sites, improving the trapping of CV
molecules.®

© 2024 The Author(s). Published by the Royal Society of Chemistry

3.6.3. Effect of active species scavenging. Superoxide radi-
cals (*0, "), positive holes (h*), and hydroxyl radicals (*OH) were
the active species whose roles were identified by observing
changes in the photocatalytic degradation of CV following
the addition of scavengers to the photocatalytic system. The
variation in CV degradation before and after the scavengers
were added to the photocatalytic system is depicted in Fig. 14.
The degradation efficiency of CV with (3% La-TiO,, 5% Fe-
TiO,, and 7% Mn-TiO,) was nearly the same with and without
the addition of EDTA-2Na, which suggests that positive holes
(h") are not involved in the degradation of CV. When MA and
AA were added, the degradation of CV decreased sharply, and
the MA decreased from 92.5%, 82%, and 94.42% to 62%, 65%,
and 65% in the presence of 3% La-TiO,, 5% Fe-TiO,, and 7%

Mater. Adv., 2024, 5, 8684-8700 | 8695
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Table 6 Comparison of the photodegradation capabilities Fe—TiO, and Mn-TiO, for CV with those of several similar photocatalysts
Degradation
Photocatalyst Preparation method (%) Optimum conditions Ref.
Fe-TiO, and Mn-TiO, Solution combustion 95.9 and The initial concentration of CV dye is 20 mg L™, the photocatalyst amount This
96.3 is 50 mg, T = 298 K, the contact time is 100 and 70 min and UV light is the work
light source
Au-reduced graphene Repurposing electronic  99% The initial concentration of CV dye is 10 mg L ™", pH = 10, the photocatalyst 8
oxide nanocomposite waste and dry batteries amount is 40 mg, T = 298 K, the contact time is 30 min and visible light is
the light source
La-doped TiO, Solution combustion 95.98 The initial concentration of CV dye is 20 mg L™, the photocatalyst amount 56

Fe-doped TiO, Reverse-micelle sol-gel 96

In,0; nanocapsules Biogenic reflux method 90

Ag-doped TiO, Hydrothermal method 99

p-n NiO-ZnO Homogeneous pre- 100

cipitation method

ZnFe,0,4 nanoparticles The co-precipitation oxi- 96

is 50 mg, T = 298 K, the contact time is 70 min and UV light is the light
source

The initial concentration of CV dye is 10 mg L ™", with 3 g L™" photocatalyst 65
amount, the contact time is 180 min and visible light is the light source

The initial concentration of CV dye is 10 mg L™, with 0.1 g L™ photocatalyst 80
amount, the contact time is 180 min and visible light is the light source

The initial concentration of CV dye is 20 mg L', with 1 g L' photocatalyst 81
amount, the contact time is 105 min and UV light is the light source

The initial concentration of CV dye is 100 mg L', pH = 11, the photocatalyst 82
amount is 0.1 g/50 mL, T = 298 K, the contact time is 180 min and UV light is
the light source

The initial concentration of CV dye is 10 ppm, pH = 7, the photocatalyst 83

dation method

amount is 30 mg, T = 298 K, the contact time is 30 min and sun light is the

light source

Mn-TiO,, respectively, in just 55 minutes. In terms of AA, the
percentages decreased from 92.5%, 82%, and 94.42% to 53%,
55%, and 58%, respectively. Based on these findings, we may
conclude that the primary active species throughout the photo-
catalytic process were hydroxyl radicals (*OH) and superoxide
radicals (*0,").

3.6.4. Photocatalytic degradation mechanism. Crystal vio-
let molecules can undergo direct or indirect photodegradation
on the surface of doped TiO,. In direct photodegradation,
crystal violet molecules directly interact with the photocatalyst
surface and undergo oxidation reactions. Indirect photodegra-
dation involves the reaction between crystal violet and reactive
oxygen species (ROS) generated by a photocatalyst. During
these reactions, the chromophoric groups of crystal violet,
which are responsible for its color, are broken down into
smaller, less colored fragments. Eventually, these fragments

5% Fe-TiO,
7% Mn-TIO,

100

80

60

40

Photodegradation(%)

0 T T T T T T T v
no scavenger EDTA-2Na MA

Fig. 14 Photocatalytic degradation of CV using 5% Fe-TiO, and 7% Mn—
TiO, under UV light irradiation in the presence of various scavengers.
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can mineralize into harmless inorganic compounds such as
carbon dioxide, water, and inorganic ions.®

According to the photocatalytic degradation mechanism
(eqn (6)—(13)), the photocatalytic degradation of CV using pure
TiO, or doped TiO, involves the generation of reactive oxygen
species (ROS) upon exposure to UV light. The ROS, such as
hydroxyl radicals (*OH), superoxide radicals (*0*”), and holes
(h"), can oxidize and breakdown CV molecules into smaller, less
harmful compounds, which speeds up the fading of color.
Reactive oxygen species, such as hydroxyl radicals (*OH) and
superoxide radicals (*0*7), form as a result of the reaction of
holes with hydroxide ions and the reaction of electrons with
dissolved oxygen, respectively.’® Fig. 15, which presents the
suggested mechanism, illustrates this phenomenon. The process
follows a pseudo-first-order rate law, where the degradation rate
depends on the concentration of CV, catalyst amount, and light
intensity.

Dopant-TiO, + hv — (eq,  + hy," )@dopant-TiO,  (6)
H,0 + hy," - OH* + H' (7)

O, +tep — O,7° (8)

0, * + H" - HOO"® 9)

2HOO®* — H,0, + 0O, (10)

H,0, — 20H" (11)

CV + OH®* — degraded products (12)

CV + O, * — degraded products (13)

4. Conclusion

Both pure TiO, and doped TiO, with various amounts of Fe and
Mn exhibited crystallinity, according to the XRD study, and the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Proposed mechanism of TiO, with dopants for the photocatalytic decolorization of CV.

peaks of the anatase phase were dominant. In comparison to
those of TiO,, Fe,03, and Mn,03, the photocatalytic activity of
TiO, with Fe and Mn dopant concentrations of 1%, 3%, 5%,
and 7% was high. Compared to other dopant concentrations,
TiO, with dopant concentrations of 5% Fe and 7% Mn demon-
strated the highest photocatalytic activity for the decolorization
of the crystal violet dye. By increasing the amount from 25 mg
to 75 mg, the photocatalytic efficiency of 5% Fe-TiO, and 7%
Mn-TiO, increased, and an amount of 75 mg for both materials
exhibited maximum degradation compared to the other
amounts. With K = 2.91 x 1072 and 4.8 x 10~2 min™*, 5%
Fe-TiO, and 7% Mn-TiO, exhibited the highest rate constants
of the reaction in comparison to the other dopant concentra-
tions. It was found that superoxide and hydroxyl radicals were
the primary active species during the photocatalytic process.

Note after first publication

Following the initial publication, a reader’s comments led to
revisions in the topological study. The authors had examined the
topology, including Fig. 1 and 3, but it was decided to alter these
figures after speaking with an expert. This version of the text reports
an accurate analysis, and it also includes modified captions for Fig.
4, 5,9 and 11. This new analysis is also reflected in the manuscript
introduction and highlights the novelty of this topology.
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