This article can be cited before page numbers have been issued, to do this please use: D. Lu, M. Jamshidi, C. Dun, J. J. Urban, J. M. Gardner and L. Belova, Mater. Adv., 2024, DOI: 10.1039/D4MA00094C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Inkjet-printed Ce-doped SnO$_x$ electron transport layer for improved performance of planar perovskite solar cells

Dongli Lu a, Mahboubeh Jamshidi b, Chaochao Dun c, Jeffrey J. Urban c, James M. Gardner b, and Liubov Belova $^{a, *}$

Planar perovskite solar cells (PSCs) based on low-temperature solution-processed SnO$_2$ electron transport layers (ETLs) usually suffer from energy losses within SnO$_2$/ETLs or at SnO$_2$/perovskite interfaces. Doping is an effective strategy to modify the properties of SnO$_2$ and reduce such energy losses. Herein, Ce ions are incorporated into solution-processed SnO$_2$ and Ce-doped SnO$_2$ ETLs are fabricated for planar PSCs via inkjet printing. The Ce-doped SnO$_2$ ETL shows enhanced conductivity and improved energy level alignment with the perovskite layer, which can facilitate charge extraction and transport capabilities. Ce doping also effectively passivates the surface defects of SnO$_2$. The photoluminescence characterization reveals that the carrier recombination is suppressed within the perovskite film. As a result, an improved power conversion efficiency (PCE) of 15.77% is obtained for the planar PSC with a Ce-doped SnO$_2$ ETL, compared to that of 14.66% for the undoped device. Furthermore, this work demonstrates a sustainable fabrication method which has great potential for the upscaling of PSCs.

Introduction

Tin oxide (SnO$_2$) has been utilized as an effective electron transport layer (ETL) for perovskite solar cells (PSCs) because of its high mobility, chemical and optical stability, and favorable energy band alignment with perovskite. 1,2 The feasibility of low-temperature solution fabrication process makes it compatible with roll-to-roll production processes and flexible PSCs. 3 However, low-temperature solution-processed SnO$_2$ is prone to suffering from defects and high electron transport resistance at ETL/perovskite interfaces within planar PSCs. 4,5 To date, one of the strategies for improving power conversion efficiency (PCE) and stability of SnO$_2$ based PSCs is to reduce energy losses within SnO$_2$ ETLs or at ETL/perovskite interfaces, i.e., modifying the properties of SnO$_2$ and passivating the ETL/perovskite interfaces. 6

Doping of SnO$_2$ is a commonly used approach to adjust the properties of SnO$_2$ and is easily compatible with a low-temperature solution process. Metal-ion doping (e.g., Zn, Al, La, Cu, Ga, Y, Sb, and Li) can usually improve the electronic properties of SnO$_2$, such as enhancing the conductivity and enabling a better energy level alignment with perovskite, which facilitates the electron extraction and transport capability and inhibits charge recombination, leading to improved PCE and stability. $^{7-15}$ For example, Wang et. al doped SnO$_2$ with gadolinium ions, which passivated oxygen defects at the SnO$_2$ surface and optimized the energy level matching between the SnO$_2$ ETL and the perovskite layer, and thus achieved an improved PCE with a reduced hysteresis. 16 Ren et. al reported that the low-temperature solution-processed Nb-doped SnO$_2$ ETL outperformed the pristine SnO$_2$ ETL originating from improved surface morphology, higher electron mobility, larger electrical conductivity, and enhanced electron extraction. 17 Zirconium doping upshifted the energy levels of SnO$_2$ and Zr-doped SnO$_2$ showed improved alignment of the conduction band maximum (E$_{CBM}$) with perovskite layers, in combination with enhanced conductivity and decreased surface defect density, which improved the electron extraction/transport properties, increased the carrier lifetime, and suppressed the charge recombination rate, contributing to the improved PCE of PSCs with marginal hysteresis. 18 In addition, organic or inorganic compounds as functional materials were doped or introduced into SnO$_2$ ETLs, such as sulfur-doped graphite carbon nitride 19, 3-(formamidinotiothio)-1-propanesulfonic acid 20, black phosphorus quantum dots 21, tetrabutylammonium iodide 22, phytic acid dipotassium 23, graphene oxide 24, lead sulfide quantum dots 25, poly(vinylpyrrolidone) 26, NH$_3$Cl 27, and tyrosine 28. These functional additives not only modify SnO$_2$ ETLs to enhance the electron extraction and transport capabilities, but also passivate SnO$_2$ ETLs or/and ETL/perovskite interfaces for suppressing nonradiative charge recombination, which can eventually contribute to improving the crystal growth and quality of perovskite layers. Lee et. al incorporated oxidized black phosphorus quantum dots (O-BPs) into SnO$_2-x$, to passivate oxygen vacancies in SnO$_2-x$, and thus unfavorable phase formation at FAPbI$_3$/SnO$_2$ interface was highly suppressed. 29

a Department of Materials Science and Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden. E-mail: lyuba@kth.se
b Department of Chemistry, Applied Physical Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
c The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x
Wang et al. modified SnO$_2$ by using CoCl$_2$·6H$_2$O, leading to a favorable energy level alignment and a significant suppressed interfacial recombination at the ETL/perovskite interface.30 The rare earth element Ce has been used to dope TiO$_2$ ETLs to improve the performance of PSCs.31-34 Chen et al. reported that Ce doping enlarged the band gap, upshifted the Fermi level, and reduced the surface defect density of the TiO$_2$ ETL, thus increasing the open-circuit voltage (V_{OC}) and final PCE of PSCs.31 Ce ions are also incorporated into other functional layers within PSCs, such as perovskite films,35,36 NiO$_2$ hole transport layers,37,38 and indium oxide transparent electrodes,39 to enhance the efficiency of PSCs. However, doping of Ce ions into SnO$_2$ ETLs has not been reported yet.

Regarding the manufacturing process of these doped or modified SnO$_2$ ETLs, almost all the processes involved the use of spin coating which is not compatible with large-scale manufacturing of PSCs. There are only very few published reports focused on the scaling up of the fabrication of doped SnO$_2$ ETLs.40 As a low-cost, waste-free, contactless, and maskless deposition method with digital control on printed patterns, inkjet printing has great potential for large-scale manufacturing of PSCs.41 Herein, we modified SnO$_2$ by Ce doping for use as ETLs, prepared through a scalable inkjet printing process. Compared with the pristine SnO$_2$, Ce-doped SnO$_2$ showed increased conductivity and improved energy band alignment with the perovskite layer. Ce doping also passivated the surface defects of SnO$_2$. The photoluminescence results exhibited the suppression of the carrier recombination within the perovskite film upon Ce doping. We fabricated planar PSCs using Ce-doped SnO$_2$ ETLs and achieved an improved PCE for the doped devices, compared to the undoped ones.

Results and discussion

To investigate the effects of Ce doping on the film quality and properties of the SnO$_2$ thin films, SnO$_2$ doped with various Ce concentrations was prepared via an inkjet printing process, and the physical properties were analyzed. Figure 1a and b show the top-view scanning electron microscopy (SEM) images of pristine SnO$_2$ and Ce-doped SnO$_2$ with a Ce content of 2.5 at% (molar ratio of Ce to Sn ions). Other SEM images of 5 at%, 7.5 at%, and 10 at% Ce doped SnO$_2$ are displayed in Figure S1. The resulting pristine and doped SnO$_2$ thin films were compact and dense with no pinholes. There was no obvious difference observed in the surface morphology between pristine SnO$_2$ and Ce-doped SnO$_2$. X-ray diffraction (XRD) patterns were obtained for the pristine and doped SnO$_2$ thin films, shown in Figure 1c and Figure S2. Both pristine and Ce-doped SnO$_2$ showed an amorphous structure with no diffraction peaks detected. This is also the reason that the SEM surface images are lacking “crisp” well-defined features. The amorphous films have a smooth morphology without sharp features.

X-ray photoelectron spectroscopy (XPS) measurements were conducted to investigate the chemical states of pristine and Ce-doped SnO$_2$. As seen in the Sn 3d XPS spectrum of SnO$_2$ (Figure 1d), the two peaks at 495.7 eV and 487.3 eV were assigned to Sn 3d$_{5/2}$ and Sn 3d$_{3/2}$, respectively. The O 1s XPS spectrum of

![Figure 1](image1.png)
SnO$_2$ exhibited a peak at 931.2 eV (Figure 1e). Upon Ce doping, the peaks in both Sn 3d and O 1s spectra moved to lower binding energy regions, indicating a possible chemical interaction between Ce and SnO$_2$.

The results also suggested the presence of Sn$^{4+}$ oxidation states in SnO$_2$ and Ce-doped SnO$_2$. The peak in the Ce 3d XPS spectrum was resolved into three components representing Ce$^{3+}$ and Ce$^{4+}$ oxidation states (Figure 1f). This result confirmed that Ce ions were successfully incorporated into the host SnO$_2$ lattice system. Furthermore, the O 1s XPS peak was deconvoluted into two peaks, one representing the lattice oxygen (O$_{l}$) in SnO$_2$ and the other one originating from the oxygen vacancies or chemisorbed hydroxyl groups (O$_{v}$). As the Ce doping concentration increased from 0 to 2.5 at%, the ratio of O$_{v}$ to total oxygen decreased from 24.11% to 19.40% (Table S1). Thus, the surface oxygen defects of SnO$_2$ were passivated upon introducing Ce ions, thereby reducing recombination losses at ETL/perovskite interfaces within PSCs.

The optical properties of pristine and Ce-doped SnO$_2$ samples were also investigated by ultraviolet-visible (UV/Vis) absorption measurements. As displayed in Figure 2a, the transmittance of both pristine and Ce-doped SnO$_2$ was above 80% in the visible light region, which verified the transparency of pristine and Ce-doped SnO$_2$ as ETLs for planar PSCs. The transmittance and absorption (Figure S3) changed slightly upon Ce doping. The Tauc’s relationship was used to determine the optical band gap (E$_g$) of SnO$_2$ and Ce-doped SnO$_2$, which is described using a formula:

\[
(\alpha h\nu)^{2} = C \times (h\nu - E_g)
\]

where α, $h\nu$, and C are the optical absorption coefficient, the photon energy, and the material constant, respectively. The two samples exhibited the same optical band gap of 3.76 eV (Figure 2b). The ultraviolet photoelectron spectroscopy (UPS) measurements were performed to investigate the effect of Ce doping on the energy levels of SnO$_2$. The work function can be calculated using the equation:

\[
E_F = 21.22 - (E_{onset} - E_{cutoff})
\]

where E_F refers to the Fermi level, E_{onset} and E_{cutoff} represent the onset and the cutoff of the UPS spectrum, respectively. As shown in Figure 2c and d, the work function was calculated to be 6.76 eV and 5.77 eV for SnO$_2$ and Ce-doped SnO$_2$, respectively. From the valence band XPS spectra (Figure 2e), the valence band maximum (E$_{VBM}$) of SnO$_2$ and Ce-doped SnO$_2$ was obtained to be 1.22 eV and 2.13 eV below the Fermi level and thus the values were calculated to be -7.98 eV and -7.90 eV, respectively. The conduction band minimum was then determined to be -4.22 eV and -4.14 eV using the formula $E_{CBM} = E_{VBM} + E_F$. The energy levels of the perovskite layer were obtained from the literature.

The consequent energy band diagram of PSCs with SnO$_2$ and Ce-doped SnO$_2$ ETLs was displayed in Figure 2f. The observed decrease in work function from 6.76 eV in SnO$_2$ to 5.77 eV in Ce-doped SnO$_2$ indicates that Ce addition altered the local chemical environment of the Sn atoms, reducing their binding energy, which agrees with the
observed slight shift of Sn (Figure 1d). This phenomenon likely increased the electron density at the Sn sites, effectively lowering the energy required to remove an electron from the surface, which was reflected in the reduced work function. Therefore, the energy levels were upshifted upon Ce doping, and the conduction band minimum of Ce-doped SnO₂ became closer to that of the perovskite layer than that of pristine SnO₂. This can enhance the electron extraction and reduce the recombination losses at ETL/perovskite interfaces, which is beneficial for improving the open-circuit voltage (V_{OC}).

The electrical properties of pristine and Ce-doped SnO₂ thin films were also studied. The conductivity of SnO₂ increased at first and then decreased when the Ce doping concentration increased from 0 to 10 at% (Figure S4). The conductivity of 2.5 at% Ce-doped SnO₂ was estimated to be 7.57×10⁻⁶ S·cm⁻¹ (Figure 3a), which was about 2.6 times higher than that of pristine SnO₂ (2.96×10⁻⁵ S·cm⁻¹). This enhancement originated from the increase in the electron density as well as the passivation of the surface defects in SnO₂ upon Ce doping.

The improved electrical conductivity of Ce-doped SnO₂ can boost the charge transfer at ETL/perovskite interfaces, leading to improved short-circuit current density (J_{SC}). The steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements were performed to investigate the charge transfer dynamics and examine the perovskite film quality. The perovskite films deposited on Ce-doped SnO₂ exhibited stronger PL intensities than that deposited on pristine SnO₂ (Figure 3b and Figure S5), which indicated that the carrier recombination in Ce-SnO₂/perovskite films was effectively suppressed. This was further verified by the TRPL results (Figure 3c). The TRPL decay curves were fitted with a bi-exponential decay function:

\[I(t) = A_1 \exp(-\frac{t}{\tau_1}) + A_2 \exp(-\frac{t}{\tau_2}) + I_0 \]

where \(\tau_1 \) and \(\tau_2 \) represent the fast and slow decay component, and \(A_1 \) and \(A_2 \) are the corresponding decay amplitude fractions, respectively. The average lifetime (\(\tau_{ave} \)) was calculated by the formula \(\tau_{ave} = A_1 \tau_1 + A_2 \tau_2 \). The fitting parameters were summarized in Table S2. The fast decay (\(\tau_1 \)) could be assigned to the quenching process of photogenerated carriers transferring from the perovskite film through the ETL to the FTO electrode, and the slow decay (\(\tau_2 \)) could originate from the radiative recombination of free charge carriers in the perovskite film before the charge transfer.

The Ce-SnO₂/perovskite film showed increased fraction \(A_1 \) suggesting decreased non-radiative recombination, while the increased \(\tau_2 \) from 188 ns to 236 ns upon Ce doping could indicate a decrease in the recombination of free carriers or a suppression of defects forming in the perovskite film. The suppressed non-radiative recombination may originate from the improved perovskite crystallization or decreased defect density induced by the passivation of the oxygen defects on the Ce-doped SnO₂ surface. PSCs with pristine and Ce-doped SnO₂ ETLs were fabricated to study the effect of Ce doping on the device performance. The current density-voltage (J-V) curves and photovoltaic parameters, i.e., \(V_{OC}, J_{SC}, \) fill factor (FF), and PCE are shown in Figure 3d and Table 1, respectively. An optimum PCE of 15.77% was achieved for the cell with a 2.5 at% Ce-doped SnO₂ ETL, higher than 14.66% for the cell with pristine SnO₂ ETL.
significantly improved average PCE of 15.05 ± 0.58% was also delivered by the Ce-doped SnO, (2.5 at%) ETLs compared to 13.87 ± 0.40% for pristine SnO, ETLs (Table S3 and Figure S6).

Table 1. Photovoltaic parameters of PSCs with inkjet-printed pristine SnO, and 2.5 at% Ce-doped SnO,

<table>
<thead>
<tr>
<th>ETL</th>
<th>Scan direction</th>
<th>PCE (%)</th>
<th>V_OC (V)</th>
<th>J_SC (mA cm⁻²)</th>
<th>FF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO</td>
<td>reverse</td>
<td>14.66</td>
<td>1.08</td>
<td>20.96</td>
<td>65.0</td>
</tr>
<tr>
<td>2.5 at% Ce-SnO</td>
<td>reverse</td>
<td>15.77</td>
<td>1.08</td>
<td>21.98</td>
<td>66.4</td>
</tr>
</tbody>
</table>

originating from the improvement in all three photovoltaic parameters V_OC, J_SC, and FF. The improved performance was attributed to enhanced electron extraction and transport and suppressed carrier recombination at ETL/perovskite interfaces, originating from reduced surface defects, enhanced conductivity, and improved energy band alignment between the ETL and the perovskite layer. Further optimization can be carried out to boost the efficiency to higher levels through optimizing each functional layer and interfaces within the PSC devices. The achieved efficiency of 15.77% is still competitive in comparison with the reported values of 13.08% and 18.8% realized by similar inkjet-printed SnO, ETLs.50, 51 In addition, this work provides some insights to ionic doping of SnO, ETLs via a scalable inkjet printing method.

Conclusions

In summary, inkjet-printed Ce-doped SnO, was successfully fabricated as an effective electron transport layer for planar PSCs. Ce-doped SnO, showed enhanced conductivity and improved energy band alignment with the perovskite layer, contributing to facilitating charge extraction and transport capabilities. Upon Ce doping, the surface defects of SnO, were also passivated. The photoluminescence characterization revealed that the perovskite film deposited on Ce-doped SnO, exhibited a longer decay lifetime, representing the suppression of the carrier recombination within the perovskite film. Consequently, planar PSCs with Ce-doped SnO, (2.5 at%) ETLs delivered an improved PCE of 15.77%, compared to those devices with undoped SnO, ETLs (14.66%). Moreover, this work demonstrated a sustainable and scalable inkjet printing method for the fabrication of efficient planar PSCs.

Experimental

Materials: All chemicals were used as received without further modifications. Tin (IV) acetate (Sn(CH₃COO)₂), and cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 99.99%) were purchased from Sigma–Aldrich (Darmstadt, Germany). Lead iodide (PbI₂, 99.99%) and lead bromide (PbBr₂, >98.0%) were purchased from TCI (Tokyo, Japan). Formamidinium iodide (FAI, CH₃NH₃I), >98% and methylammonium bromide (MABr, CH₃NH₃Br, >98%) were purchased from Dyenamo (Stockholm, Sweden) and Sigma–Aldrich (Darmstadt, Germany), respectively. Spiro-OMeTAD (99.8%) was purchased from Borun New Material Technology (Ningbo, China). Bis(trifluoromethane)sulfonimide lithium salt (LiTFSI, 99.95%), FK209 (Co (III) TFSI salt, >98%) and 4-tert-butylpyridine (TBP, 98%) were obtained from Sigma–Aldrich (Darmstadt, Germany).

Set-up of inkjet printer: A piezoelectric drop-on-demand inkjet system was designed for the printheads from XaarJet in our lab.52, 53 Inkjet printing of pristine and Ce-doped SnO, thin films was performed under ambient conditions by employing X1126/80 printheads which possess 126 active nozzles and can yield a drop volume of 80 pl. A customized waveform was used to form and eject droplets. The printing frequency was set as 283.46 Hz, and the printing resolution was 360 dpi.

Inkjet printing of pristine and Ce-doped SnO, thin layers: The ink for printing SnO, thin films was prepared by dissolving tin (IV) acetate in a mixture of 2-propanol and propylene glycol (9/1, v/v) to form a 0.05 M precursor solution. A small amount of ethanolamine was added to improve the acetate solubility. The precursor ink was then inkjet-printed onto substrates which were pre-heated at 60 °C. The as-printed thin films were dried at 60 °C for 5 min and afterwards were annealed inside a furnace at 220 °C for 1 h. Ce-doped SnO, thin films were fabricated in a similar process to pristine SnO, thin films. The only difference lay in the preparation of the precursor ink. A certain amount of a 0.25 M Ce(NO₃)₃ solution, consisting of Ce(NO₃)₃·6H₂O dissolved in a mixture of 2-propanol and propylene glycol (9/1, v/v), was added to a 0.05 M tin acetate solution prepared as described above. The amount of the added Ce(NO₃)₃ solution was determined based on the desired doping level, e.g., 50 μL for 2.5 at%. Then, the mixed solution was used for inkjet printing of Ce-doped SnO, thin films. The inkjet printing and post-treatment processes were the same as the fabrication process of pristine SnO, thin films.

Device fabrication: FTO glass substrates (13 Ω/sq, Sigma–Aldrich) were cut into pieces with the dimension of 25 × 15 mm. Each piece was etched at the edge through dripping 2M HCl aqueous solution onto Zn powder. These substrates were successively sonicated in a detergent solution (5% deconex in water), deionized water, aceton, and 2-propanol for 15 min. Before inkjet printing, FTO substrates were pre-heated at 50 °C for 30 min and afterwards cooled down to room temperature. Compact SnO, or Ce-doped SnO, ETLs were fabricated via inkjet printing as described above. Then, the perovskite layers were fabricated following the procedure reported previously.54 The perovskite precursor was prepared by dissolving PbI₂, FAI, PbBr₂, and MABr in a mixed solvent (N, N-dimethylformamide/dimethyl sulfoxide = 4/1, v/v) to form a 1.3 M Pb precursor solution. The molar ratio of PbI₂/FAI/PbBr₂/MABr was 1.1/1/0.2/0.2. Seventy-five μL of the perovskite precursor was spin-coated at 4500 rpm for 30 s. During the spin coating, 125 μL of chlorobenzene was dripped onto the perovskite film at 15 s. The as-deposited perovskite film was immediately dried at 100 °C for 30 min. A hole transport layer was spin-coated at 4,000 rpm for 30 s with a precursor consisting of 85.8 mg Spiro-OMeTAD, 35 μL LiTFSI solution (0.6 M), 33.8 μL TBP, and 10 μL FK 209 solution (0.2 M) dissolved in 1 mL chlorobenzene. Finally, an 80 nm-thick Au
electrode was thermally evaporated (Edwards Auto 306) onto the substrates.

Characterization: The morphology of the pristine and Ce-doped SnO	extsubscript{2} thin films was studied using a combined focused ion beam/scanning electron microscope (FIB/SEM, FEI Nova 600 Nanolab, FEI Company, Eindhoven, The Netherlands). XRD patterns were obtained employing an X-ray diffractometer (Siemens D5000, Siemens, Munich, Germany) with a Cu Kα radiation (λ = 1.5406 Å). The XPS and UPS measurements were conducted using the K-Alpha XPS/UPS System manufactured by Thermo Scientific. For XPS analysis, the spectra were obtained using a monochromatized Al Kα line with a photon energy (hν) of 1486.6 eV. For UPS analysis, a HeI ultraviolet light source with an energy of 21.22 eV was employed. The valence band photoelectron signal originated from the top 2-3 nm of the sample’s surface, and the electronic work function of the material’s surface was measured. The UV/Vs absorption and transmittance spectra were obtained using a Lambda 750 spectrophotometer. The conductivity of thin films was measured according to the report and the details of the measurement were shown in Figure S7. Current-voltage (I-V) characteristics were collected using a Keithley 2400 instrument. The steady-state PL of perovskite films was investigated using Fluorolog FL 3-22 spectrometer at room temperature (Horiba Jobin Yvon, Longjumeau, France), equipped with a double excitation monochromator, a single emission monochromator (HR320) and a R928P PMT detector. A continuous xenon lamp (450 W) was used for steady state measurements. A supercontinuum laser (Fianium WhiteLase) was employed as a source for the TRPL. For all photoluminescence measurements the excitation wavelength was 500 nm, and the detection wavelength was 765 nm. The active area of the solar cells was defined by a mask of 0.152 cm	extsuperscript{2} and was illuminated under an AM 1.5G solar simulator (Newport 91160-1000) with an incident light density of 100 mW cm	extsuperscript{-2}. J-V characteristics of the PSC devices were recorded at a scan rate of 125 mV s	extsuperscript{-1}, using a Keithley 2400 unit.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors sincerely acknowledge the valuable discussions with Dr. Jinghua Guo and Dr. Feipeng Yang. This research was funded by China Scholarship Council (No.20170620017) and Jernkontoret (Stiftelsen Jernkontorsfondern for Bergsvetenskaplig Forsknings). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. JG and MJ gratefully acknowledge the support of the Swedish government through the strategic research area STandUP for ENERGY and from Energimyndigheten (Swedish Energy Agency, Grant number: 49278-1).

References

The data supporting this article have been included as part of the Supplementary Information.