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The introduction of gallium ions into V2O5

interlayers for highly reversible Zn ion batteries

Ming Zhao,a Shilong Li,a Xiang Wu *a and Abdukayum Abdukader *b

It is very important to construct energy storage systems with high safety and excellent electrochemical

performance. In particular, aqueous Zn ion batteries (AZIBs) possess the characteristics of low-cost and

environmental benignity. However, there are few cathode materials that match well with the zinc anode.

Herein, Ga3+ pre-intercalation into V2O5 layers promotes the insertion/extraction kinetics of zinc ions.

The assembled Zn/V2O5–0.1Ga battery with 3 M Zn(CF3SO3)2 electrolyte shows a specific capacity of

512.07 mA h g�1 at a current density of 0.1 A g�1. It delivers an energy density of 281.64 W h kg�1 at a

power density of 55 W kg�1. It can also provide a reversible capacity of 110 mA h g�1 at 10 A g�1 with a

retention rate of 91.43% after 5000 cycles, revealing its potential applications in future energy storage

devices.

1. Introduction

In the past few years, the excessive depletion of fossil fuels has
caused a serious energy crisis and environmental pollution.
It is necessary to design and develop many sustainable energy
sources.1–4 Among them, Li-ion batteries (LIBs) have been
utilized in smartphones, electric vehicles and laptops. Never-
theless, their future development is still restricted considering
the high cost and toxic organic electrolyte.5,6 Thus, it is crucial
to seek an alternative to LIBs, such as rechargeable aqueous
multivalent ion batteries (Na, K, Ca, Zn, and Mg).7–10 Aqueous
zinc ion batteries (AZIBs) attract wide attention owing to their
high theoretical capacity (820 mA h g�1), and the abundant
resources and low redox potential of Zn2+/Zn (�0.76 V vs.
SHE).11–13 However, it is still an urgent task to explore suitable
cathode materials, such as Prussian blue analogues, and
Mn-based and vanadium-based materials.14,15 Prussian blue
analogues show low capacity and short cycle life.16 Manganese-
based materials still need to be improved owing to low rate
performance and unstable structures.17,18

Recently, various V2O5 structures have been widely investi-
gated as cathode materials for AZIBs,19 owing to their diverse
oxidation states (V2+, V3+, V4+, and V5+) and unique crystal
features.20,21 The crystal structure of V2O5 connects the dis-
torted VO5 square cones through the shared edges and corners
to form a 2D layered structure with weak van der Waals

interactions between the layers. For instance, Chen et al. pre-
pared V2O5 samples supported on carbon cloth by a template
route. The fabricated cells delivered a capacity of 370 mA h g�1

at 0.2 A g�1.22 The Zn/V2O5@CNT devices presented a capacity
of 485.8 at 0.1 A g�1.23 However, the capacity of the reported
V2O5 electrode materials is far from their theoretical capacity
(589 mA h g�1). The strong electrostatic repulsion between
the zinc ions and the host structure results in a slow electro-
chemical kinetic behavior. Therefore, some strategies have
been proposed to modify the cathode material of AZIBs, such
as metal ion pre-embedding, defect engineering and coating of
other materials.

Metal ion pre-embedding is thought to be an efficient
strategy to enhance the electrochemical performance of AZIBs.
Many metal cations have been introduced into target materials,
such as Zn, K, and Ca. Zhang et al. introduced La3+ into a
layered V2O5 structure. The assembled device shows a capa-
city of 405 mA h g�1 at 0.1 A g�1 and energy density of 227.5 W h
kg�1 at 55 W kg�1.24 The Zn/V2O5 cells deliver a discharge
capacity of 350 mA h g�1 at 0.1 A g�1 by the intercalation of
PANI.25 Liu and coworkers used K+ ions as a structure pillar for
introduction into V2O5 interlayers. The resulting material pos-
sessed a capacity of 479.8 mA h g�1 at 0.2 A g�1 and maintained
91.3% of its initial capacity at 10 A g�1 after 3000 cycles.26

In this work, we prepare Ga3+-intercalated V2O5 nanobelts
by a simple hydrothermal route. Gallium possesses natural
advantages, such as its strong electronegativity forming stable
chemical bonds. It has a small radius compared to other
cations, making it easier to approach the target sample. The
introduction of metal ions promotes the transfer of Zn ions,
and maintains structural stability of the electrode materials.
A series of zinc ion batteries are assembled using the obtained
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V2O5–0.1Ga samples as cathodes. The cells deliver a discharge
capacity of 512.07 mA h g�1 at 0.1 A g�1. They maintain 91.43%
of the original capacity at 10 A g�1 after 5000 cycles. The
batteries present an energy density of 281.64 W h kg�1 at a
power density of 55 W kg�1. This work provides new ideas in
designing cathode materials that match well with Zn anodes.

2. Experimental section

All the purchased chemicals were used without any purifica-
tion. Typically, 4 mmol V2O5 (Alfa Aesar) powder was dissolved
into 50 mL of de-ionized water and stirred for 30 min at 50 1C.
Then, 1 mL of 30% H2O2 was added into the above solution.
After that, a certain amount of HCl (Codow) solution is uni-
formly dispersed into the above mixture to adjust the pH to 1.
Subsequently, 0.1 mmol Ga(NO3)3�xH2O (Macklin) was added
into the prepared solution with stirring for half an hour.
Then, the solution was placed into an 80 mL Teflon-lined
stainless-steel autoclave and maintained at 180 1C for 48 h.
After cooling to room temperature, the solution was washed
with alcohol and deionized water several times and dried under
vacuum at 60 1C for 12 h. For comparison, different amounts of
Ga(NO3)3�xH2O (0, 0.05, and 0.2 mmol) were also added to
similar solutions and the prepared samples were labeled as
V2O5, V2O5–0.05Ga, and V2O5–0.2Ga, respectively.

2.1. Structural characterization

The crystallographic information of the as-prepared samples
was characterized by powder X-ray diffraction (XRD, 7000,
Shimadzu, Cu Ka radiation, l = 0.1541 nm, 40 kV), scanning

electron microscopy (SEM, Gemini 300-71-31), and X-ray photo-
electron spectroscopy (XPS, Thermo Kalpha). The specific
surface area was studied by the Brunauer–Emmett–Teller
(BET, Micromeritics ASAP, JW-TB200) method.

2.2. Electrochemical measurements

The cathode materials consist of the active materials, carbon
black (Power Origin Limited) and polyvinylidene fluoride
(Power Origin Limited) with a mass ratio of 7 : 2 : 1. Then a
certain amount of N-methyl-L-2-pyrrolidone (Damao) was
added to form a slurry, which was evenly pressed onto graphite
paper. A piece of zinc foil was used as the anode with a
thickness of 0.2 mm. The coin cells (CR2032) were assembled
by using 3 M Zn(CF3SO3)2 (Bidepharm) as the electrolyte. The
average loading mass of the cathode is about 1.5 mg. The
galvanostatic intermittent titration technique (GITT), galvanic
charge–discharge (GCD) analysis and cycling stability tests were
performed at a voltage range of 0.4–1.5 V using a Neware battery
tester (CT-4008T-5V6A-164). The CV curves and Nyquist plots of
the cells were measured by using an electrochemical work-
station (Shanghai Chenhua, CHI660E).

3. Results and discussion

First, the crystal structures of the samples are investigated by
XRD, as shown in Fig. 1a. It can be observed that the diffraction
peaks match well with the V2O5 phase (PDF# 41-1426). The
V2O5–0.1Ga sample presents sharp and strong diffraction
peaks. The main peaks at 15.30, 20.32, 21.68, 26.16, 31.04,
and 41.361 belong to the (200), (001), (101), (110), (301) and

Fig. 1 Structural characterizations of the samples. (a) XRD patterns. (b) XPS survey spectrum. (c) V 2p, (d) O 1s, and (e) Ga 3d+O 2s. (f) N2 adsorption–
desorption isotherms; inset represents the pore size distributions of the V2O5–0.1Ga products.
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(002) crystal planes, respectively. By enlarging the XRD pattern,
it can be observed that the (101) crystal plane shifts to the right.
This demonstrates the successful doping of Ga ions into the
V2O5 host structure. The lattice parameters a = 11.516 Å, b =
3.566 Å, and c = 4.373 Å. Then XPS is used to investigate the
valence states and elemental composition of the electrode
materials. Fig. 1b presents the full spectrum of the V2O5–
0.1Ga sample, revealing the existence of the V, O, Ga and C

elements. From Fig. 1c, the binding energies at 516.28/
523.08 eV and 517.18/524.78 eV are in accordance with V4+

and V5+.27 According to previous reports, V2O5 samples with
mixed valences (V4+ and V5+) possess fast reaction kinetics and
low polarization intensity.28 The O 1s spectrum can be fitted
into three peaks, as shown in Fig. 1d. The peaks at 529.98,
530.68 and 532.68 eV can be indexed to oxygens in the metal
oxide,29 VQO bonds,30 and O–H from surface-absorbed
water,31 respectively. The Ga 3d spectrum in Fig. 1e shows
the signal peak at 20.8 eV, which confirms the presence of Ga3+

in the V2O5 samples.32 Fig. 1f shows nitrogen adsorption and
desorption isotherms of the V2O5 and V2O5–0.1Ga samples. The
specific surface area of V2O5–0.1Ga is 27.42 m2 g�1, which is
larger than that of the V2O5 product (24.09 m2 g�1). In addition,
the total pore volumes of the V2O5–0.1Ga and V2O5 samples are
0.061 and 0.052 cm3 g�1, respectively. The results demonstrate
that the addition of Ga element can increase the specific
surface area and the active sites.

SEM is then utilized to observe the morphologies of the
samples. As described in Fig. 2a–d, the growth process of the
V2O5 samples is investigated by controlling the content of Ga3+.
In Fig. 2b, the V2O5–0.1Ga electrode possesses a belt-like shape.
In contrast, the other three samples show uneven microcrys-
tals. Using V2O5–0.1Ga samples as a cathode, the exposed
surface is expected to provide abundant active sites to obtain
superior rate performance. As seen in Fig. 2e, the elemental
mapping confirms a uniform distribution of three elements of
V, O and Ga along the surface of the nanobelts, which demon-
strates that Ga3+ is doped into the V2O5 host structure.

To study the electrochemical performance of the samples,
some CR2032 coin cells are assembled with 3 M Zn(CF3SO3)2 as
the electrolyte. Fig. 3a shows the first five cycle CV curves of the

Fig. 2 SEM images of (a) V2O5–0.05Ga, (b) V2O5–0.1Ga, (c) V2O5–0.2Ga
and (d) V2O5 samples. (e) The corresponding elemental mapping of the
V2O5–0.1Ga samples.

Fig. 3 Electrochemical performance. (a) CV curves in the first 5 cycles at 0.2 mV s�1, (b) cycling performance at 0.2 A g�1, (c) GCD curves of the first five
cycles at 0.1 A g�1, (d) long-term cycling at 10 A g�1, (e) rate capability at different current densities and (f) GCD curves at various current densities.
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V2O5–0.1Ga sample at 0.2 mV s�1. The curves maintain the
same shapes well, indicating their high reversibility of the
redox reactions. Furthermore, there are two pairs of redox
peaks located at 1.19/0.96 V and 0.77/0.62 V, which are related
to the multi-step intercalation/de-intercalation of Zn2+. Fig. 3b
presents the cycling stability of the samples. After many cycles
of activation, the discharge capacity of the V2O5–0.1Ga sample
delivers a specific capacity of 526.8 mA h g�1 at 0.2 A g�1 and
maintains a retention rate of 95.8% after 130 cycles. The GCD
curves of the V2O5–0.1Ga products show several charge–dis-
charge platforms (Fig. 3c), which are in accordance with the
corresponding CV curves shown in Fig. 3a.

The cycling stability of the cells is also evaluated at 10 A g�1,
as depicted in Fig. 3d. The capacity of the V2O5–0.1Ga sample
reaches 110 mA h g�1 with a retention rate of 91.43% after
5000 cycles. Fig. 3e shows the corresponding rate performance
of the batteries. The discharge specific capacities of the V2O5–
0.1Ga electrodes are 512.07, 514.03, 499.67, 479.18, 437.59,
360.66, 244.64, are 148.40 mA h g�1 at current densities from
0.1 to 10 A g�1. When it returns to 0.1 A g�1, the battery still

obtains a capacity of 540.57 mA h g�1. This demonstrates that
the moderate amount of Ga3+ is conducive to the enhancement
of the specific capacity and rate capability. On the contrary,
excessive Ga3+ incorporation may lead to the disruption of the
crystal structure and volume expansion of the V2O5 samples,
thus producing adverse effects. Furthermore, the GCD curves
(Fig. 3f) of the Zn/V2O5–0.1Ga batteries show that the capacity
decreases with increasing current density. Table 1 lists the zinc-
ion storage performance of several electrode materials.33–41

It demonstrates the excellent electrochemical performance of
Zn/V2O5–0.1Ga cells.

Fig. 4a presents the CV curves of the Zn/V2O5–0.1Ga cells at
various scan rates (0.2–1.0 mV s�1). With the increasing of the
sweep speed, the positive and negative peak currents move to high
and low potentials, respectively. The shape of the curves remains
almost unchanged, showing their excellent reversibility. For the CV
curves, the relationship between peak current (i) and sweep speed
(v) can be obtained through the equation as follows:

i = avb (1)

Table 1 The electrochemical performance of the V2O5–0.1Ga electrode materials

Materials Morphology Current density (A g�1) Discharge capacity (mA h g�1) Electrolyte Ref.

VO2@PPy Hollow spheres 0.1 440 3 M Zn(CF3SO3)2 33
V2O5 Nanofibers 0.02 319 3 M Zn(CF3SO3)2 34
Mn-doped-VO2 Nanobelts 0.1 209.6 3 M Zn(CF3SO3)2 35
Ni0.25V2O5�nH2O Nanoribbons 0.2 389 3 M ZnSO4 36
VO2�0.2H2O Nanocuboids 0.25 423 2 M ZnSO4 37
V2O5x/PANI Nanosheets 0.1 400 2 M ZnSO4 38
K1.15V5O13�1.3H2O Nanobelts 0.2 461 3 M Zn(OTF)2 39
Ba1.2V6O16�3H2O Nanobelts 0.1 321 2 M ZnSO4 40
V2O5 Hollow spheres 0.2 280 3.65 M ZnSO4 41
V2O5–0.1Ga Nanobelts 0.1 512.07 3 M Zn(CF3SO3)2 This work

Fig. 4 Energy storage kinetics of the V2O5–0.1Ga electrodes for AZIBs. (a) CV curves, (b) the fitting plots of log(i) and log(v), (c) and (d) the capacitive
contribution ratios at various scan rates, (e) GITT curves and (f) Nyquist plots.
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where a and b are adjustable constants. The b value can be
obtained by a linear fitting. The electrochemical reaction is
determined by a diffusion-controlled process when the value
of b is close to 0.5, while it is capacitance-controlled behavior

if b Z 1. If the b value is 0.5–1, it indicates a pseudocapacitive
contribution- and battery behavior-dominated reaction process.
From Fig. 4b, the b values are 0.83, 1.00, 0.87 and 0.84,
respectively. This confirms the capacitive contribution.

Fig. 5 Structural and morphology characterization. (a) Ex situ XRD patterns at various charge/discharge states, (b) and (c) XPS spectra of V and Zn
elements and (d) schematic diagram of the Zn2+ insertion mechanism on the V2O5–0.1Ga cathode.
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In addition, the following equation can be utilized to calcu-
late the pseudocapacitive and diffusion contributions:

i(V) = k1v + k2v1/2 (2)

where k1 and k2 are fixed constants. The parameter k1v is
defined as the surface-controlled process, while k2v1/2 is the
diffusion-controlled one. The capacitive process reaches 87.6%
of the total capacity at 1.0 mV s�1 (Fig. 4c). In Fig. 4d, the
capacitance contribution ratio increases from 75.4% to 87.6%
with the sweep rate increasing. The GITT curves are character-
ized to further evaluate the diffusion ability of zinc ions. From
Fig. 4e, the DZn

2+ values of the V2O5–0.1Ga sample are deter-
mined to be 10�6 and 10�8 cm2 s�1 in the discharge state. This
demonstrates that the V2O5–0.1Ga nanobelts accelerate the
Zn2+ migration. EIS is utilized to further investigate the zinc
ion storage process in the Zn/V2O5–0.1Ga battery. The curves
consist of a semicircle in the high frequency region and a
straight line in the low one. The radius of the semicircle
represents the charge transfer resistance (Rct) between the
electrode and electrolyte. As presented in Fig. 4f, V2O5–0.1Ga
samples possess a lower charge transfer resistance (Rct) than
the other samples, indicating their excellent reaction kinetics.
In addition, the V2O5–0.1Ga samples show an Rs value of 5.1 O.

The energy density and power density can be calculated
based on eqn (3) and (4):

E = QU/2m (3)

P = iU/2m (4)

where E (W h kg�1) and P (W kg�1) refer to the energy density
and power density, respectively. Q (A h) represents the dis-
charge capacity, U (V) is the operating voltage, i (A) denotes the
discharge current, and m (kg) refers to the mass of active
material. Therefore, it can be concluded that the cells possess
an energy density of 281.64 W h kg�1 at a power density of
55 W kg�1 at 0.1 A g�1.

Ex situ XRD was performed to study the Zn2+ storage
mechanism of the Zn/V2O5–0.1Ga batteries at different stages
(Fig. 5a). The (001) crystal plane shifts to a high angle when the
voltage drops from 1.5 V to 0.4 V. This is due to the strong
electrostatic adsorption between the intercalated Zn2+ and V2O5

materials, which reduces the interplanar spacing of the (001)
plane.42 After full charging, the plane returns to its original
state, which is attributed to the reversible removal of Zn2+ in
the host material. Besides, a new phase Zn3(OH)2V2O7�2H2O
appears during the reaction due to the insertion of Zn2+,
demonstrating that Zn2+ is embedded successfully into the
V2O5–0.1Ga samples. The generation of a new phase is related
to H+ in the electrolyte. The electrochemical reaction process
can be represented as below:

V5+ + 4H2O - VO2(OH)� + 6H+ (5)

Zn - Zn2+ + 2e� (6)

2VO2(OH)� + 3Zn2+ + 3H2O - Zn3(OH)2V2O7�2H2O + 4H+

(7)

Finally, XPS spectra are again obtained to study the compo-
sition and chemical valence of the V2O5–0.1Ga electrode during
the charge and discharge states. In Fig. 5b, the V 2p1/2 and
V 2p3/2 diffraction peaks can be attributed to V4+ (523.68/
516.28 eV) and V5+ (524.98/517.38 eV), respectively.43 In the
charge state, the signal of the V4+ peaks decreases, while that of
V5+ increases. This is caused by reversible insertion/extraction
of Zn2+ in the redox reactions. As seen in Fig. 5c, there are no
Zn2+ signals detected in the pristine state. When discharged to
0.4 V, the peaks at 1022.18 eV and 1045.38 eV belong to Zn 2p3/2

and Zn 2p1/2. The peak signal is lower during charging than
discharging. It is worth noting that the intensity of the Zn
signal peak does not disappear completely after charging,
which is due to the irreversible de-embedding of some Zn2+.
Fig. 5d illustrates an electrochemical reaction schematic of the
reversible insertion/extraction of Zn2+.

4. Conclusions

In summary, we have prepared several Ga-ion pre-embedded
V2O5 nanobelts by a hydrothermal strategy. The obtained
samples show large specific surface areas, which is beneficial
to increasing the reaction active sites. The pre-embedding of
Ga3+ effectively maintains the stability of the electrode material
during repeated charging and discharging. The assembled
Zn/V2O5–0.1Ga possesses an outstanding specific capacity and
long cycle life after 5000 cycles and ultrafast Zn2+ diffusion
capability. Moreover, they also achieve high energy density and
power density. The superior performance V2O5–0.1Ga cathode
materials show great potential for advanced and safe aqueous
zinc ion batteries.
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